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Invariant groups are those groups defined in a newly developed framework called
Finitely Supported Mathematics which represents a reformulation of Zermelo-
Fraenkel mathematics in the world of finitely supported objects. More precisely,
invariant groups are groups all of whose elements are fixed under some special
automorphism of atoms. In this paper, we prove that in Finitely Supported
Mathematics, for an invariant group G, the family of all finitely supported fuzzy
subgroups of G forms an invariant complete lattice, and the family of all finitely
supported fuzzy normal subgroups of G forms an invariant modular lattice. The
proof includes specific techniques derived from Finitely Supported Mathematics.
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1. INTRODUCTION

In order to provide a computational description of infinite structures, we
defined a mathematics called Finitely Supported Mathematics (FSM) which
deals with a more relaxed notion of infiniteness [3]. Intuitively, in Finitely
Supported Mathematics we are able to model infinite structures by using only
a finite number of characteristics. More precisely, in FSM we accept the exis-
tence of infinite structures, but for an infinite structure we find out that only of
a finite family of its elements is ‘really important’ in order to characterize the
related structure, while the other elements are somehow ‘similar’. In this sense,
we associate to each object a finite family of elements characterizing it, which
is called its ‘finite support’. As proved in [3], FSM has strong connections
with the Fraenkel-Mostowski (FM) permutative model of Zermelo-Fraenkel set
theory with atoms [9], with Fraenkel-Mostowski axiomatic set theory [8] and
with the theory of nominal sets introduced by Gabbay and Pitts [12]. In or-
der to define FSM, the theory of nominal sets over a fixed countable set of
atoms is extended to a theory of invariant sets over a fixed infinite (possible
non-countable) set of atoms. The theory of invariant sets allows us to define
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invariant algebraic structures (as invariant sets endowed with invariant alge-
braic laws) which are used to construct FSM. More generally, we can see FSM
sets as finitely supported subsets of invariant sets, and FSM algebraic struc-
tures as FSM sets equipped with finitely supported internal operations or with
finitely supported relations. Concretely, FSM represents a reformulation of
the Zermelo-Fraenkel (ZF) algebra obtained by replacing ‘(infinite) set’ with
either ‘finitely supported set’ or ’invariant set’; all the structures of FSM must
be defined according to the finite support requirement. The principles of con-
structing FSM have historical roots both in the definition of logical notions by
Alfred Tarski [15] and in the Erlangen Program of Felix Klein for the classi-
fication of various geometries according to invariants under suitable groups of
transformations [10]. We have also presented in [3] several similarities between
FSM, admissible sets introduced by Barwise [6] and Gandy machines used for
describing computability [7].

The main idea of translating a classical ZF result into FSM is to analyze
if there exists a valid result obtained by replacing ‘set’ with ‘FSM set’ in the
ZF result. As proved in [3], not every ZF result can be directly rephrased in
the world of invariant sets in terms of finitely supported objects according to
arbitrary permutation actions. This is because, given an invariant set X, there
could exist some subsets of X which fail to be finitely supported. A related
example is represented by the subsets of the set A of atoms which are in the
same time infinite and coinfinite. Examples of consistent ZF results that cannot
be translated into FSM can be found in [3]. We particularly mention the axiom
of choice, all its weaker forms and the Stone duality. Therefore, the translation
of classical ZF results into FSM is not trivial and deserves a special attention.
The algorithmic techniques for such a translation are described in [3], and are
applied in this paper.

In [3] we presented a theory of invariant partially ordered sets (and par-
ticularly, invariant lattices) that were involved in order to describe a theory
of abstract interpretation in FSM and in order to define in FSM a consistent
theory of rough sets. Invariant partially ordered sets had also been used in [14]
in order to solve the Scott recursive domain equation D ∼= (D → D) within
invariant sets. By applying this last result, Shinwell implemented a functional
programming language incorporating facilities for manipulating syntax involv-
ing names and binding operations. Since there exist invariant complete lattices
failing to be ZF complete, in [4] we proved that there may exist abstract in-
terpretations of some programming languages that can be easier described by
using invariant sets than in the classical ZF framework. In this paper, our goal
is to connect the theory of invariant partially ordered sets with the theory of
fuzzy groups. More precisely, we intend to prove that the ZF order properties
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over the family of fuzzy subgroups of a group remain valid when translating
them into FSM.

2. INVARIANT SETS

Let A be a fixed infinite ZF-set.
A transposition is a function (a b) : A → A defined by (a b)(a) = b,

(a b)(b) = a, and (a b)(n) = n for n 6= a, b. A permutation of A is generated by
composing finitely many transpositions. Let SA be the set of all permutations
of A (i.e. the set of all bijections on A which leave unchanged all but finitely
many elements). As proved in [3], in FSM any bijection of A has to be a
permutation of A.

