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Given a graph G, a subset M of V (G) is a module of G if for a,b ∈M and x ∈V (G)\M,
xa ∈ E(G) if and only if xb ∈ E(G). A graph G with at least three vertices is prime if /0,
the single-vertex sets, and V (G) are the only modules of G. A vertex x of a prime graph G
is critical if G−x is not prime. In this paper, we provide a new characterization of critical
graphs, and of graphs admitting either only one non-critical vertex or at least two, in terms
of coverings by prime induced subgraphs of a certain size.
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1. INTRODUCTION

All graphs in this paper are finite and simple. In a graph G, a subset M of
V (G) is a module [22] (or a clan [14], or an interval [13, 21]) of G provided that
for all a,b ∈ M and x ∈ V (G) \M, xa ∈ E(G) if and only if xb ∈ E(G). The empty
set, the singleton sets, and the full set of vertices are trivial modules. A graph is
indecomposable [16, 21] if all its modules are trivial. An indecomposable graph with
at least three vertices is a prime graph. The simplest prime graph with n vertices
where n ≥ 4 is the path Pn. Up to isomorphism, the graph P4 is the only 4-vertex
prime graph. In recent years, the concept of primality has become fundamental in
the study of finite structures. This concept and other notions have been the subject
of several papers, for example [1, 2, 4, 5, 7, 8, 9, 12, 15, 17, 18, 19, 20]. Let G be a
graph. The order of G is denoted by v(G) or |V (G)|. Let p be a partition of V (G); the
graph G is multipartite by p if for every M ∈ p, G[M] is empty. It is bipartite when
|p|= 2. Let G be a prime graph. A vertex x of V (G) is called a critical vertex of G if
G− x is not prime. We denote by N (G) the set of the non-critical vertices of G. The
graph G is critical [21] if N (G) = /0. For example, for each integer n≥ 2, the graph
G2n (see Figure 1) defined below is critical.

The vertex set of G2n is {0, . . . ,2n− 1} and for i, j ∈ {0, . . . ,2n− 1}, i j is an
edge of G2n if there exist k ≤ l ∈ {0, . . . ,n− 1} such that {i, j} = {2k,2l + 1}. The
notion of critical graphs was introduced by Schmerl and Trotter [21], they gave the
following characterization.
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Figure 1: G2n

THEOREM 1.1 (Schmerl and Trotter [21]). A prime graph G is critical if and
only if it is isomorphic to G2n or to G2n, where n≥ 2.

Recently, in [8] Boudabbous and Salhi give a complete morphologic description
of ”critically without duo graphs”. Moreover, Belkhechine, Boudabbous and Baka
Elayech [3] described the prime graphs G such that |N (G)| = 1. Chudnovsky and
Seymour [11] provide a characterization of a non-critical graphs in terms of growing
prime graphs, starting from a prime induced subgraph and adding vertices one at a
time in such a way that all the intermediate subgraphs are prime of which by the
following.

THEOREM 1.2 (Chudnovsky and Seymour [11]). Let G be a graph, and let H
be a proper induced subgraph of G. If both G and H are prime and G is not critical,
then there are X0 ⊆ X1 ⊆ . . .⊆ Xk ⊆V (G) satisfying

• G[X0] is isomorphic to H;

• Xk =V (G);

• for 0≤ i≤ k, G[Xi] is prime;

• for 0≤ i≤ k−1, |Xi+1 \Xi|= 1.
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In this work, we give a classification of the prime graphs based on their prime
subgraphs. In order to introduce our main result, we need the following notations. For
a prime graph G, and for a positive integer i, we denote by Wi(G) the set of vertices x
of V (G) such that there is a subset X of V (G) satisfying: x ∈ X , |X | = i and G[X ] is
prime. It is clear that Wi(G) = V (G) when i = v(G). Given a prime graph G, denote
cp(G) = 8 if the order of G is odd and cp(G) = 7 otherwise. For a proper subset X of
V (G) and for each integer j, with 1≤ j ≤ |V (G)\X |, we denote by IX

G( j) the family
of the subsets Y of V (G)\X such that |Y |= j and G[X ∪Y ] is prime.

