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The aim of this paper is to consider a class of linear ultraparabolic equations
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1. INTRODUCTION

In the paper, we consider the ultraparabolic equation of the form
(1.1)

Lu =

m0∑
i,j=1

∂xi
(
aij(z)∂xju(z)

)
+

N∑
i,j=1

bijxi∂xju(z)−∂tu(z) = g(z)+

m0∑
j=1

∂xjfj(z),

where z = (x, t) ∈ RN+1, 1 ≤ m0 ≤ N , bij ∈ R (i, j = 1, . . . , N), g, fj ∈ Lp (Ω)
or Lp,λ (Ω), Lp,λ (Ω) is a Morrey space, Ω is a bounded domain in RN+1, p ≥ 2,
0 ≤ λ < Q+ 2, Q is the homogeneous dimension, see Section 2.

The assumptions to (1.1) are:
(H1) (ellipticity condition on Rm0) Let coefficients aij(z) ∈ VMO ∩

L∞(Ω)(see next section for the definition of VMO), aij(z) = aji(z). Assume
that there exists a constant Λ > 1 such that for any z ∈ RN+1, ξ ∈ Rm0 ,

Λ−1|ξ|2 ≤
m0∑
i,j=1

aij(z)ξiξj ≤ Λ|ξ|2.

(H2) The constant matrix B = (bij)i,j=1,...,N in (1.1) has the form

B =


0 B1 0 · · · 0
0 0 B2 · · · 0
...

...
...

. . .
...

0 0 0 · · · Br
0 0 0 · · · 0

 ,
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where Bk(k = 1, 2, . . . , r) is a mk−1 ×mk matrix with rank mk and

m0 ≥ m1 ≥ · · · ≥ mr ≥ 1,
r∑

k=0

mk = N.

The equation (1.1) can be written as

Lu = div (A(z)D0u) + Y u = g + divf,

where D0 =
(
∂x1 , ∂x2 , . . . , ∂xm0

, 0, . . . , 0
)
, Y u = 〈x,BDu〉−∂tu, D = (∂x1 , ∂x2 ,

. . . , ∂xN ), f = (f1, f2, . . . , fm0 , 0, . . . , 0), A(z) is a N ×N matrix with the form

A(z) =

(
A0(z) 0

0 0

)
, A0(z) = (aij(z))i,j=1,...,m0

.

Regularity for weak solutions to parabolic equations were provided by
many mathematicians including DiBenedetto [6], Friedman [11], Krylov [19],
Ladyzhenskaya-Solonnikov-Ural’tseva [20], Lieberman [22] and references
therein.

In recent decades, many scholars have been concerned with regularity of
weak solutions to ultraparabolic equations. These equations are closely related
to finance, Brown motion, particle physics and human vision, etc. In contrast
to the classic linear parabolic equation

N∑
i=1

∂xixju(x, t)− ∂tu(x, t) = f(x, t),

(1.1) is strongly degenerate if 1 ≤ m0 < N and owns a drift Y u. These
differences give rise to several new difficulties to research of regularity to (1.1)
and new tools have to be drawn.

For the homogeneous ultraparabolic equation

(1.2) Lu =

m0∑
i,j=1

∂xi
(
aij(z)∂xju(z)

)
+

N∑
i,j=1

bijxi∂xju(z)− ∂tu(z) = 0,

Polidoro in [28] gave global lower bound of the fundamental solution to
(1.2). The boundedness of weak solutions to (1.2) with measurable coefficients
was investigated by Pascucci and Polidoro in [27] with Moser’s iteration method
based on a combination of a Caccioppoli type estimate and the classical em-
bedding Sobolev inequality. Wang and Zhang in [30] derived Hölder estimates
for weak solutions to (1.2) with measurable coefficients by establishing local a
priori estimate to (1.2) and a Poincaré inequality of nonnegative weak lower
solution.

To the following ultraparabolic equation
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(1.3)

Lu =

m0∑
i,j=1

∂xi
(
aij(z)∂xju(z)

)
+

N∑
i,j=1

bijxi∂xju(z)− ∂tu(z) =

m0∑
j=1

∂xjFj(x, t)

with Fj ∈ Lploc
(
RN+1

)
(1 < p <∞), aij(z) belonging to VMO spaces, Manfre-

dini and Polidoro in [24] concluded Lp estimates and Hölder continuity for weak

solutions u ∈ Lploc
(
RN+1

)
. If Fj ∈ Lp,λloc

(
RN+1

)
(1 < p < ∞, 0 ≤ λ < Q + 2)

and aij(z) belong to some VMO spaces, Polidoro and Ragusa in [29] de-
duced Hölder regularity for weak solution u ∈ Lploc

(
RN+1

)
to (1.3). Bra-

manti, Cerutti and Manfredini [2] proved local Lp estimates for second order
derivatives ∂xixju (i, j = 1, . . . ,m0) of strong solutions to the nondivergence
ultraparabolic equation

m0∑
i,j=1

aij(z)∂xixju+ 〈x,BD〉u− ∂tu = f

with aij(z) being in VMO and f ∈ Lp. The methods in [2, 24, 29] are based
on the representation formulae for solutions and estimates of singular integral
operators. More related results also see Cinti, Passcucci and Polidoro [5], Xin
and Zhang [31], Zhang [32] and references therein.

The aim of this paper is to establish integrability for weak solution u ∈
W 1,1

2 (Ω) to (1.1) with the method of a priori estimates. For results on higher
integrability of parabolic equations, see Byun and Wang [3], Fugazzda [12],
Palagachev and Softova [26] and references therein. The first statement in our
paper is the higher Lp(p > 2) estimates. For this purpose, an appropriate
frame is homogeneous spaces. Bramanti, Cerutti and Manfredini [2] pointed
out that the ball related to a quasidistance of (1.1) (see Section 2 below) is a
homogeneous space and Gianazza [14] showed a reverse Hölder inequality on
homogeneous spaces. These facts will play important roles in our proof and in
spite of this, some new preliminary conclusions are needed to supply. Inspired
by the method in [27], we deduce a Caccioppoli type inequality and a Sobolev
type inequality for weak solution to (1.1). Following to [8], a Poincaré type
inequality for weak solution to (1.1) is obtained. And then we prove higher Lp

estimates for gradients of weak solutions to (1.1) by using these new inequalities
and the reverse Hölder inequality in [14].

The second result is higher integrability in Morrey spaces for gradients of
weak solution u ∈W 1,1

2 (Ω) to (1.1). With the aid of the approach appeared in
parabolic equations (e.g., see [15]), we consider a homogeneous ultraparabolic
equation of variable coefficients with a nonhomogeneous boundary value con-
dition, i.e., (6.1) below, and a nonhomogeneous ultraparabolic equation of
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variable coefficients with homogeneous boundary value condition, i.e., (6.2).
The Lp estimates for gradients of weak solutions to (6.1) is gained by proving
a local L∞ estimate and a local L2 estimate of weak solutions to homogeneous
ultraparabolic equation of constant coefficient, (5.1). We also establish a local
Lp estimate for gradients of weak solutions to (6.2). These results are of inde-
pendent interest and allow us to deduce higher integrability in Morrey spaces
for gradients of weak solutions to (1.1) by combining a known iteration lemma
in [16,25].

Finally, we derive a Campanato estimate for weak solutions to (1.1) with
the Poincaré type inequality in Section 3 and the estimates for (5.1) and (6.2).

The following is the notion of weak solution to (1.1).

Definition 1.1. If u ∈W 1,1
2 (Ω) and for any ψ ∈ C∞0 (Ω),

−
∫

Ω
AD0uD0ψdz +

∫
Ω
ψY udz =

∫
Ω

(gψ − fD0ψ)dz,

then u is said a weak solution to (1.1).

The main results of this paper are stated as follows.