Definition 2.1. Let X be a ZF set.

1. An SA-action on X is a function · : SA ×X → X having the properties
that Id · x = x and π · (π′ · x) = (π ◦ π′) · x for all π, π′ ∈ SA and x ∈ X.
An SA-set is a pair (X, ·) where X is a ZF set, and · : SA ×X → X is
an SA-action on X.

2. Let (X, ·) be an SA-set. We say that S ⊂ A supports x (or x is S-
supported) whenever for each π ∈ Fix(S) we have π · x = x, where
Fix(S) = {π |π(a) = a, for all a ∈ S}.

3. Let (X, ·) be an SA-set. We say that X is an invariant set if for each
x ∈ X there exists a finite set Sx ⊂ A which supports x. Invariant
sets are also called nominal sets if we work in the ZF framework [12], or
equivariant sets if they are defined as empty-supported elements in the
Cumulative Hierarchy Fraenkel-Mostowski universe FM(A) [8].

4. Let X be an SA-set and let x ∈ X. If there exists a finite set supporting x
(particularly, if X is an invariant set), then there exists a least finite set
supp(x) supporting x [8] which is called the support of x. An empty
supported element is called equivariant.

Proposition 2.2. Let (X, ·) be an SA-set, and π ∈ SA. If x ∈ X is
finitely supported, then π ·x is finitely supported and supp(π ·x) = π(supp(x)).

Example 2.3. 1. The set A of atoms is an SA-set with the SA-action
· : SA × A→ A defined by π · a := π(a) for all π ∈ SA and a ∈ A. (A, ·)
is an invariant set because for each a ∈ A we have that {a} supports a.
Moreover, supp(a) = {a} for each a ∈ A.

2. The set SA is an SA-set with the SA-action · : SA × SA → SA defined by
π ·σ := π ◦σ ◦π−1 for all π, σ ∈ SA. (SA, ·) is an invariant set because for
each σ ∈ SA we have that the finite set {a ∈ A |σ(a) 6= a} supports σ.
Moreover, supp(σ) = {a ∈ A |σ(a) 6= a} for each σ ∈ SA.
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3. Any ordinary ZF-set X (N,Z,Q,R or [0, 1], for example) is an SA-set
with the trivial SA-action · : SA × X → X defined by π · x := x for
all π ∈ SA and x ∈ X. Furthermore, X is an invariant set because for
each x ∈ X we have that ∅ supports x. Moreover, supp(x) = ∅ for each
x ∈ X. The trivial actions are the single SA-actions that can be defined
on ordinary ZF sets [12].

4. Let (X, ·) and (Y, �) be SA-sets. The Cartesian product X × Y is also
an SA-set with the SA-action ? : SA × (X × Y ) → (X × Y ) defined by
π ? (x, y) = (π · x, π � y) for all π ∈ SA and all x ∈ X, y ∈ Y . If (X, ·)
and (Y, �) are invariant sets, then (X × Y, ?) is also an invariant set.

5. If (X, ·) is an SA-set, then the powerset ℘(X) = {Y |Y ⊆ X} is also an
SA-set with the SA-action ? : SA × ℘(X) → ℘(X) defined by π ? Y :=
{π ·y | y ∈ Y } for all π ∈ SA, and all Y ⊆ X. For each invariant set (X, ·),
we denote by ℘fs(X) the set formed from those subsets of X which are
finitely supported according to the action ? . According to Proposi-
tion 2.2, (℘fs(X), ?|℘fs(X)) is an invariant set, where ?|℘fs(X) represents
the action ? restricted to ℘fs(X).

Definition 2.4. Let (X, ·) be an invariant set. A subset Z of X is called
finitely supported if and only if Z ∈ ℘fs(X).

It is worth noting that not any subset of an invariant set is finitely sup-
ported. For example, if B ⊂ A and B is finite, then supp(B) = B. If C ⊆ A
and C is cofinite (i.e. its complementary is finite), then supp(C) = A \ C.
However, if D ⊆ A is neither finite nor cofinite, then D is not finitely sup-
ported.

Since functions are particular relations (i.e. particular subsets of a Carte-
sian product of two sets), we have the following results.

Definition 2.5. Let X and Y be invariant sets. A function f : X → Y is
finitely supported if f ∈ ℘fs(X × Y ).