Our main result is:

THEOREM 1.3. Let G be a prime graph with v(G) ≥ 8, and a ∈ V (G). The
following three assertions hold.

1. N (G) = /0 if and only if W5(G) = /0.

2. N (G) = {a} if and only if Wcp(G)(G) =V (G)\{a}.

3. |N (G)| ≥ 2 if and only if Wcp(G)(G) =V (G).

Notice that for the case of tournaments, a similar result was obtained by Boud-
abbous [6].

The rest of the paper is organized as follows. In Section 2, we review relevant
properties of prime graphs. Section 3 proves Theorem 1.3. In section 4, we give some
consequences from the Theorem 1.3.

2. PRIME GRAPHS

In this section, we recall some properties of prime graphs that will be useful in
the remainder of the present paper.

THEOREM 2.1 (Sumner [23]). For every prime graph G with v(G) ≥ 4, there
exists X ⊆V (G) such that G[X ] is isomorphic to P4.

Before we state the following theorem which improves Theorem 2.1, we need
to define the following graph. Let B5 denote the bull, that is, the prime graph defined
on {1, . . . ,5} such that i j is an edge of B5 if {i, j} ∈ {{1,3}, {1,4}, {2,3}, {3,4},
{4,5}}.

THEOREM 2.2 (Cournier and Ille [13]). Given a prime graph G with v(G)≥ 5,
then |V (G)\W4(G)| ≤ 1 and V (G)\W4(G)⊆W5(G). Furthermore, if V (G)\W4(G)=
{x}, then there is a subset X of V (G) containing x and an isomorphism f from G[X ]
onto B5 such that f (x) = 1.
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THEOREM 2.3 (Schmerl and Trotter [21]). Given a prime graph G with v(G)≥
7, there exist x 6= y ∈V (G) such that G[V (G)\{x,y}] is prime.

Ille [16] improves Theorem 2.3 by the following.

THEOREM 2.4 (Ille [16]). Let G be a prime graph and let X be a subset of V (G)
such that G[X ] is prime. If |V (G)\X | ≥ 6, then there exist x 6= y ∈V (G)\X such that
G[V (G)\{x,y}] is prime.

We close this section by the following notations and results.

Notation 2.5. Given a graph G, let X be a proper subset of V (G) such that G[X ]
is prime. We consider the following subsets of V (G)\X :

• Ext(X) is the set of x ∈ V (G)\X such that G[X ∪{x}] is prime;

• 〈X〉 is the set of x ∈ V (G)\X such that X is a module of G[X ∪{x}] ;

• given u ∈ X , X(u) is the set of x ∈ V (G) \X such that {u,x} is a module of
G[X ∪{x}].

The family {Ext(X), 〈X〉} ∪ {X(u)}u∈X is denoted by p(G,X). Furthermore, 〈X〉
is divided onto X− and X+ as follows.

• X− is the set of elements x of V (G)\X such that for every y ∈ X , xy /∈ E(G).

• X+ is the set of elements x of V (G)\X such that for every y ∈ X , xy ∈ E(G).

Similarly, for each u ∈ X , X(u) is divided onto X−(u) and X+(u) as follows.

• X−(u) is the set of elements x of X(u) such that ux /∈ E(G).

• X+(u) is the set of elements x of X(u) such that ux ∈ E(G).

We then introduce the three families below :

• q(G,X) = {Ext(X),X−,X+}∪{X−(u),X+(u)}u∈X

• q−(G,X) = {X
−}∪{X−(u)}u∈X

• q+(G,X) = {X
+}∪{X+(u)}u∈X

LEMMA 2.6 (Ehrenfeucht and Rozenberg [14]). Given a graph G, let X be a
proper subset of V (G) such that G[X ] is prime. The family p(G,X) realizes a partition
of V (G)\X. Moreover, the following assertions are satisfied.
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1. Given x 6= y ∈ Ext(X), if G[X ∪{x,y}] is not prime, then {x,y} is a module of
G[X ∪{x,y}].

2. Given x ∈ X(u) and y ∈V (G)\ (X ∪X(u)) where u ∈ X, if G[X ∪{x,y}] is not
prime, then {x,u} is a module of G[X ∪{x,y}].