Theorem 1.1. Under assumptions (H1) and (H2), if u ∈ W 1,1
2 (Ω) is

a weak solution to (1.1), g, fj ∈ Lp (Ω), then there exists a constant ε0 > 0

such that for any p ∈
[
2, 2 + 2Q

Q+2ε0

)
, we have D0u ∈ Lploc(Ω) and for any

Ω′ ⊂⊂ Ω′′ ⊂⊂ Ω,

(1.4) ‖D0u‖Lp(Ω′) ≤ c
(
‖D0u‖L2(Ω′′) + ‖g‖Lp(Ω) + ‖f‖Lp(Ω)

)
.

Theorem 1.2. Under (H1) and (H2), let u ∈W 1,1
2 (Ω) be a weak solution

to (1.1), g, fj ∈ Lp,λ (Ω), then for any p ∈
[
2, 2 + 2Q

Q+2ε0

)
, ε0 as in Theorem

1.1, we have D0u ∈ Lp,λloc (Ω) (p < λ < Q+ 2) and for any Ω′ ⊂⊂ Ω′′ ⊂⊂ Ω,

(1.5) ‖D0u‖Lp,λ(Ω′) ≤ c
(
‖D0u‖L2(Ω′′) + ‖g‖Lp,λ(Ω) + ‖f‖Lp,λ(Ω)

)
.

Theorem 1.3. Under the assumptions of Theorem 1.2, we have u ∈
L

2,Q+4− 2λ
p

loc , and for any Ω′ ⊂⊂ Ω′′ ⊂⊂ Ω,

[u]2,Q+4− 2λ
p

;Ω′ ≤ c
(
‖u‖Lp(Ω′′) + ‖f‖Lp,λ(Ω) + ‖g‖Lp,λ(Ω)

)
.(1.6)

This paper is organized as follows. In Section 2, we describe some basic
knowledge on the fundamental solution of L0 the frozen operator of L, and
collect several useful lemmas which will be used later on. Section 3 is devoted
to proofs of a Caccioppoli type inequality, a Sobolev type inequality and a
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Poincaré type inequality for weak solutions. In Section 4, the proof of Theo-
rem 1.1 is given by using the inequalities in Section 3. In Section 5, we derive
a higher Lp estimate for gradient of weak solutions to (5.1). In Section 6, the
proof of Theorem 1.2 is ended by proving local Lp estimate for gradient of weak
solutions to (6.1) and (6.2), and the proof of Theorem 1.3 is given.

2. PRELIMINARIES

For any z0 ∈ Ω ⊂ RN+1, we denote the frozen operator of L by

(2.1) L0 =

m0∑
i,j=1

∂xi
(
aij(z0)∂xj

)
+

N∑
i,j=1

bijxi∂xj − ∂t.

Now let us introduce the following.

Definition 2.1. For any (x, t), (ξ, τ) ∈ RN+1, define a multiplication law

(x, t) ◦ (ξ, τ) = (ξ + E(τ)x, t+ τ) , E(τ) = exp(−τBT ).

We say that
(
RN+1, ◦

)
is a noncommutative Lie group with the neutral

element (0, 0), the inverse of an element (x, t) ∈ RN+1 is

(x, t)−1 = (−E(−t)x,−t) .

Authors in [21] claimed that the frozen operator L0 is hypoelliptic and
left invariant about the groups of translations and dilations. Note that the
dilations associated to L0 are given by

δλ = diag
(
λIm0 , λ

3Im1 , . . . , λ
2r+1Imr , λ

2
)
, λ > 0,

here Imk denotes the mk ×mk identity matrix, and

det (δλ) = λQ+2,

with Q + 2 = m0 + 3m1 + · · · + (2r + 1)mr + 2. In this case, the number
Q+ 2 is called the homogeneous dimension of RN+1, and Q the homogeneous
dimension of RN . This implies that L0 is δλ homogeneous of degree 2, namely,
for any λ > 0,

L0 ◦ δλ = λ2 (δλ ◦ L0) .

Due to [17], the fundamental solution Γ0(·, ζ) of L0 has an explicit ex-
pression with respect to the pole ζ ∈ RN+1: that is, for any z, ζ ∈ RN+1,
z 6= ζ,

(2.2) Γ0(z, ζ) = Γ0(ζ−1 ◦ z, 0),
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where

Γ0 ((x, t), (0, 0)) =

{ 1

((4π)N detC(t))
1
2

exp
(
−1

4

〈
C−1(t)x, x

〉)
, t > 0,

0, t ≤ 0,

C(t) =

∫ t

0
E(s)A0E

T (s)ds.

It is known that C(t) is strictly positive for every positive t. In view of
the invariance properties of L0, we have that for any z ∈ RN+1\{0} and λ > 0,

Γ0 (δλ(z), 0) = λ−QΓ0(z, 0),

and it means that Γ0 is δλ homogeneous of degree −Q. For i, j = 1, . . . ,m0,
DxiΓ0 and DxixjΓ0 are δλ homogeneous of degree −(Q + 1) and −(Q + 2),
respectively.

For any (x, t) ∈ RN+1, the homogeneous norm of (x, t) with respect to δλ
is defined by

‖(x, t)‖ =
N∑
j=1

|xj |
1
αj + |t|

1
2 ,

where αj = 1, if 1 ≤ j ≤ m0; αj = 2k + 3, if mk < j ≤ mk+1 (0 ≤ k ≤ r − 1).
For any z, ζ ∈ RN+1, we denote the quasidistance between t and ζ by

d (z, ζ) =
∥∥ζ−1 ◦ z

∥∥ .
Lemma 2.2 ( [7], Lemma 2.1). Let Ω ⊂ RN+1 be a bounded domain. Then

d (z, ζ) is a quasisymmetric quasidistance in Ω, if for any z, z′, ζ ∈ Ω,

d (z, ζ) ≤ cd (ζ, z) , d (z, ζ) ≤ c
(
d
(
ζ, z′

)
+ d

(
z′, ζ

))
.

The ball with respect to d centered at z0 is denoted by

BR(z0) = B(z0, R) =
{
ζ ∈ RN+1 : d (z0, ζ) < R

}
.

Note clearly that B(0, R) = δRB(0, 1).

Remark 2.3. Recalling [2, Remark 1.5], it holds that for any z0 ∈ RN+1,
R > 0,

|B(z0, R)| = |B(0, R)| = |B(0, 1)|RQ+2,
|B(z0, 2R)| = 2Q+2 |B(z0, R)| ,

and therefore the space
(
RN+1, dz, d

)
is a homogeneous space. The fact allows

us to employ known conclusions in homogeneous spaces, for example, see [1].

If one does not need to concern the center of the ball, B(z0, R) can sim-
ply be written as BR. For convenience, we usually consider the estimates on
cubes instead of balls. Let us describe the notion of cubes. For any t ∈ R,
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x = (x′, x̄) ∈ RN with x′ = (x1, · · · , xm0), x̄ = (xm0+1, · · · , xN ), the cube of
centered at (x0, t0) is defined by

QR=
{

(x, t)
∣∣∣t0 −R2/2 ≤ t ≤ t0 +R2/2,

∣∣x′∣∣ ≤ R, |xm0+1| ≤
(
ΛN2R

)3
, · · · ,

|xN | ≤
(
ΛN2R

)2r+1
}

Also, we write

IR =

[
t0 −

R2

2
, t0 +

R2

2

]
,

KR =
{
x′
∣∣∣∣x′∣∣ ≤ R} ,

SR =
{
x̄
∣∣∣|xm0+1| ≤

(
ΛN2R

)3
, · · · , |xN | ≤

(
ΛN2R

)2r+1
}
.

Then QR = KR × SR × IR.

A cube of centered at (0, 0) is simply denoted by

QR(0, 0) =
{

(x, t)
∣∣|t| ≤ R2, |x1| ≤ Rα1 , · · · , |xN | ≤ RαN

}
.

It is easy to see that there exists a constant c0 = c0 (B,N) > 0, such that

QR/c0(0, 0) ⊂ BR(0, 0) ⊂ Qc0R(0, 0).

We state a result on δλ homogeneous functions in [9, 27].