Let Y X = {f ⊆ X × Y | f is a function from the underlying set of X to
the underlying set of Y }.

Proposition 2.6 ( [3]). Let (X, ·) and (Y, �) be invariant sets. Then Y X

is an SA-set with the SA-action ?̃ : SA × Y X → Y X defined by (π?̃f)(x) =
π � (f(π−1 · x)) for all π ∈ SA, f ∈ Y X and x ∈ X. A function f : X → Y
is finitely supported in the sense of Definition 2.5 if and only if it is finitely
supported with respect to the permutation action ?̃.

Proposition 2.7 ( [3]). Let (X, ·) and (Y, �) be invariant sets. Let f ∈
Y X and σ ∈ SA be arbitrary elements. Let ?̃ : SA × Y X → Y X be the SA-
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action on Y X defined by (π?̃f)(x) = π�(f(π−1 ·x)) for all π ∈ SA, f ∈ Y X and
x ∈ X. Then σ?̃f = f if and only if for all x ∈ X we have f(σ · x) = σ � f(x).

3. FUZZY SUBGROUPS OF A CLASSICAL GROUP

In this section, we remind some basic results in the classical Zermelo-
Fraenkel theory of fuzzy groups.

Definition 3.1. A fuzzy set over the ZF set U is a function µ : U → [0, 1].

Definition 3.2. Let (G, ·, 1) be a group. On the family of all fuzzy sets
over G we define a partial order relation v, called fuzzy sets inclusion, by µ v η
if and only if µ(x) ≤ η(x) for all x ∈ G.

Definition 3.3. Let (G, ·, 1) be a group. A fuzzy set µ over G is called
fuzzy subgroup of G if the following conditions are satisfied.

• µ(x · y) ≥ min{µ(x), µ(y)} for all x, y ∈ G;

• µ(x−1) ≥ µ(x) for all x ∈ G.

Definition 3.4. Let (G, ·, 1) be a group. A fuzzy subgroup η of G that
satisfies the additional condition η(x · y) = η(y · x) for all x, y ∈ G is called a
fuzzy normal subgroup of G.

Theorem 3.5 ( [1, 2]). Let (G, ·, 1) be a group.

• The set FL(G) consisting of all fuzzy subgroups of G forms a complete
lattice with respect to fuzzy sets inclusion.

• The set FN(G) consisting of all fuzzy normal subgroups of G forms a
modular lattice with respect to fuzzy sets inclusion.

4. FUZZY SUBGROUPS OF AN INVARIANT GROUP IN FSM

Invariant groups were studied in [3]. An invariant group is an invariant
set equipped with an equivariant internal group law.

Definition 4.1. An invariant group is a triple (G, ·, �) such that the fol-
lowing conditions are satisfied:

• (G, ·) is a group;

• (G, �) is a non-trivial invariant set;

• for each π ∈ SA and each x, y ∈ G we have π � (x · y) = (π � x) · (π � y),
which means that the internal law on G is equivariant.

Proposition 4.2. (G, ·, �) be an invariant group. We have

1. π � 1 = 1 for all π ∈ SA, where 1 is the neutral element of G.
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2. π � x−1 = (π � x)−1 for all π ∈ SA and x ∈ G.

Proof. 1. Since π � 1 = π � (1 · 1) = (π � 1) · (π � 1), it follows π � 1 = 1.

2. We have (π � x) · (π � x−1) = π � (x · x−1) = π � 1 = 1, and analogously
(π � x−1) · (π � x) = 1. Therefore, (π � x)−1 = π � x−1. �

The following examples of invariant groups were presented in [3].

Example 4.3. 1. The group (SA, ◦, ·) is an invariant group, where ◦
is the usual composition of permutations and · is the SA-action on SA
defined as in Example 2.3(2). Since the composition law on SA is as-
sociative, one can easily verify that π · (σ ◦ τ) = (π · σ) ◦ (π · τ) for all
π, σ, τ ∈ SA.

2. With the notations above, the group (PA, ◦, ·) of all FSM bijections of A
onto A is an invariant group. This is because PA coincides to SA in FSM
according to Proposition 2.6 from [3].

3. The free group (F (X), ᵀ, ?̃) over an invariant set (X, �) (formed by those
classes [w] of words w, where two words are in the same class if one can
be obtained from another by repeatedly cancelling or inserting terms of
the form x−1x or xx−1 for x ∈ X) is an invariant group, where ?̃ : SA ×
F (X)→ F (X) is defined by π?̃[xε11 x

ε2
2 . . . xεll ] = [(π � x1)ε1 . . . (π � xl)εl ],

and [xε11 x
ε2
2 . . . xεnn ] ᵀ [yδ11 y

δ2
2 . . . yδmm ] = [xε11 x

ε2
2 . . . xεnn y

δ1
1 y

δ2
2 . . . yδmm ].