3. Given x ∈ 〈X〉 and y ∈ V (G) \ (X ∪ 〈X〉), if G[X ∪ {x,y}] is not prime, then
X ∪{y} is a module of G[X ∪{x,y}].

The following result is a consequence of the preceding lemma.

THEOREM 2.7 (Ehrenfeucht and Rozenberg [14]). Let X be a subset of a prime
graph G such that G[X ] is prime. If |V (G)\X | ≥ 2, then there exist x 6= y ∈V (G)\X
such that G[X ∪{x,y}] is prime.

This theorem leads us to introduce the following graph. Given a graph G,
consider a subset X of V (G) such that |V (G) \X | ≥ 2 and G[X ] is prime. In [10]
the outside graph GX is defined on V (G) \ X in the following manner. For any
x 6= y ∈V (G)\X , xy ∈ E(GX) if G[X ∪{x,y}] is prime.

LEMMA 2.8 (Breiner, Deogun and Ille [10]). Given a graph G, consider a
proper subset X of V (G) such that G[X ] is prime, let M ∈ p(G,X) and N ∈ q(G,X)

such that N ⊆M. Assume that IX
G(1) = /0. If I is a module of GX such that I ⊆ N and

if I is a module of G[M], then I is a module of G.

Consider a prime graph G and a proper subset X of V (G) such that G[X ] is
prime and |V (G) \X | ≥ 4. One may verify that some results of [10] remain valid if
we replace the hypothesis ”G is critical according to G[X ]” by ”IX

G(3) = /0 ”. So we
deduce the following.

LEMMA 2.9. Let G be a prime graph. Given a subset X of V (G) such that G[X ]
is prime and |V (G) \X | ≥ 4. Assume that IX

G(3) = /0. Given distinct elements a,a′

and b of V (G) \X, if there is M ∈ p(G,X) such that a,a′ ∈M and if ab ∈ E(GX) and
a′b /∈ E(GX), then either M = 〈X〉 and X ∪{a,b} is a module of G[X ∪{a,a′,b}] or
M = X(u), where u ∈ X, and {u,a′} is a module of G[X ∪{a,a′,b}].

PROPOSITION 2.10. Given a prime graph G, consider a subset X of V (G) such
that G[X ] is prime and |V (G)\X | ≥ 4. If IX

G(3) = /0, then the following assertions are
satisfied.

1. For every connected component C of GX , there exist distinct elements M and N
of p(G,X) such that GX [C] is bipartite by {M∩C,N∩C}.

2. For every connected component C of GX , G[X ∪C] is prime.

3. The partitions p(G,X) and q(G,X) coincide.
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4. For every M ∈ q−(G,X), G[M] is empty, and for every M ∈ q+(G,X), G[M] is com-
plete.

Remark 2.11. Consider a prime graph G and a proper subset X of V (G) such
that G[X ] is prime and |V (G) \X | ≥ 4. By Theorem 2.7, observe that if IX

G(3) = /0,
then IX

G(1) = /0.

3. PROOF OF THEOREM 1.3

To begin, we establish some properties that will be needed in the sequel.

The proof of the following result leads to the definition of the following graph.
Let Cn where n ≥ 5 denote the cycle, that is, the prime graph with distinct vertices
{1, . . . ,n} such that i j is an edge of Cn if |i− j|= 1 or n−1.

LEMMA 3.1. Let G be a prime graph, and X be a subset of V (G) such that G[X ]
is prime, IX

G(3) = /0. If |V (G)\X | = 5, then GX is isomorphic to P5, |q(G,X)| = 2 and
GX is bipartite by q(G,X).

Proof. Since |V (G) \X | is odd, there exists a connected component C of GX

such that |C| is odd. By Assertion 2 of Proposition 2.10, G[X ∪C] is prime. Then,
C =V (G)\X and GX is connected because |V (G)\X |= 5 and IX

G(3) = /0. Prove that
GX is prime. Suppose to the contrary that GX is not prime. Let I be a non trivial
module of GX . By Proposition 2.10, there exist distinct elements M and N of p(G,X)

such that GX is bipartite by {M,N}. Since GX is connected, we have either I ⊆ M
or I ⊆ N. Without loss of generality, we may assume that I ⊆ M. By Assertions 3
and 4 of Proposition 2.10, M, N ∈ q(G,X) and I is a module of G[M]. Lemma 2.8
implies that I is a non trivial module of G; which contradicts the fact that G is prime.
Consequently, GX is prime. Up to isomorphic, notice that C5, P5, B5 and P5 are the
only 5-vertex prime graphs. Therefore, GX is isomorphic to P5 because GX is bipartite
graph.