Lemma 2.4. Let α ∈ [0, Q+ 2] and G ∈ C
(
RN+1\{0}

)
be a δλ homoge-

neous function of degree α − Q − 2. If f ∈ Lp
(
RN+1

)
, p ∈ [1,+∞), then the

function

Gf (z) ≡
∫
RN+1

G(ζ−1 ◦ z)f(ζ)dζ

is well defined almost everywhere and there exists a constant c = c (Q,P ) > 0
such that

(2.3) ‖Gf‖Lq(RN+1) ≤ c max
‖z‖=1

|G(z)| ‖f‖Lp(RN+1),

where 1
q = 1

p −
α

Q+2 .

This lemma can be used to yield the following.

Lemma 2.5. Let f ∈ L
2(Q+2)
Q+4

(
RN+1

)
. There exists a positive constant

c = c(Q) such that

(2.4) ‖Γ0(f)‖
L

2(Q+2)
Q (RN+1)

≤ c‖f‖
L

2(Q+2)
Q+4 (RN+1)

,

(2.5) ‖Γ0(D0f)‖L2(RN+1) ≤ c‖f‖
L

2(Q+2)
Q+4 (RN+1)

,
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where

Γ0 (f) (z) =

∫
RN+1

Γ0 (z, ζ) f (ζ)dζ,

Γ0 (D0f) (z) =

∫
RN+1

Γ0 (z, ζ)D0f (ζ)dζ.

Proof. Since Γ0 is homogeneous of degree −Q with respect to δλ, we
immediately have (2.4) from Lemma 2.4 by taking α = 2, q = 2(Q+2)

Q and

p = 2(Q+2)
Q+4 . Noting that ∂xiΓ0 is homogeneous of degree − (Q+ 1) with respect

to δλ, (2.5) holds by Lemma 2.4 with α = 1, q = 2 and p = 2(Q+2)
Q+4 . �

Definition 2.6 (Morrey space Lp,λ). Let Ω be an open bounded subset in
RN+1, 1 ≤ p < +∞, λ ≥ 0. We say that f ∈ Lp(Ω) belongs to the Morrey
space Lp,λ(Ω), if

‖f‖Lp,λ := sup
z0∈Ω,0<ρ<d0

(
ρλ

|Ω ∩Bρ(z0)|

∫
Ω∩Bρ(z0)

|f |pdz

) 1
p

< +∞,

where d0 is the diameter of Ω.

Definition 2.7 (Campanato space Lp,λ). Let 1 ≤ p < +∞, λ ≥ 0, if for
any f ∈ Lp(Ω),

[f ]p,λ := sup
z0∈Ω,0<ρ<d0

(
1

ρλ

∫
Ω∩Bρ(z0)

∣∣f − fΩ∩Bρ(z0)

∣∣pdz) 1
p

< +∞,

where d0 is the diameter of Ω, fΩ∩Bρ(z0) = 1
|Ω∩Bρ(z0)|

∫
Ω∩Bρ(z0) f(z)dz, then we

say that f belongs to the Campanato space Lp,λ(Ω) endowed with the norm

‖f‖Lp,λ = [f ]p,λ + ‖f‖Lp .

Definition 2.8 (Sobolev space W 1,1
p ). Let Ω be an open subset in RN+1.

The Sobolev space with respect to D0 and Y is defined by

W 1,1
p (Ω) = {u ∈ Lp(Ω) : ∂xiu, Y u ∈ Lp(Ω), i, j = 1, . . . ,m0}

endowed with the norm

‖u‖p
W 1,1
p

= ‖u‖pLp +

m0∑
i=1

‖∂xiu‖
p
Lp + ‖Y u‖pLp .

The space W 1,1
p,0 (Ω) is the closure of C∞0

(
Ω̄
)

in W 1,1
p (Ω).
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Definition 2.9 (BMO and VMO spaces). For any a ∈ L1
loc(Ω), let

ηR (a) = sup
z0∈Ω,0≤ρ≤R

(
1

|Ω ∩Bρ(z0)|

∫
Ω∩Bρ(z0)

∣∣a(z)− aΩ∩Bρ(z0)(z)
∣∣dz) ,

where aΩ∩Bρ(z0) = 1
|Ω∩Bρ(z0)|

∫
Ω∩Bρ(z0) a(z)dz. If sup

R>0
ηR (a) < ∞, we say a ∈

BMO(Ω) (Bounded Mean Oscillation). Moreover, if ηR (a)→ 0 as R→ 0, we
say a ∈ VMO(Ω) (Vanishing Mean Oscillation).

We mention two iterative lemmas.

Lemma 2.10 ([4]). Let ϕ(t) be a bounded nonnegative function on [T0, T1],
where T1 > T0 ≥ 0. Suppose that for any s, t : T0 ≤ t < s ≤ T1, ϕ satisfies

ϕ(t) ≤ θ1ϕ(s) +
a2

(s− t)α
+ b2,

where θ1, a2, b2 and α are nonnegative constants, and θ1 < 1. Then for any
T0 ≤ ρ < R ≤ T1,

(2.6) ϕ(ρ) ≤ c
(

a2

(R− ρ)α
+ b2

)
,

where c depends only on α and θ1.

Lemma 2.11 ( [16,25]). Let H be a nonnegative increasing function. Sup-
pose that for any ρ < R ≤ R0 = dist(z0, ∂Ω),

H(ρ) ≤ A1

[( ρ
R

)a1
+ ε1

]
H(R) +B1R

b1 ,

where A1, ε1, a1 and b1 are nonnegative constants with A > 1, a1 > b1, ε1 > 0.
Then there exist positive constants ε2 = ε2 (A1, a1, b1) and c = c (A1, a1, b1),
such that if ε1 < ε2, then

(2.7) H(ρ) ≤ c
[( ρ
R

)b1
H(R) +B1ρ

b1

]
.

3. PRELIMINARY INEQUALITIES

Lemma 3.1 (Caccioppoli type inequality). Let u ∈ W 1,1
2 (Ω) be a weak

solution to (1.1). Then for any BR ⊂ Ω, ρ < R, there exists a positive constant
c such that:

(3.1)

∫
Bρ

|D0u|2dz ≤ c

(R− ρ)2

∫
BR

|u|2dz + c

∫
BR

(
|g|2 + |f |2

)
dz.
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Proof. Let ξ(z) ∈ C∞0 (BR) be a cutoff function [27] satisfying

ξ(z) = 1(|z| < ρ), ξ(z) = 0(|z| ≥ R), 0 ≤ ξ ≤ 1,∣∣∂xjξ∣∣ , |∂tξ| ≤ c

R− ρ
(j = 1, . . . , N).(3.2)

Hence

|Y ξ|= |xBDξ − ∂tξ| ≤ c |Dξ|+c |∂tξ| ≤
c

R− ρ
,

and by the divergence theorem,∫
BR

Y
(
u2ξ2

)
dz = 0.

Multiplying both sides of (1.1) by uξ2 and integrating on BR, we have∫
BR

[
−AD0uD0

(
uξ2
)

+ uξ2Y u
]
dz =

∫
BR

[
guξ2 − fD0

(
uξ2
)]

dz

and ∫
BR

Aξ2D0uD0udz

= −2

∫
BR

AuξD0uD0ξdz −
∫
BR

u2ξY ξdz −
∫
BR

guξ2dz

+

∫
BR

fξ2D0udz + 2

∫
BR

fuξD0ξdz.(3.3)

It follows from (H1) and Young’s inequality with ε > 0,

Λ−1

∫
BR

|D0u|2ξ2dz

≤ cε
∫
BR

|u|2|D0ξ|2dz + ε

∫
BR

|D0u|2ξ2dz +

∫
BR

|u|2 |Y ξ| ξdz

+ cε

∫
BR

|g|2ξ2dz + ε

∫
BR

|u|2ξ2dz + cε

∫
BR

|f |2ξ2dz

+ ε

∫
BR

|D0u|2ξ2dz + cε

∫
BR

|f |2ξ2dz + ε

∫
BR

|u|2|D0ξ|2dz

≤
∫
BR

|u|2
(
cε|D0ξ|2 + |Y ξ| ξ + εξ2 + ε|D0ξ|2

)
dz

+ 2ε

∫
BR

|D0u|2ξ2dz + cε

∫
BR

(
|g|2 + |f |2

)
ξ2dz.(3.4)
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Now we choose ε small enough such that Λ−1 − 2ε > 0 to derive∫
BR

|D0u|2ξ2dz

≤
∫
BR

|u|2
(
cε|D0ξ|2+|Y ξ| ξ+εξ2+ε|D0ξ|2

)
dz + cε

∫
BR

(
|g|2 + |f |2

)
ξ2dz

≤
∫
BR

|u|2
(

cε

(R− ρ)2 +
cξ

R− ρ
+ εξ2 +

ε

(R− ρ)2

)
dz

+cε

∫
BR

(
|g|2 + |f |2

)
ξ2dz.