Definition 4.4. Let (G, ·, �) be an invariant group. An FSM subgroup of
G is a subgroup of G which is finitely supported as an element of ℘(G).

Example 4.5. 1. Let (G, ·, �) be an invariant group. The centre of G,
namely Z(G) := {g ∈ G | g ·x = x · g, for all x ∈ G}, is an FSM subgroup
of G, and it is itself an invariant group because it is empty supported as
an element of ℘(G).

2. Let X be a finitely supported subset of G. Then the subgroup generated
by X is an FSM subgroup of G, but it is not itself an invariant group.

Definition 4.6. An invariant partially ordered set (invariant poset) is an
invariant set (E, ·) together with an equivariant (i.e. empty supported) partial
order relation v on E. An invariant poset is denoted by (E,v, ·), or simply E.

Definition 4.7. An invariant lattice is an invariant set (L, ·) together with
an equivariant lattice order v on L.

Definition 4.8. An invariant complete lattice is an invariant poset (L,v, ·)
such that every finitely supported subset X ⊆ L has a least upper bound tX
with respect to the order relation v.
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Definition 4.9. An invariant modular lattice is an invariant lattice (L,v, ·)
that satisfies the classical ZF modularity law: x v z implies x ∨ (y ∧ z) =
(x ∨ y) ∧ z for all x, y, z ∈ L.

If (G, ·, �) is an invariant group, we denote by L(G)inv the family of all
FSM subgroups of G ordered by inclusion. According to Theorem 4.6 from [5],
we have that (L(G)inv,⊆, ?) is an invariant complete lattice, where⊆ represents
the usual inclusion relation on ℘(G), and ? is the SA-action on ℘(G) defined as
in Example 2.3(5). The goal now is to prove that the family of all FSM fuzzy
subgroups of an invariant group forms also an invariant complete lattice.

Definition 4.10. An FSM fuzzy set over the invariant set (U, ·) is a finitely
supported function µ : U → [0, 1].

Definition 4.11. Let (G, ·, �) be an invariant group. An FSM fuzzy set µ
over the invariant set G is called an FSM fuzzy subgroup of G if the following
conditions are satisfied:

• µ(x · y) ≥ min{µ(x), µ(y)} for all x, y ∈ G;

• µ(x−1) ≥ µ(x) for all x ∈ G.

Example 4.12. Let us consider the set A of atoms and (F (A),ᵀ, ?̃) the
invariant free group over A described in Example 4.3(3). For an element in
F (A) of form [w] = [xε11 x

ε2
2 . . . xεll ], we define s([w]) = ε1 + ε2 + . . . + εl.

Whenever a word w is equivalent with w′ modulo the reduction/inserting of
terms of form xx−1 or x−1x, i.e. whenever [w] = [w′], we obviously have
s([w]) = s([w′]), and so s is well defined. It follows directly (using Proposition
4.2(2) for the second item below) that

1. s([w] ᵀ [w′]) = s([w]) + s([w′]) for all [w], [w′] ∈ F (A);

2. s(π?̃[w]) = s([w]) for all π ∈ SA and [w] ∈ F (A), meaning that s is an
equivariant function from F (A) to Z;

3. s([w]−1) = −s([w]).

We obtained that s is an equivariant group homomorphism between the
invariant groups F (A) and Z. Let us consider µ : F (A)→ [0, 1] defined by

µ([w]) =


0, if s([w]) is odd in Z ;
1− 1

n , if s([w]) = m · 2n with m odd in Z and n ∈ N;
1, if s([w]) = 0 .

Since every even integer k can be uniquely expressed as k = m ·2n with m
an odd integer and n ∈ N, we have that µ is well defined. Clearly, from
Proposition 2.7 we have that µ is equivariant because, according to item 2
above, we obtain µ(π?̃[w]) = µ([w]) for all π ∈ SA and [w] ∈ F (A). Obviously,
according to item 3 above, µ([w]−1) = µ([w]) for all [w] ∈ F (A). It remains
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to prove that µ([w] ᵀ [w′]) ≥ min{µ([w]), µ([w′])} for all [w], [w′] ∈ F (A).
Let us fix [w], [w′] ∈ F (A). The non-trivial case to be analyzed is the case
when both s([w]) and s([w′]) are non-zero even integers. Then there exist the
unique expressions s([w]) = m1 ·2n1 and s([w′]) = m2 ·2n2 with m1,m2 integer
and odd. Assume n1 ≤ n2 (the other case is analogue). If n1 = n2, then
s([w] ᵀ [w′]) = s([w]) + s([w′]) = (m1 + m2) · 2n1 = m · 2n with m ∈ Z odd
and n > n1 because m1 + m2 is non-zero and even (we considered only the
case m1 6= −m2 since the case m1 = −m2 leads to s([w] ᵀ [w′]) = 0, and so
µ([w]ᵀ [w′]) = 1, and the result follows trivially). Thus, µ([w]ᵀ [w′]) = 1− 1