PROPOSITION 3.2. Let G be a prime graph with v(G) ≥ 7. Then, both asser-
tions below hold.

1. If v(G) is odd, then W7(G) =V (G).

2. If v(G) is even, then W8(G) =V (G).

Proof. Let G be a prime graph with v(G)≥ 7.
For the first assertion, the result is obvious when v(G) = 7. Hence, assume that

v(G) ≥ 9. Suppose to the contrary that there exists x ∈ V (G) such that x /∈W7(G).
By Theorem 2.7, x /∈W5(G). It follows from Theorem 2.2 that there exist a subset
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X of V (G) containing x such that G[X ] is isomorphic to P4. By interchanging G
and its complement G, we only need to consider that |NG[X ](x)| = 1. Without loss
of generality, we may assume that G[X ] defined on {1, . . . ,4} such that for i, j ∈
{1, . . . . ,4}, i j is an edge of G[X ] if |i− j| = 1, and assume that x = 1. We apply
Theorem 2.4 several times, we obtain a subset Z of V (G) such that |Z| = 9, X ⊂ Z
and G[Z] is prime. Let G′ = G[Z]. Since 1 /∈W7(G′), we have IX

G′(3) = /0. By Lemma
3.1, G′X ' P5 and there exist distinct elements M and N of q(G,X) \{Ext(X)} such that
G′X is bipartite by {M ∩ (Z \X),N ∩ (Z \X)}. Since Ext(X)∩ (Z \X) = /0 and for
every u, v ∈ 〈X〉 ∩ (Z \X), G′[X ∪{u,v}] is not prime, there exists u ∈ X such that
X(u)∩ (Z \X) 6= /0.

First, assume that u 6= 1. Since G′X is bipartite by {M∩(Z \X), N∩(Z \X)} and
G′X ' P5, there exist a∈M ∩ (Z \X) and b, c∈N ∩ (Z \X) such that ab∈ E(G′X) and
ac /∈ E(G′X). Without loss of generality, we may assume that M = X(u). Therefore,
either N = 〈X〉 or N = X(v), where v ∈ X \ {u}. Set H = (X \ {u})∪ {a} so that
G′[H]' P4. Clearly, IH

G′(3) = /0. Thus, it rfollows from Lemma 3.1 that |q(G′,H)|= 2.
We distinguish the following two cases depending on N. At the beginning, assume that
N = 〈X〉. Clearly, u ∈ H(a). Moreover, we have by Lemma 2.9 that c ∼ X ∪{a,b},
and in particular, c ∈ 〈H〉. We also have by Lemma 2.6 that b � X ∪{a} and b /∈ 〈H〉.
Show that b /∈ H(a). Suppose to the contrary that b ∈ H(a). Thus, {b,u} is a module
of G′[X ∪{b}] and b ∈ X(u), which contradicts the fact that b ∈ 〈X〉. Consequently,
u ∈ H(a), c ∈ 〈H〉, b /∈ 〈H〉∪H(a) and |q(G′,H)| ≥ 3, which contradicts the fact that
|q(G′,H)| = 2. Now, assume that N = X(v), where v ∈ X \{u}. We prove as previous
that u ∈H(a), c ∈H(v), b /∈H(a)∪H(v) and |q(G′,H)| ≥ 3, which contradicts the fact
that |q(G′,H)|= 2.