So (3.1) is proved. �

There are many observations on Sobolev type inequalities and Poincaré
type inequalities with respect to vector fields [10, 13, 18, 23]. Here we provide
some similar inequalities for weak solutions to (1.1).

Lemma 3.2 (Sobolev type inequality). Let u ∈ W 1,1
2 (Ω) be a weak solu-

tion to (1.1). Then for any BR ⊂ Ω, ρ < R, it follows

‖u‖L2(Bρ) ≤
c

R− ρ

(
‖u‖

L
2(Q+2)
Q+4 (BR)

+ ‖D0u‖
L

2(Q+2)
Q+4 (BR)

+‖g‖
L

2(Q+2)
Q+4 (BR)

+ ‖f‖
L

2(Q+2)
Q+4 (BR)

)
.(3.5)

Proof. We use the fundamental solution Γ0 of L0 and the cutoff function
ξ in (3.2) to write that for any z ∈ BR,
(3.6)

(ξu) (z) =

∫
BR

[〈A0D0 (ξu) , D0Γ0〉 − Γ0Y (ξu)]dζ
∆
= I1(z) + I2(z) + I3(z),

where

I1(z) =

∫
BR

[A0uD0ξD0Γ0 − Γ0uY ξ]dζ,

I2(z) =

∫
BR

[(A0 −A) ξD0uD0Γ0 − Γ0AD0uD0ξ]dζ

and

I3(z) =

∫
BR

[AD0uD0 (ξΓ0)− ξΓ0Y u]dζ.

It yields by (2.4) and (2.5) that

‖I1‖L2(BR)

≤ 2

∥∥∥∥∫
BR

A0uD0ξD0Γ0dζ

∥∥∥∥
L2(BR)

+ 2

∥∥∥∥∫
BR

Γ0uY ξdζ

∥∥∥∥
L2(BR)
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≤ c‖Γ0 (D0 (uD0ξ))‖L2(BR) + c‖Γ0 (uY ξ)‖L2(BR)

≤ c‖uD0ξ‖
L

2(Q+2)
Q+4 (BR)

+ c‖Γ0 (uY ξ)‖
L

2(Q+2)
Q (BR)

|BR|
1

Q+2

≤ c‖uD0ξ‖
L

2(Q+2)
Q+4 (BR)

+ c‖uY ξ‖
L

2(Q+2)
Q+4 (BR)

R

≤ c

R− ρ
‖u‖

L
2(Q+2)
Q+4 (BR)

+
cR

R− ρ
‖u‖

L
2(Q+2)
Q+4 (BR)

≤ c

R− ρ
‖u‖

L
2(Q+2)
Q+4 (BR)

(3.7)

and

‖I2‖L2(BR)

≤ 2

∥∥∥∥∫
BR

(A0 −A) ξD0uD0Γ0dζ

∥∥∥∥
L2(BR)

+ 2

∥∥∥∥∫
BR

Γ0AD0uD0ξdζ

∥∥∥∥
L2(BR)

≤ c‖Γ0 (D0 (ξD0u))‖L2(BR) + c‖Γ0 (D0uD0ξ)‖L2(BR)

≤ c‖ξD0u‖
L

2(Q+2)
Q+4 (BR)

+ c‖Γ0 (D0uD0ξ)‖
L

2(Q+2)
Q (BR)

|BR|
1

Q+2

≤ c‖ξD0u‖
L

2(Q+2)
Q+4 (BR)

+ c‖D0uD0ξ‖
L

2(Q+2)
Q+4 (BR)

R

≤ c

R− ρ
‖D0u‖

L
2(Q+2)
Q+4 (BR)

.(3.8)

Since u is a weak solution to (1.1), we infer that

I3(z) =

∫
BR

[fD0 (ξΓ0)− gξΓ0]dζ =

∫
BR

[fξD0Γ0 + fΓ0D0ξ − gξΓ0]dζ

and

‖I3‖L2(BR)

≤ c
∥∥∥∥∫

BR

fξD0Γ0dζ

∥∥∥∥
L2(BR)

+ c

∥∥∥∥∫
BR

fΓ0D0ξdζ

∥∥∥∥
L2(BR)

+ c

∥∥∥∥∫
BR

gξΓ0dζ

∥∥∥∥
L2(BR)

≤ c‖Γ0 (D0 (fξ))‖L2(BR) + c‖Γ0 (fD0ξ)‖L2(BR) + c‖Γ0 (gξ)‖L2(BR)

≤ c‖fξ‖
L

2(Q+2)
Q+4 (BR)
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+ cR

(
‖Γ0 (fD0ξ)‖

L
2(Q+2)
Q (BR)

+ c‖Γ0 (gξ)‖
L

2(Q+2)
Q (BR)

)
≤ c‖fξ‖

L
2(Q+2)
Q+4 (BR)

+ cR

(
‖fD0ξ‖

L
2(Q+2)
Q+4 (BR)

+ ‖gξ‖
L

2(Q+2)
Q+4 (BR)

)
≤ c‖f‖

L
2(Q+2)
Q+4 (BR)

+ cR

(
c

R− ρ
‖f‖

L
2(Q+2)
Q+4 (BR)

+ ‖g‖
L

2(Q+2)
Q+4 (BR)

)
≤ c

R− ρ

(
‖f‖

L
2(Q+2)
Q+4 (BR)

+ ‖g‖
L

2(Q+2)
Q+4 (BR)

)
.(3.9)

Inserting (3.7), (3.8) and (3.9) into (3.6), it obtains (3.5). �

Lemma 3.3 (Poincaré type inequality). Let u ∈W 1,1
2 (Ω) be a weak solu-

tion to (1.1). Then for any BR ⊂ Ω, ρ < R, one has

(3.10)

∫
Bρ

|u|2dz ≤ cR4

(R− ρ)2

∫
BR

|D0u|2dz + cR2

∫
BR

(
|g|2 + |f |2

)
dz.

Proof. Introduce two cutoff functions ς(x) and η(t) ∈ C∞0 (QR) [8] satis-
fying

ς(x) = 1(|x| < ρ), ς(x) = 0(|x| ≥ R),

0 ≤ ς ≤ 1,
∣∣∂xj ς∣∣ ≤ c

R− ρ
(j = 1, . . . , N);

η(t) =


2t−2(t0−R2/2)

R2−ρ2 , t ∈
[
t0 − R2

2 , t0 −
ρ2

2

)
,

1, t ∈
[
t0 − ρ2

2 , t0 + R2

2

]
.