n >
1 − 1

n1
= min{µ([w]), µ([w′])}. Suppose now n1 < n2. Then s([w] ᵀ [w′]) =

s([w]) + s([w′]) = (m1 + m2 · 2n2−n1) · 2n1 with m1 + m2 · 2n2−n1 integer and
odd. Thus, µ([w] ᵀ [w′]) = 1− 1

n1
= min{1− 1

n1
, 1− 1

n2
}. We have that µ is an

FSM fuzzy subgroup of F (A).

Theorem 4.13. Let (G, ·, �) be an invariant group. The set FLinv(G)
consisting of all FSM fuzzy subgroups of G forms an invariant complete lattice
with respect to fuzzy sets inclusion.

Proof. We prove first that FLinv(G) is an invariant poset. Clearly,
FLinv(G) is a subset of the invariant set formed by those finitely supported
functions from G to [0, 1]. We have to prove that FLinv(G) is itself invariant,
that is π?̃µ is an FSM fuzzy subgroup of G for all π ∈ SA and µ ∈ FLinv(G),
where ?̃ is the SA-action on [0, 1]G defined in Proposition 2.6. Let us fix π ∈ SA
and µ ∈ FLinv(G). We have µ(x · y) ≥ min{µ(x), µ(y)} for all x, y ∈ G, and
µ(x−1) ≥ µ(x) for all x ∈ G. According to Proposition 2.2, π?̃µ is a finitely
supported function from G to [0, 1]. According to Proposition 2.6 and since
[0, 1] is a trivial invariant set (i.e. [0, 1] is an SA-set equipped with the triv-
ial SA-action (σ, x) 7→ x for all (σ, x) ∈ SA × [0, 1]), we have (π?̃µ)(x · y) =
µ(π−1 � (x · y)) = µ((π−1 � x) · (π−1 � y)) ≥ min{µ(π−1 � x), µ(π−1 � y)} =
min{(π?̃µ)(x), (π?̃µ)(y)} for all x, y ∈ G; the second identity holds because G
is an invariant group, and so the internal law on G is equivariant. Moreover,
(π?̃µ)(x−1) = µ(π−1 � (x−1)) = µ((π−1 � x)−1) ≥ µ(π−1 � x) = (π?̃µ)(x); the
second identity holds from Proposition 4.2(2). This means that (FLinv(G), ?̃)
is an invariant set.

Now we prove that (FLinv(G),v) is an invariant poset where v is the
classical inclusion order on the family of all FSM fuzzy subgroups of G, defined
by µ v η if and only if µ(x) ≤ η(x) for all x ∈ G. We have to prove that v is
equivariant. Indeed, let π ∈ SA, and µ, η be two FSM fuzzy subgroups ofG such
that µ v η. Since µ(x) ≤ η(x) for all x ∈ G, we have µ(π−1 · x) ≤ η(π−1 · x)
for all x ∈ G, namely (π?̃µ)(x) ≤ (π?̃η)(x) for all x ∈ G. It follows that
π?̃µ v π?̃η.
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For each α ∈ [0, 1] and each µ ∈ [0, 1]Gfs, we defineGµα = {x ∈ G |µ(x) ≥ α},
and prove that each Gµα is a finitely supported subset of G. Moreover, we
have supp(Gµα) ⊆ supp(µ) for all α ∈ [0, 1]. Indeed, let us fix α ∈ [0, 1],
µ ∈ FLinv(G), and consider π ∈ Fix(supp(µ)). Recall that [0, 1] is a trivial
invariant set. According to Proposition 2.7, we have µ(π � x) = µ(x) for all
x ∈ G. Thus, for each x ∈ Gµα and each π ∈ Fix(supp(µ)) we have π � x ∈ Gµα.
Therefore, π ? Gµα ⊆ Gµα for each π ∈ Fix(supp(µ)), where ? is the SA-action
on ℘(G) defined as in Example 2.3(5). By contradiction, let us assume that
there is a π ∈ Fix(supp(µ)) such that π ? Gµα ( Gµα. By induction, we get
πn ? Gµα ( Gµα for all n ≥ 1. However, π is a finitary permutation, and so
there exists k ∈ N such that πk = Id. We obtain Gµα ( Gµα, a contradiction.
Therefore, π ? Gµα = Gµα for all π ∈ Fix(supp(µ)), and so Gµα is supported
by supp(µ). Since the support of Gµα is the least finite set supporting Gµα, we
obtain that supp(Gµα) ⊆ supp(µ).