Second, assume that u= 1. Thus, G′X is bipartite by either {X(1)∩(Z\X),X(v)∩
(Z \X)}, where v ∈ X \ {1} or {X(1)∩ (Z \X),〈X〉∩ (Z \X)}. In the first case, we
return to the first step. Thus, we may assume that G′X is bipartite by {X(1)∩ (Z \
X),〈X〉∩ (Z \X)}. We distinguish the following three cases. To start, assume that G′X
is bipartite by {X−(1)∩ (Z \X),X+∩ (Z \X)}. Since G′X ' P5, there exist a ∈ X+ ∩
(Z \X) and b∈ X−(1) ∩ (Z \X) such that ab∈ E(G′X). Thus, there is an isomorphism
f from G′[{1,2,4,a,b}] onto B5 defined by f (1) = 1, f (2) = 4, f (4) = 2, f (a) = 3
and f (b) = 5; which is impossible because 1 /∈W5(G′). Now, assume that G′X is bi-
partite by {X+(1)∩ (Z \X),X− ∩ (Z \X)}. As previous, there is a ∈ X− ∩ (Z \X)
and b ∈ X+(1) ∩ (Z \X) such that ab ∈ E(G′X), and then there is an isomorphism f
from G′[{1,2,3,a,b}] onto B5 defined by f (1) = 1, f (2) = 3, f (3) = 2, f (a) = 5 and
f (b) = 4, which is impossible because 1 /∈W5(G′). Finally, assume that G′X is bipar-
tite by either {X+∩ (Z \X),X+(1)∩ (Z \X)} or {X−∩ (Z \X),X−(1)∩ (Z \X)}. Let
V (G′X) = {5,6,7,8,9} such that for i, j ∈ {5, . . . . ,9}, i j ∈ E(G′X) if |i− j|= 1, and as-
sume that 5,7,9 ∈M and 6,8 ∈ N. If M = X+ and N = X+(1) (resp. M = X+(1) and
N = X+), then by using Assertion 4 of Proposition 2.10 and Lemma 2.6, it is easy to
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prove that G′[{1,3,5,6,7,8,9}] is prime, which contradicts the fact that 1 /∈W7(G′).
If M = X− and N = X−(1) (resp. M = X−(1) and N = X−), then by using Assertion
4 of Proposition 2.10 and Lemma 2.6, it is easy to prove that G′[{1,2,5,6,7,8,9}] is
prime, which contradicts the fact that 1 /∈W7(G′).

For the second assertion, the proof is analogous to that of the first assertion.

Proof of THEOREM 1.3. Let G be a prime graph with v(G) ≥ 8 and consider
a ∈V (G).

For the first assertion, assume that N (G) 6= /0. There exists v ∈V (G) such that
G− v is prime. Set Y =V (G) if v(G) is odd and Y =V (G)\{v} otherwise. We have
Y ⊆ V (G) such that |Y | ≥ 7, |Y | is odd and G[Y ] is prime. By applying Theorem 2.3
several times, a subset Z of V (G) is obtained such that Z ⊆ Y , |Z| = 5 and G[Z] is
prime. Thus, W5(G) 6= /0.
Conversely, assume that W5(G) 6= /0, and consider a subset X of V (G) such that |X |= 5
and G[X ] is prime. If v(G) is even, then by applying Theorem 2.7 several times, we
obtain a vertex x such that G− x is prime. If v(G) is odd, then by Theorem 2.1, there
is a subset Y of V (G) such that G[Y ] ' P4. By applying Theorem 2.7 several times,
there is a vertex x such that G− x is prime. Consequently, G is not critical.

For the second assertion, assume that N (G) = {a}. To begin, we prove that
a /∈Wcp(G)(G). To the contrary, suppose that a ∈Wcp(G)(G) and consider a subset
X of V (G) such that a ∈ X , |X | = cp(G) and G[X ] is prime. By using Theorem 2.7
serval times, we obtain a vertex x such that x 6= a and x ∈N (G), which contradicts
our assumption. Now, we prove that for each x ∈ V (G) \ {a}, x ∈Wcp(G)(G). Let
x ∈ V (G) \ {a}. Since G− a is prime and |V (G) \ {a}| ≥ 7, Proposition 3.2 implies
that there exists a subset X of V (G) \ {a} such that x ∈ X , |X | = cp(G) and G[X ] is
prime. Thus, x ∈Wcp(G)(G).
Conversely, to the contrary, suppose that Wcp(G)(G) =V (G)\{a} and N (G) 6= {a}.
First, prove that N (G) 6= /0. By Theorem 1.1, we can assume that v(G) is even. Since
W7(G) 6= /0, there is a subset Y of V (G) \ {a} such that |Y | = 7 and G[Y ] is prime.
Using Theorem 2.3, we obtain a subset Z such that Z ⊂ Y , |Z|= 5 and G[Z] is prime.
By Assertion 1 of Theorem 1.3, N (G) 6= /0. Moreover, since N (G) 6= {a}, there
is x ∈ V (G) \ {a} such that G− x is prime. Since |V (G) \ {x}| ≥ 7, Proposition 3.2
implies that there exists a subset X of V (G) \ {x} such that a ∈ X , |X | = cp(G) and
G[X ] is prime, which contradicts our assumption.