Multiplying both sides of (1.1) by uς2(x)η(t) and integrating on QR
′ =

KR × SR × IR′ (IR
′ =

[
t0 − R2

2 , s
]
, s ≤ t0 + R2

2 ), we have∫
QR
′

[
−AD0uD0

(
uς2η

)
+ xBuς2ηDu− uς2η∂tu

]
dz

=

∫
QR
′

[
guς2η − fD0

(
uς2η

)]
dz.(3.11)

Noting

(3.12)

∫
QR
′
uς2η∂tudz =

1

2

∫
QR
′
ς2
(
u2η
)
t
dz − 1

2

∫
QR
′
u2ς2ηtdz,

(3.13)

∫
QR
′
xBuς2ηDudz =

1

2

∫
QR
′
xBD

(
u2ς2η

)
dz −

∫
QR
′
xBu2ςηDςdz,
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it implies by inserting (3.12) and (3.13) into (3.11) that

1

2

∫
QR
′
u2ς2ηtdz

=

∫
QR
′
Aς2ηD0uD0udz+2

∫
QR
′
AuςηD0uD0ςdz

+

∫
QR
′
xBu2ςηDςdz +

1

2

∫
QR
′
ς2
(
u2η
)
t
dz +

∫
QR
′
guς2ηdz

−
∫
QR
′
fς2ηD0udz − 2

∫
QR
′
fuςηD0ς −

1

2

∫
QR
′
xBD

(
u2ς2η

)
dzdz

=

∫
QR
′
Aς2ηD0uD0udz+2

∫
QR
′
AuςηD0uD0ςdz

−
∫
QR
′
Y

(
1

2
u2ς2η

)
dz +

∫
QR
′
xBu2ςηDςdz +

∫
QR
′
guς2ηdz

−
∫
QR
′
fς2ηD0udz − 2

∫
QR
′
fuςηD0ςdz.(3.14)

By the divergence theorem and the property of ς, it follows∫
QR
′
Y

(
1

2
u2ς2η

)
dz = 0.

Hence by Young’s inequality,

1

2

∫
QR
′
u2ς2ηtdz

≤ Λ

∫
QR
′
|D0u|2ς2ηdz + ε

∫
QR
′
|u|2|D0ς|2ηdz + cε

∫
QR
′
|D0u|2ς2ηdz

+ c

∫
QR
′
|u|2 |Dς| ςηdz + cε

∫
QR
′
|g|2ς2ηdz + ε

∫
QR
′
|u|2ς2ηdz

+ cε

∫
QR
′
|f |2ς2ηdz + ε

∫
QR
′
|D0u|2ς2ηdz + cε

∫
QR
′
|f |2ς2ηdz

+ ε

∫
QR
′
|u|2|D0ς|2ηdz

≤
∫
QR
′
|u|2

(
2ε|D0ς|2η + c|Dς|2ςη + ες2η

)
dz + c

∫
QR
′
|D0u|2ς2ηdz

+ cε

∫
QR
′

(
|g|2 + |f |2

)
ς2ηdz.(3.15)
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In the light of properties of ς, η and (3.15), it yields∫
Qρ

|u|2dz ≤
∫
QR
′
|u|2ς2dz ≤ c

(
R2 − ρ2

) ∫
QR
′
|u|2ς2ηtdz

≤
(
R2 − ρ2

) ∫
QR
′
|u|2

(
2ε|D0ς|2η + c|Dς|2ςη + ες2η

)
dz

+ c
(
R2 − ρ2

) ∫
QR
′
|D0u|2ς2ηdz

+ cε
(
R2 − ρ2

) ∫
QR
′

(
|g|2 + |f |2

)
ς2ηdz

≤
∫
QR

|u|2
(

2ε
(
R2 − ρ2

)
η

(R− ρ)2 +
c
(
R2 − ρ2

)
ςη

(R− ρ)2 + ε
(
R2 − ρ2

)
ς2η

)
dz

+
cR2(R− ρ)2

(R− ρ)2

∫
QR

|D0u|2dz + cεR
2

∫
QR

(
|g|2 + |f |2

)
dz

≤ θ1

∫
QR

|u|2dz +
cR4

(R− ρ)2

∫
QR

|D0u|2dz + cεR
2

∫
QR

(
|g|2 + |f |2

)
dz,(3.16)

where θ1 =
2ε(R2−ρ2)η

(R−ρ)2
+

c(R2−ρ2)ςη
(R−ρ)2

+ ε
(
R2 − ρ2

)
ςη. Choosing ε small enough,

it ensures 0 < θ1 < 1 and attains from Lemma 2.10 that

(3.17)

∫
Qρ

|u|2dz ≤ cR4

(R− ρ)2

∫
QR

|D0u|2dz + cR2

∫
QR

(
|g|2 + |f |2

)
dz.

Now (3.17) and Bρ/c0 ⊂ Qρ ⊂ QR ⊂ Bc0R imply (3.10). �

4. PROOF OF THEOREM 1.1

Let us first describe a known result.

Lemma 4.1 (reverse Hölder inequality, [14]). Let ĝ and f̂ be nonnegative
functions on Ω and satisfy

ĝ ∈ Lq̂(Ω), f̂ ∈ Lr(Ω), 1 < q̂ < r.

If there exist constants b2 > 1 and θ2 ∈ [0, 1) such that for any B2R ⊂ Ω,
the inequality holds

1

|BR|

∫
BR

ĝq̂dz ≤ b2

( 1∣∣B4R/3

∣∣ ∫
B4R/3

ĝdz

)q̂
+

1∣∣B4R/3

∣∣ ∫
B4R/3

f̂ q̂dz


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+ θ2
1∣∣B4R/3

∣∣ ∫
B4R/3

ĝq̂dz,

then there exist positive constants θ0 = θ0(q̂,Ω) and ε0 such that if θ2 < θ0,

then for any p̂ ∈ [q̂, q̂ + ε0), it follows ĝ ∈ Lp̂loc (Ω) and

(4.1)

(
1

|BR|

∫
BR

ĝp̂dz

) 1
p̂

≤ c

[(
1

|B2R|

∫
B2R

ĝq̂dz

) 1
q̂

+

(
1

|B2R|

∫
B2R

f̂ p̂dz

) 1
p̂

]
,

where c and ε0 depend on b2, q̂, θ2 and Q.

The following result is essential to prove Theorem 1.1.

Lemma 4.2. Let u ∈W 1,1
2 (Ω) be a weak solution to (1.1) in Ω. Then for

any p ∈
[
2, 2 + 2Q

Q+2ε0

)
, we have D0u ∈ Lploc(Ω) and for any BR ⊂ B2R ⊂ Ω,(

1

|BR|

∫
BR

|D0u|pdz
) 1
p

≤ c

[(
1

|B2R|

∫
B2R

|D0u|2dz

) 1
2

+

(
1

|B2R|

∫
B2R

(
|g|2 + |f |2

) p
2
dz

) 1
p

]
.(4.2)

Proof. By using Hölder’s inequality, it implies∫
B11R/9

|D0u|
2(Q+2)
Q+4 dz

≤

(∫
B11R/9

|D0u|2dz

) 1
2
(∫

B11R/9

|D0u|
2Q
Q+4 dz

) 1
2

≤

(∫
B11R/9

|D0u|2dz

) 1
2 ∣∣B11R/9

∣∣ 1
Q+4

(∫
B11R/9

|D0u|
2Q
Q+2 dz

) Q+2
2(Q+4)

.(4.3)

Combining (3.5) and (4.3),∫
B10R/9

|u|2dz

≤ c

R2

(∫
B11R/9

|u|
2(Q+2)
Q+4 dz

) Q+4
2(Q+2)

+

(∫
B11R/9

|D0u|
2(Q+2)
Q+4 dz

) Q+4
2(Q+2)

2

+
c

R2

(∫
B11R/9

|f |
2(Q+2)
Q+4 dz

) Q+4
2(Q+2)

+

(∫
B11R/9

|g|
2(Q+2)
Q+4 dz

) Q+4
2(Q+2)

2
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≤ c

R2

∣∣B11R/9

∣∣ 1
Q+2

(∫
B11R/9

|u|2dz

) 1
2

2

+

(∫
B11R/9

|D0u|2dz

) Q+4
4(Q+2) ∣∣B11R/9

∣∣ 1
2(Q+2)

(∫
B11R/9

|D0u|
2Q
Q+2 dz

) 1
4

2

+
c

R2

∣∣B11R/9

∣∣ 1
Q+2

(∫
B11R/9

|f |2dz

)1
2

+
∣∣B11R/9

∣∣ 1
Q+2

(∫
B11R/9

|g|2dz

)1
2

2

≤c
∫
B11R/9

|u|2dz +
c

R

(∫
B11R/9

|D0u|2dz

) Q+4
2(Q+2)