Let [Gµα] be the subgroup ofG generated byGµα, i.e. the smallest subgroup
of G containing Gµα. Every element from [Gµα] can be expressed as a finite
product of elements of Gµα and inverses of elements of Gµα. We have to prove
that [Gµα] is a finitely supported subgroup ofG. We claim that [Gµα] is supported
by supp(Gµα). Indeed, let us consider π ∈ Fix(supp(Gµα)). Let xε11 ·x

ε2
2 · . . . ·xεnn ,

xi ∈ Gµα, εi = ±1, i = 1, . . . , n be an arbitrary element from [Gµα]. Since
π ∈ Fix(supp(Gµα)), we have π � xi ∈ Gµα for all i ∈ {1, . . . , n}. Therefore,
because the internal law on G is equivariant, we have π � (xε11 · x

ε2
2 · . . . · xεnn ) =

(π � xε11 ) · (π � xε22 ) · . . . · (π � xεnn ) = (π � x1)ε1 · (π � x2)ε2 · . . . · (π � xn)εn ∈ [Gµα].
Therefore, π ? [Gµα] = [Gµα] where ? is the SA-action on ℘(G) defined as in
Example 2.3(5), and so supp(Gµα) supports [Gµα]. Since supp(Gµα) ⊆ supp(µ),
we also have that supp([Gµα]) ⊆ supp(µ) for all α ∈ [0, 1].

For any finitely supported function ν : G → [0, 1], we consider the func-
tion ν∗ : G → [0, 1] defined by ν∗(x) = supremum{α ∈ [0, 1] | x ∈ [Gνα]} for
any x ∈ G. We claim that ν? is supported by supp(ν). Let π ∈ Fix(supp(ν)).
We have ν∗(π � x) = supremum{α ∈ [0, 1] | π � x ∈ [Gνα]} = supremum{α ∈
[0, 1] | x ∈ π−1 ? [Gνα]}. However, π−1 ∈ Fix(supp(ν)), supp([Gνα]) ⊆ supp(ν)
for all α ∈ [0, 1] (meaning that there exists a set of atoms not depending on α
which supports all [Gνα]), and so π−1 ? [Gνα] = [Gνα]. Therefore, ν∗(π � x) =
supremum{α ∈ [0, 1] | x ∈ [Gνα]} = ν∗(x) for all x ∈ G. Thus, ν∗ is finitely sup-
ported. Furthermore, as in the standard fuzzy groups theory we have that ν∗

is a fuzzy subgroup of G [1], and so it is an FSM fuzzy subgroup of G.
In order to prove that FLinv(G) is an invariant complete lattice it remains

to establish that any finitely supported family of elements from FLinv(G) has
a least upper bound. Let us consider now F = (µi)i∈I a finitely supported
family of elements from FLinv(G). We define ∪

i∈I
µi : G → [0, 1] by ∪

i∈I
µi(x) =
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supremum
i∈I

{µi(x) | i ∈ I} for all x ∈ G. Since [0, 1] is a closed set in the

classical topology of R, we have that ∪
i∈I
µi is well defined in the ZF framework

(its codomain is contained in [0, 1]). We claim that supp(F) supports ∪
i∈I
µi.

Let π ∈ Fix(supp(F)). According to Proposition 2.7 and because [0, 1] is a
trivial invariant set, in order to prove that π?̃ ∪

i∈I
µi = ∪

i∈I
µi we should prove

the relation supremum
i∈I

{µi(π � x) | i ∈ I}=supremum
i∈I

{µi(x) | i ∈ I} for all

x ∈ G. Since π ∈ Fix(supp(F)), we also have π−1 ∈ Fix(supp(F)), and
so the action of π−1 on F leaves F unchanged. Therefore, for each j ∈ I
there exists a unique i ∈ I such that µj = π−1?̃µi. Thus, for each j ∈ I
there exists a unique i ∈ I such that µj(x) = µi(π � x) for all x ∈ G. Fix
some y ∈ G; it follows that {µi(π � y) | i ∈ I} = {µj(y) | j ∈ I}. Thus,
supremum