For the last assertion, assume that |N (G)| ≥ 2. Then, there exist x 6= y ∈V (G)
such that G− x and G− y are prime. By applying Proposition 3.2 to G− x and to
G− y, we obtain that for each z ∈ V (G), there exists a subset X of V (G) such that
z ∈ X , G[X ] is prime and |X |= cp(G). Thus, Wcp(G)(G) =V (G).
Conversely, assume that Wcp(G)(G) = V (G). The Assertion 2 of Theorem 1.3 im-
plies that |N (G)| 6= 1. To verify that N (G) 6= /0, we proceed as in the proof of the
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Assertion 2. Consequently, |N (G)| ≥ 2.
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Figure 2: Φ2n+3

4. SOME CONSEQUENCES

From what proceeds, we deduce the followings results.
As consequence of Theorem 2.3 and Assertion 1 of Theorem 1.3, we obtain:

COROLLARY 4.1. Let G be a prime graph with v(G)≥ 8.
N (G) = /0 if and only if Wi(G) = /0, for each odd integer i with 5≤ i≤ v(G).

From Theorems 2.1, 2.7 and Assertion 1 of Theorem 1.3, we may directly ob-
tain:

COROLLARY 4.2. Let G be a prime graph with v(G) ≥ 8. If G is not critical,
then for each integer m with 4≤ m≤ v(G), there exists a subset X of V (G) such that
|X |= m and G[X ] is prime.

The following corollary is a consequence of Assertion 2 of Theorem 1.3 and
Proposition 3.2.
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COROLLARY 4.3. Let G be a prime graph with v(G)≥ 8, and a ∈V (G).
N (G) = {a} if and only if Wcp(G)+2i(G) = V (G) \ {a}, for each integer i ≥ 0, with
cp(G)+2i≤ v(G).

Proof. First, prove that Wcp(G)(G) =Wcp(G)+2i(G), for each integer i ≥ 0, with
cp(G)+2i≤ v(G). By Theorem 2.7, it suffices to prove that Wcp(G)+2i(G)⊆Wcp(G)(G).
Let x∈Wcp(G)+2i(G), and consider a subset X of V (G) such that x∈ X , |X |= cp(G)+
2i and G[X ] is prime. Set H = G[X ]. Applying Proposition 3.2 to H, we have
Wcp(G)(H) = V (H). Thus, x ∈Wcp(G)(G) and Wcp(G)(G) = Wcp(G)+2i(G). To con-
clude, it is enough to use Assertion 2 of Theorem 1.3.

Using Theorems 1.3 and 2.7 and Proposition 3.2, we obtain:

COROLLARY 4.4. Let G be a prime graph with v(G) ≥ 8. |N (G)| ≥ 2 if and
only if Wm(G) =V (G) for each integer m with 7≤ m≤ v(G).

Proof. Let G be a prime graph with v(G) ≥ 8 and m be an integer such that
7 ≤ m ≤ v(G), and assume that |N (G)| ≥ 2. First, assume that m is even. If v(G)
is even (resp. odd), then by Proposition 3.2 and Theorem 2.7 (resp. Assertion 3 of
Theorem 1.3 and Theorem 2.7), we have Wm(G) = V (G). Second, assume that m is
odd. If v(G) is even (resp. odd), then by Assertion 3 of Theorem 1.3 and Theorem
2.7 (resp. Proposition 3.2 and Theorem 2.7), we have Wm(G) =V (G).
Conversely, assume that Wm(G) = V (G) for each integer m with 7 ≤ m ≤ v(G). In
particular, we have Wcp(G)(G) = V (G). By Assertion 3 of Theorem 1.3, |N (G)| ≥
2.