(∫
B11R/9

|D0u|
2Q
Q+2 dzdz

)1
2

+c

∫
B11R/9

(
|f |2 + |g|2

)
dz.(4.4)

Noting (3.1), (3.10) and (4.4), it follows∫
BR

|D0u|2dz

≤ c

R2

∫
B11R/9

|u|2dz +
c

R3

(∫
B11R/9

|D0u|2dz

) Q+4
2(Q+2)

(∫
B11R/9

|D0u|
2Q
Q+2 dz

)1
2

+
c

R2

∫
B11R/9

(
|f |2 + |g|2

)
dz + c

∫
B10R/9

(
|g|2 + |f |2

)
dz ≤ c

∫
B4R/3

|D0u|2dz

+
c

R3

∣∣B4R/3

∣∣Q+3
Q+2

(
1∣∣B4R/3

∣∣ ∫
B4R/3

|D0u|2dz

) Q+4
2(Q+2)

(
1∣∣B4R/3

∣∣ ∫
B4R/3

|D0u|
2Q
Q+2 dz

) 1
2

+
c

R2

∫
B4R/3

(
|g|2 + |f |2

)
dz

and hence

1

|BR|

∫
BR

|D0u|2dz

≤ c∣∣B4R/3

∣∣ ∫
B4R/3

|D0u|2dz + ε

(
1∣∣B4R/3

∣∣ ∫
B4R/3

|D0u|2dz

)

+ cεR
− 4(Q+2)

Q

(
1∣∣B4R/3

∣∣ ∫
B4R/3

|D0u|
2Q
Q+2 dz

)Q+2
Q
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+
c

R2

1∣∣B4R/3

∣∣ ∫
B4R/3

(
|g|2 + |f |2

)
dz

≤ c

(
1∣∣B4R/3

∣∣ ∫
B4R/3

|D0u|2dz

)

+ cεR
− 4(Q+2)

Q

(
1∣∣B4R/3

∣∣ ∫
B4R/3

|D0u|
2Q
Q+2 dz

)Q+2
Q

+
c

R2

1∣∣B4R/3

∣∣ ∫
B4R/3

(
|g|2 + |f |2

)
dz.(4.5)

Let ĝ = |D0u|q̃, q̃ = 2Q
Q+2 , q̂ = 2

q̃ = Q+2
Q > 1, f̂ =

(
|g|2 + |f |2

) Q
Q+2

, then

we rewrite (4.5) in the form

1

|BR|

∫
BR

ĝq̂dz

≤ c

( 1∣∣B4R/3

∣∣ ∫
B4R/3

ĝdz

)q̂
+

1∣∣B4R/3

∣∣ ∫
B4R/3

f̂ q̂dz


+

c∣∣B4R/3

∣∣ ∫
B4R/3

ĝq̂dz.(4.6)

It shows from Lemma 4.1 that for any p̂ ∈ [q̂, q̂ + ε0),(
1

|BR|

∫
BR

ĝp̂dz

)1/p̂

≤ c

[(
1

|B2R|

∫
B2R

ĝq̂dz

)1/q̂

+

(
1

|B2R|

∫
B2R

f̂ p̂dz

)1/p̂
]
,

which means(
1

|BR|

∫
BR

|D0u|q̃
p̂
dz

) 1
p̂

≤ c

( 1

|B2R|

∫
B2R

|D0u|2dz

) Q
Q+2

+

(
1

|B2R|

∫
B2R

(
|g|2 + |f |2

) p̂q̃
2

dz

) 1
p̂

 .
(4.7)

Setting p = p̂q̃ ∈
[
2, 2 + 2Q

Q+2ε0

)
, we finish the proof. �

Proof of Theorem 1.1. The conclusion follows from Lemma 4.2 and the
cutoff function technique. �
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5. HOMOGENEOUS ULTRAPARABOLIC EQUATION

In this section, we consider the following homogeneous ultraparabolic
equation

(5.1) div (AD0u) + Y u = 0.

To obtain Lp estimates for gradients of weak solutions to (5.1), we divide
(5.1) into two equations. In fact, let v be a weak solution to the following
Dirichlet boundary value problem of the homogeneous ultraparabolic equation
with constant principal part:

(5.2)

{
div (ARD0v) + Y v = 0, in BR,

v = u, on ∂pBR,

where AR = 1
|BR|

∫
BR

Adz. Then w = u − v satisfies the Dirichlet boundary
value problem of the nonhomogeneous ultraparabolic equation with constant
principal part:

(5.3)

{
div (ARD0w) + Y w = div ((AR −A)D0u) , in BR,

w = 0, on ∂BR.

Lemma 5.1. Let v ∈ W 1,1
2 (Ω) be a weak solution to (5.2). Then for any

BR ⊂ Ω, one has

(5.4) sup
BR/2

|v|2 ≤ c

RQ+2

∫
BR

|v|2dz.

Proof. It is true from Corollary 1.4 of [27]. �

Furthermore, we have:

Lemma 5.2. Let v ∈ W 1,1
2 (Ω) be a weak solution to (5.2). Then for any

BR ⊂ Ω, ρ < R, it follows

(5.5)

∫
Bρ

|v|2dz ≤ c
( ρ
R

)Q+2
∫
BR

|v|2dz.

Proof. When R
2 ≤ ρ < R, the result is evident. Now it is enough to treat

the case ρ < R
2 . But by Lemma 5.1, it yields∫

Bρ

|v|2dz ≤ |Bρ| sup
Bρ

|v|2 ≤ |Bρ| sup
BR/2

|v|2

≤ |Bρ|
c

RQ+2

∫
BR

|v|2dz ≤ c
( ρ
R

)Q+2
∫
BR

|v|2dz. �

On the gradient of v, we have:
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Lemma 5.3. Let v ∈ W 1,1
2 (Ω) be a weak solution to (5.2). Then for any

BR ⊂ Ω, ρ < R, it follows

(5.6)

∫
Bρ

|D0v|2dz ≤ c
( ρ
R

)Q ∫
BR

|D0v|2dz.

Proof. Combining Lemma 3.1, Lemma 3.3 (g=f=0) and (5.5), we ar-

rive at ∫
Bρ/2

|D0v|2dz ≤ c

ρ2

∫
Bρ

|v|2dz ≤ c

ρ2

( ρ
R

)Q+2
∫
BR

|v|2dz

≤ c

ρ2

( ρ
R

)Q+2
R2

∫
B2R

|D0v|2dz ≤ c
( ρ
R

)Q ∫
B2R

|D0v|2dz. �

Lemma 5.4. Let v ∈ W 1,1
2 (Ω) be a weak solution to (5.2). Then for any

p ∈
[
2, 2 + 2Q

Q+2ε0

)
, BR ⊂ Ω, ρ < R, we have

(5.7)

∫
Bρ

|D0v|pdz ≤ c
( ρ
R

)Q+2−p
∫
BR

|D0v|pdz.

Proof. By Lemma 4.2 (g=f=0) and (5.6),(
1∣∣Bρ/2∣∣

∫
Bρ/2

|D0v|pdz

) 1
p

≤ c

(
1

|Bρ|

∫
Bρ

|D0v|2dz

) 1
2

≤ c
(

1

|Bρ|

( ρ
R

)Q ∫
BR

|D0v|2dz

) 1
2

.