i∈I
{µi(π�x)|i ∈ I}=supremum

i∈I
{µi(x) | i ∈ I} for all x ∈ G. Therefore,

we obtain that supp(F) supports ∪
i∈I
µi. Since ∪

i∈I
µi is finitely supported by

supp(F), we have that ( ∪
i∈I
µi)
∗ is finitely supported by supp(F). Furthermore,

as in the standard fuzzy groups theory we have that ( ∪
i∈I
µi)
∗ is the least upper

bound of F in FL(G) with respect to the order relation v [1]. Since ( ∪
i∈I
µi)
∗

is also finitely supported, it follows that ( ∪
i∈I
µi)
∗ is the least upper bound of F

in FLinv(G) with respect to the equivariant order relation v. �

According to Theorems 3.33 and 3.34 from [3], we get the following result.

Corollary 4.14. Let (G, ·, �) be an invariant group and
f : FLinv(G)→ FLinv(G) a finitely supported monotone function.

1. There exist a greatest fixed point of f and a least fixed point of f .

2. If f is equivariant, then the set of all fixed points of f is itself an invariant
complete sublattice of FLinv(G).

Invariant Galois connections were introduced in [3]. Let (P,vP , ·P ) and
(Q,vQ, ·Q) be two invariant posets, and f : P → Q, g : Q→ P two functions.
The pair (f, g) is an invariant Galois connection between P and Q if and only
if both f and g are equivariant and for all p ∈ P and q ∈ Q we have that
f(p) vQ q ⇔ p vP g(q). If (f, g) is an invariant Galois connection, then we
say that f has an invariant adjoint g, and g has an invariant co-adjoint f .

According to Proposition 3.19 from [3] we obtain the following result.

Corollary 4.15. Let (G, ·, �) be an invariant group and f : FLinv(G)→
FLinv(G) an equivariant function.
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1. f has an invariant adjoint if and only if f(( ∪
i∈I
µi)
∗) = ( ∪

i∈I
f(µi))

∗ for

every finitely supported family (µi)i∈I of elements from FLinv(G).

2. f has an invariant co-adjoint if and only if f( ∩
i∈I
µi) = ∩

i∈I
f(µi) for every

finitely supported family (µi)i∈I of elements from FLinv(G).

According to [5], the family (L(G)inv,⊆, ?) of all finitely supported sub-
groups of an invariant group G is an invariant complete lattice, with the oper-
ations join and meet defined by H,K 7→ [H ∪K] and H,K 7→ H ∩K, where
[H∪K] represents the subgroup of G generated by the set H∪K (i.e. the small-
est subgroup of G containing both H and K). According to Proposition 3.19
in [3], we also have the following results.

Corollary 4.16. Let (G, ·, �) be an invariant group and f : FLinv(G)→
L(G)inv, g : L(G)inv → FLinv(G) equivariant functions.

1. f has an invariant adjoint if and only if f(( ∪
i∈I
µi)
∗) = [ ∪

i∈I
f(µi)] for every

finitely supported family (µi)i∈I of elements from FLinv(G).

2. g has an invariant co-adjoint if and only if g( ∩
i∈I
Hi) = ∩

i∈I
g(Hi) for every

finitely supported family (Hi)i∈I of finitely supported subgroups of G.

Corollary 4.17. Let (G, ·, �) be an invariant group and f : L(G)inv →
FLinv(G), g : FLinv(G)→ L(G)inv equivariant functions.

1. f has an invariant adjoint if and only if f([ ∪
i∈I
Hi]) = ( ∪

i∈I
f(Hi))

∗ for ev-

ery finitely supported family (Hi)i∈I of finitely supported subgroups of G.

2. g has an invariant co-adjoint if and only if g( ∩
i∈I
µi) = ∩

i∈I
g(µi) for every

finitely supported family (µi)i∈I of elements from FLinv(G).

Theorem 4.18. Let (G, ·, �) be an invariant group. The set FNinv(G)
consisting of all FSM fuzzy normal subgroups of G forms an invariant modular
lattice with respect to fuzzy sets inclusion.