The following remark proves the optimality of some values in Theorem 1.3 and
Corollary 4.4.

Remark 4.5. Let G be a prime graph with v(G)≥ 8.

1. The value cp(G) in the second assertion of Theorem 1.3 is the smallest possible.

2. The value m = 7 in the Corollary 4.4 is the smallest possible.

We establish this in what follows. To begin, we introduce the following graphs.

(a) For each n ≥ 3, the graph Φ2n+3 defined on {0, . . . ,2n}∪ {1′,2′}, as follows
(see Figure 2).
• For any i 6= j ∈ {0, . . . ,2n}, i j is an edge of Φ2n+3 if either i and j are odd or
{i, j}= {2k+1,2k+2} for some k ∈ {0, . . . ,n−1} or {i, j}= {0,2k+1} for
some k ∈ {0, . . . ,n−1}.
• NΦ2n+3(1

′) = {2i+1; i ∈ {0, . . . ,n−1}}∪{0,2′}.
• NΦ2n+3(2

′) = {2i+1; i ∈ {1, . . . ,n−1}}∪{1′}.
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(b) For each n≥ 3, the graph Λ2n+4 defined on {0, . . . ,2n}∪{1′,2′,3′}, as follows
(see Figure 3).
• X = {0,1′,2′,3′}.
• For each i, j ∈ {1, . . . ,2n}, i j is an edge of Λ2n+4 if |i− j|= 1.
• For each i, j ∈ X , i j is an edge of Λ2n+4 if {i, j} ∈ {{0,1′},{1′,2′},{2′,3′}}.
• For (i, j) ∈ X ×{1, . . . ,2n}, i j is an edge of Λ2n+4 if {i, j} ∈ {{1′,2i}; i ∈
{1, . . . ,n}}.

•
3′

•
2′

•
1′

•
0

• 2

• 4
.
.
.
• 2i

• 2i+2
.
.
.
• 2n-2

• 2n

1 •

3 •
.
.
.

2i-1 •

2i+1 •
.
.
.

2n-3 •

2n-1 •

XX
XXX

XXX
XXX

X

XXX
XXX

XXX
XXX

XXX
XXX

XXX
XXX

X

'

&

$

%

'

&

$

%
�
��

�
��

�
��

Figure 3: Λ2n+4

Proof of Remark 4.5. For the first assertion, it is easy to verify that for each
n≥ 3, Φ2n+3 and Λ2n+4 are prime, |N (Φ2n+3)| ≥ 2, |N (Λ2n+4)| ≥ 2, W6(Φ2n+3) =
V (Φ2n+3) \ {0}, W5(Λ2n+4) = V (Λ2n+4) \ {0}. Then, we cannot replace the value
cp(G) by cp(G)− 2 in the second assertion of Theorem 1.3. Moreover, since W4 =
V (Φ2n+3)\{0}, we cannot replace the value cp(G) by 4 if v(G) is odd in the second
assertion of Theorem 1.3. Let G be a prime graph with v(G) ≥ 8. Theorem 1.3 says
that if N (G) = {a}, then a /∈Wcp(G)(G). It follows from Theorems 1.3, 2.2 and 2.7
that if N (G) = {a}, then a ∈Wcp(G)−1(G)∩Wcp(G)−3(G). So, we cannot replace the
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value cp(G) by cp(G)− 1 or by cp(G)− 3 in the second assertion of Theorem 1.3.
Consequently, the value cp(G) in the second assertion of Theorem 1.3 is the smallest
possible.

For the second assertion, since for each n ≥ 3, Φ2n+3 and Λ2n+4 are prime,
W6(Φ2n+3) = V (Φ2n+3) \ {0}, W5(Λ2n+4) = V (Λ2n+4) \ {0}, W4 = V (Φ2n+3) \ {0},
|N (Λ2n+4)| ≥ 2 and |N (Φ2n+3)| ≥ 2, then the value m = 7 in the Corollary 4.4 is
the smallest possible.
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