From Hölder’s inequality, it implies∫
Bρ/2

|D0v|pdz ≤ c
∣∣Bρ/2∣∣ ( 1

|Bρ|

( ρ
R

)Q ∫
BR

|D0v|2dz

) p
2

≤ c
∣∣∣B ρ

2

∣∣∣ 1

|Bρ|
p
2

( ρ
R

) pQ
2 |BR|

p−2
2

∫
BR

|D0v|pdz

≤ c
(
|Bρ|
|BR|

) 2−p
2 ( ρ

R

) pQ
2

∫
BR

|D0v|pdz

≤ c
( ρ
R

)Q+2−p
∫
BR

|D0v|pdz

and the proof is ended. �
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Lemma 5.5. Let u ∈ W 1,1
2 (Ω) be a weak solution to (5.1). Then for any

p ∈
[
2, 2 + 2Q

Q+2ε0

)
, p−2

p (Q+ 2) < µ < Q, BR ⊂ Ω, ρ < R, one has

(5.8)

∫
Bρ

|D0u|pdz ≤ c
( ρ
R

) 2(Q+2)−p(Q+2−µ)
2

∫
BR

|D0u|pdz.

Proof. When R
2 ≤ ρ < R, (5.8) is clearly true. The remainder is to treat

ρ < R
2 .

Multiplying both sides of (5.3) by w and integrating on BR, it observes

(5.9) −
∫
BR

ARD0wD0wdz+

∫
BR

wY wdz = −
∫
BR

(AR −A)D0uD0wdz,

and from the divergence theorem,∫
BR

wY wdz =
1

2

∫
BR

Y
(
w2
)
dz = 0.

By (H1) and Young’s inequality, we have by (5.9) that

(5.10) Λ−1

∫
BR

|D0w|2dz ≤ cε
∫
BR

|AR −A|2|D0u|2dz + ε

∫
BR

|D0w|2dz.

Choosing ε small enough such that Λ−1 − ε > 0, then (5.10) implies∫
BR

|D0w|2dz ≤ c
∫
BR

|AR −A|2|D0u|2dz

≤ c
(∫

BR

|AR −A|
2p
p−2 dz

) p−2
p
(∫

BR

|D0u|pdz
) 2
p

≤ c(|BR| ηR (aij))
p−2
p

(∫
BR

|D0u|pdz
) 2
p

(5.11)

and applying (5.6) and (5.11) leads to∫
B2ρ

|D0u|2dz ≤ 2

∫
B2ρ

|D0v|2dz + 2

∫
B2ρ

|D0w|2dz

≤ c
( ρ
R

)Q ∫
BR

|D0v|2dz + c

∫
BR

|D0w|2dz

≤ c
( ρ
R

)Q ∫
BR

|D0u|2dz + c

∫
BR

|D0w|2dz
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≤ c
( ρ
R

)Q
|BR|

p−2
p

(∫
BR

|D0u|pdz
) 2
p

+ c(|BR| ηR (aij))
p−2
p

(∫
BR

|D0u|pdz
) 2
p

≤ c
[( ρ
R

)Q
+(ηR (aij))

p−2
p

](
|BR|

p−2
2

∫
BR

|D0u|pdz
) 2
p

.(5.12)

It shows owing to Lemma 4.2 (g = f = 0) that(
|Bρ|

p−2
2

∫
Bρ

|D0u|pdz

) 2
p

≤ c
∫
B2ρ

|D0u|2dz

≤ c
[( ρ
R

)Q
+(ηR (aij))

p−2
p

](
|BR|

p−2
2

∫
BR

|D0u|pdz
) 2
p

.(5.13)

DenotingH(ρ)=
(
|Bρ|

p−2
2
∫
Bρ
|D0u|pdz

)2
p
, H(R)=

(
|BR|

p−2
2
∫
BR
|D0u|pdz

)2
p
,

a1 = Q, B1 = 0 in Lemma 2.11, we know that there exists b1 = µ(p−2
p (Q+ 2) <

µ < Q) such that

(5.14)

(
|Bρ|

p−2
2

∫
Bρ

|D0u|pdz

) 2
p

≤ c
( ρ
R

)µ(
|BR|

p−2
2

∫
BR

|D0u|pdz
) 2
p

.

Inserting |BR||Bρ| ≤ c
( ρ
R

)−Q−2
into (5.14), it attains (5.8). �

Lemma 5.6. Let v ∈ W 1,1
2 (Ω) be a weak solution to (5.2). Then for any

BR ⊂ Ω, ρ < R,∫
Bρ

∣∣v − vBρ∣∣2dz ≤ c
( ρ
R

)Q+2
∫
BR

|v − vBR |
2dz.

Proof. Since v−vB2R
is a weak solution to (5.2), we see that (3.1)(f=g=0)

is true to v − vB2R
, that is

(5.15)

∫
BR

|D0v|2dz ≤ c

R2

∫
B2R

|v − vB2R
|2dz.
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By (3.10)(f=g=0), (5.6) and (5.15),∫
Bρ/2

∣∣∣v − vBρ/2∣∣∣2dz ≤ c
∫
Bρ/2

|v|2dz ≤ cρ2

∫
Bρ

|D0v|2dz

≤ cρ2
( ρ
R

)Q ∫
BR

|D0v|2dz ≤ c
( ρ
R

)Q+2
∫
B2R

|v − vB2R
|2dz. �

Lemma 5.7. Let w ∈W 1,1
2,0 (Ω) be a weak solution to (5.3). Then for any

B3R ⊂ Ω, ρ < R,∫
BR/2

|w|2dz ≤ c (ηR)
p−2
p

∫
B3R

|u− uB3R
|2dz.

Proof. Using the proof of Lemma 3.3 we have∫
BR/2

|w|2dz ≤ cR2

∫
BR

|D0w|2dz + cR2

∫
BR

|A−AR|2 |D0u|2dz.

By (5.11) and (4.2) (f=g=0),∫
BR/2

|w|2dz ≤ cR2

∫
BR

|A−AR|2 |D0u|2dz

≤ cR2 (|BR| ηR)
p−2
p

(∫
BR

|D0u|pdz
) 2
p

≤ cR2 (ηR)
p−2
p

∫
B2R

|D0u|2dz.(5.16)

Noting u−uB3R
is also a weak solution to (5.1), and using (3.1)(f=g=0)

to u− uB3R
, ∫

B2R

|D0u|2dz ≤ c

R2

∫
B3R

|u− uB3R
|2dz.

Putting the above into (5.16), the desired estimate is obtained. �

Lemma 5.8. Let u ∈ W 1,1
2 (Ω) be a weak solution to (5.1). Then for any

BR ⊂ Ω, ρ < R,∫
Bρ

∣∣u− uBρ∣∣2dz ≤ c
[( ρ
R

)Q+2
+ (ηR)

p−2
p

] ∫
BR

|u− uBR |
2dz.

Proof. By Lemma 5.6 and Lemma 5.7,∫
Bρ

∣∣u− uBρ∣∣2dz ≤ c
∫
Bρ

∣∣v − vBρ∣∣2dz + c

∫
Bρ

∣∣w − wBρ∣∣2dz
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≤ c
( ρ
R

)Q+2
∫
BR

|v − vBR |
2dz + c

∫
Bρ

|w|2dz

≤ c
( ρ
R

)Q+2
∫
BR

|u− uBR |
2dz + c

∫
BR

|w|2dz

≤ c
( ρ
R

)Q+2
∫
BR

|u− uBR |
2dz + c(ηR)

p−2
p

∫
B6R

|u− uB6R
|2dz

≤ c
[( ρ
R

)Q+2
+ (ηR)

p−2
p

] ∫
B6R

|u− uB6R
|2dz. �

6. PROOF OF THEOREM 1.2 AND THEOREM 1.3

Let v be a weak solution to the following problem

(6.1)

{
div (AD0v) + Y v = 0, in BR,

v=u, on ∂BR,

then w = u− v satisfies

(6.2)

{
div (AD0w) + Y w = g + divf, in BR,

w = 0, on ∂BR.

Lemma 6.1. Let w ∈W 1,1
2,0 (Ω) be a weak solution to (6.2). Then for any

B2R ⊂ Ω, one has

(6.3)

∫
BR

|D0w|2dz ≤ c
∫
B2R

(
|g|2 + |f |2

)
dz.

Proof. Multiplying both sides of (6.2) by w and integrating on BR,

(6.4) −
∫
BR

AD0wD0wdz+

∫
BR

wY wdz =

∫
BR

gwdz −
∫
BR

fD0wdz.