Proof. We prove that FNinv(G) is an invariant subset of the invariant set
FLinv(G), that is π?̃µ is an FSM fuzzy normal subgroup of G for all π ∈ SA and
µ ∈ FNinv(G), where ?̃ is the SA-action on FLinv(G) defined as in Proposition
2.6. Let us fix π ∈ SA and µ ∈ FNinv(G). We have µ(x · y) = µ(y · x)
for all x, y ∈ G. According to Proposition 2.2, π?̃µ is a finitely supported
function from G to [0, 1]. According to Proposition 2.6, because [0, 1] is a
trivial invariant set, and because the internal law in G is equivariant, we have
(π?̃µ)(x·y) = µ(π−1�(x·y)) = µ((π−1�x)·(π−1�y)) = µ((π−1�y)·(π−1�x)) =
µ(π−1 � (y ·x)) = (π?̃µ)(y ·x) for all x, y ∈ G. This means π?̃µ is an FSM fuzzy
normal subgroup of G, and so FNinv(G) is an invariant subset of FLinv(G).
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As in the proof of Theorem 4.13, it follows that the inclusion order on
FNinv(G) is equivariant. Furthermore, for any finitely supported functions
µ, η : G → [0, 1] we have that the functions µ ∪ η : G → [0, 1] defined by
(µ ∪ η)(x) = max[µ(x), η(x)] for all x ∈ G and µ ∩ η : G → [0, 1] defined
by (µ ∩ η)(x) = min[µ(x), η(x)] for all x ∈ G are both finitely supported
by supp(µ) ∪ supp(η). As in the proof of Theorem 4.13, we also have that
(µ∪ η)∗ is supported by supp(µ)∪ supp(η). Similar to the standard ZF theory
of fuzzy sets, we have that (µ ∪ η)∗ and µ ∩ η are the least upper bound and
the greatest lower bound of µ and η in FN(G), respectively. This means that
(µ ∪ η)∗ and µ ∩ η are the least upper bound and the greatest lower bound
of µ and η in FNinv(G), respectively. Therefore, we have that FNinv(G) is
an invariant lattice. The modularity property of FNinv(G) holds as in the ZF
approach due to the special property of fuzzy normal subgroups described in
Definition 3.4. �

5. CONCLUSION

Rosenfeld introduced the notion of a fuzzy group and proved that many
concepts of group theory can naturally be extended in order to develop the
theory of fuzzy groups [13]. Starting from 1971, the theory of fuzzy groups
has a continuous evolution, and there exist several applications. A survey
of the development of fuzzy group theory can be found in [11]. More recent
combinatorial developments on this theory can be found in [16,17].

In this paper, we developed the theory of fuzzy groups in an alterna-
tive framework named Finitely Supported Mathematics (FSM), where all the
structures should be finitely supported; in FSM, ‘sets’ are replaced either by
‘invariant sets’ (sets endowed with some group actions satisfying a finite sup-
port requirement) or by ‘finitely supported sets’ (finitely supported elements
in the powerset of an invariant set). The main motivation for developing FSM
comes from both mathematics (by modelling infinite algebraic structures in
a finitary manner) and computer science (where a class of FSM sets, namely
nominal sets, are used in various areas such as semantics, automata theory,
software verification, and functional programming) [3, 12]. We introduced the
notion of FSM fuzzy subgroups of a given FSM group, and proved several order
properties on the family of all these FSM fuzzy subgroups. The FSM proper-
ties obtained in this paper represent a natural generalization of the ZF order
properties obtained in the classical fuzzy group theory. More exactly, for a ZF
group G we know that the family of all fuzzy subgroups of G forms a complete
lattice, and the family of all fuzzy normal subgroups of G forms a modular
lattice. In FSM we proved that, for an invariant group G, the family of all



13 Fuzzy subgroups of an invariant group in finitely supported mathematics 189

finitely supported fuzzy subgroups of G forms an invariant complete lattice,
and the family of all finitely supported fuzzy normal subgroups of G forms an
invariant modular lattice.

The translation of a classical ZF property into FSM is not a trivial ap-
proach. In order to translate a general ZF result into FSM, the proof of the
related FSM result should not brake the requirement that any construction has
to be finitely supported. Therefore, in order to get a valid FSM result, it is
necessary to prove that all the structures involved in the proof (including the
proofs of the used results) are finitely supported. Three general methods of
proving that a certain structure is finitely supported are presented in [3]. In
this paper, we applied effectively the ‘constructive’ method, meaning that we
construct the support of a certain structure by using an hierarchical (step-by-
step) construction. The other two methods presented in [3] are described by
using higher order logic, but the formal involvement of them is much difficult.
The method known as the the Finite Support Principle states that any func-
tion or relation that is defined from finitely supported functions and relations
using classical higher-order logic is itself finitely supported. The third method
is represented by a refinement of the previous one, and allows us to provide
hierarchical boundedness properties for supports; this method states that for
any finite set S of atoms, anything that is definable (in higher order logic) from
S-supported structures using S-supported constructions is S-supported.
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