By (H1), the divergence theorem and Young’s inequality with ε, we have

Λ−1

∫
BR

|D0w|2dz

≤ cε
∫
BR

|g|2dz + ε

∫
BR

|w|2dz + cε

∫
BR

|f |2dz + ε

∫
BR

|D0w|2dz.(6.5)

Since by using (3.10),

(6.6)

∫
BR

|w|2dz ≤ cR2

∫
B2R

|D0w|2dz + cR2

∫
B2R

(
|g|2 + |f |2

)
dz,
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it implies ∫
BR

|D0w|2dz

≤ cεR2

∫
B2R

|D0w|2dz + cεR2

∫
B2R

(
|g|2 + |f |2

)
dz

+ cε

∫
BR

(
|g|2 + |f |2

)
dz + ε

∫
BR

|D0w|2dz

≤ ε
∫
B2R

|D0w|2dz + cε

∫
B2R

(
|g|2 + |f |2

)
dz.

Then for any ρ ≤ R,∫
Bρ

|D0w|2dz ≤
∫
BR

|D0w|2dz

≤ ε
∫
B2R

|D0w|2dz +
cε(2R− ρ)2

(2R− ρ)2

∫
B2R

|g|2dz + cε

∫
B2R

|f |2dz

≤ ε
∫
B2R

|D0w|2dz +
cεR

2

(2R− ρ)2

∫
B2R

|g|2dz + cε

∫
B2R

|f |2dz.

Now due to Lemma 2.10, it infers∫
Bρ

|D0w|2dz ≤ cR2

(2R− ρ)2

∫
B2R

|g|2dz + c

∫
B2R

|f |2dz,

and the conclusion holds with ρ = R. �

Lemma 6.2. Let w ∈W 1,1
2,0 (Ω) be a weak solution to (6.2). Then for any

p ∈
[
2, 2 + 2Q

Q+2ε0

)
, we have D0w ∈ Lploc(Ω), and for any BR ⊂ B4R ⊂ Ω,

(6.7)

∫
BR

|D0w|pdz ≤ c
∫
B4R

(|g|p + |f |p)dz.

Proof. By (4.2) and (6.3), it follows∫
BR

|D0w|pdz

≤c |BR|

[(
1

|B2R|

∫
B2R

|D0w|2dz

) 1
2

+

(
1

|B2R|

∫
B2R

(
|g|2 + |f |2

) p
2
dz

) 1
p

]p

≤c |BR|

[(
c

|B2R|

∫
B4R

(
|g|2+|f |2

)
dz

)1
2

+

(
1

|B2R|

∫
B2R

(
|g|2 + |f |2

) p
2
dz

) 1
p

]p
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≤c |BR|

[(
1

|B2R|

∫
B4R

(|g|p + |f |p)dz
)1
p

+

(
1

|B2R|

∫
B2R

(|g|p + |f |p)dz
)1
p

]p
≤c
∫
B4R

(|g|p + |f |p)dz. �

Lemma 6.3. Let u ∈ W 1,1
2 (Ω) be a weak solution to (1.1). Then for any

p ∈
[
2, 2 + 2Q

Q+2ε0

)
, we have D0u ∈ Lploc(Ω) and for any p < λ < Q + 2,

BR ⊂ B4R ⊂ Ω,

(6.8)∫
Bρ

|D0u|pdz ≤ c
[( ρ
R

)Q+2−λ
∫
B4R

|D0u|pdz + ρQ+2−λ (‖g‖p
Lp,λ

+ ‖f‖p
Lp,λ

)]
.

Proof. Combining Lemma 5.5 and Lemma 6.2 indicates∫
Bρ

|D0u|pdz

≤ 2

∫
Bρ

|D0v|pdz + 2

∫
Bρ

|D0w|pdz

≤ c
( ρ
R

) 2(Q+2)−p(Q+2−µ)
2

∫
BR

|D0v|pdz + 2

∫
Bρ

|D0w|pdz

≤ c
( ρ
R

) 2(Q+2)−p(Q+2−µ)
2

∫
BR

|D0u|pdz + c

∫
BR

|D0w|pdz

≤ c
( ρ
R

) 2(Q+2)−p(Q+2−µ)
2

∫
BR

|D0u|pdz + c

∫
B4R

(|g|p + |f |p)dz

≤ c
( ρ
R

) 2(Q+2)−p(Q+2−µ)
2

∫
BR

|D0u|pdz + c
|B4R|
Rλ

(
‖g‖p

Lp,λ
+ ‖f‖p

Lp,λ

)
≤ c
( ρ
R

) 2(Q+2)−p(Q+2−µ)
2

∫
BR

|D0u|pdz + cRQ+2−λ (‖g‖p
Lp,λ

+ ‖f‖p
Lp,λ

)
.(6.9)

Let H(ρ) =
∫
Bρ
|D0u|sdz, H(R) =

∫
BR
|D0u|sdz, a1 = 2(Q+2)−p(Q+2−µ)

2 ,

b1 = Q + 2 − λ, B1 = c
(
‖g‖p

Lp,λ
+ ‖f‖p

Lp,λ

)
, p < λ < Q + 2. Taking µ,

Q+2− 2λ
p < µ < Q it ensures a1 > b1. Hence we can conclude from Lemma 2.11

that∫
Bρ

|D0u|pdz ≤ c
[( ρ
R

)Q+2−λ
∫
BR

|D0u|pdz + ρQ+2−λ (‖g‖p
Lp,λ

+ ‖f‖p
Lp,λ

)]
. �

Proof of Theorem 1.2. The result of Theorem 1.2 follows in virtue of

Lemma 6.3 and the cutoff function technique. �
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Proof of Theorem 1.3. By Lemma 3.3, Lemma 5.8 and Lemma 6.1,∫
Bρ

∣∣u− uBρ∣∣2dz ≤ c
∫
Bρ

∣∣v − vBρ∣∣2dz + c

∫
Bρ

∣∣w − wBρ∣∣2dz

≤ c
[( ρ
R

)Q+2
+ (ηR)

p−2
p

] ∫
BR

|u− uBR |
2dz + c

∫
BR

|w|2dz

≤ c
[( ρ
R

)Q+2
+ (ηR)

p−2
p

] ∫
BR

|u− uBR |
2dz

+cR2

∫
B2R

|D0w|2dz + cR2

∫
B2R

(
|f |2 + |g|2

)
dz

≤ c
[( ρ
R

)Q+2
+ (ηR)

p−2
p

] ∫
BR

|u− uBR |
2dz + cR2

∫
B4R

(
|f |2 + |g|2

)
dz

≤c
[( ρ
R

)Q+2
+ (ηR)

p−2
p

] ∫
BR

|u− uBR |
2dz + cR

Q+4− 2λ
p

(
‖f‖2Lp,λ+‖g‖2Lp,λ

)
.

Since p < λ < Q+ 2, Q+ 4− 2λ
p < Q+ 2, we have by Lemma 2.11,∫

Bρ

∣∣u− uBρ∣∣2dz

≤ c
( ρ
R

)Q+4− 2λ
p

∫
BR

|u− uBR |
2dz + cρ

Q+4− 2λ
p

(
‖f‖2Lp,λ + ‖g‖2Lp,λ

)
. �

Acknowledgements. The author is sincerely grateful to Professor Pengcheng Niu

for giving some useful discussions. This work is supported by the National Natural

Science Foundation of China (Grant No. 11701162); Research Fund for the Doctoral

Program of Hubei University of Economics (Grant No. XJ16BS28).

REFERENCES

[1] M. Bramanti and L. Brandolini, Schauder estimates for parabolic nondivergence opera-
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Nonlinear Anal. 23 (1994), 49–73.

[15] M. Giaquinta and M. Struwe, On the partial regularity of weak solutions of nonlinear

parabolic systems. Math. Z. 179 (1982), 437–451.

[16] Q. Han and F. Lin, Elliptic Partial Differential Equations. Courant Lect. Notes Math.

1, Amer. Math. Soc., Providence, Rhode Island, 1997.
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