GENERALIZED *Q*-GAUSSIAN VON NEUMANN ALGEBRAS WITH COEFFICIENTS, II. ABSENCE OF CENTRAL SEQUENCES

MARIUS JUNGE and BOGDAN UDREA

Communicated by Dan Timotin

We show that the generalized q-gaussian von Neumann algebras with coefficients $\Gamma_q(B, S \otimes H)$ with B a finite dimensional factor, $\dim(D_k(S))$ sub-exponential and the dimension of H finite and larger than a constant depending on q, have no non-trivial central sequences.

AMS 2010 Subject Classification: 46L10.

Key words: von Neumann algebras, type II₁ factors, property Gamma.

1. INTRODUCTION.

In this short note, which is a sequel to [5], we investigate the lack of nontrivial central sequences in the generalized q-gaussian von Neumann algebras with coefficients introduced in [5]. Specifically, we prove that the von Neumann algebras $M = \Gamma_q(B, S \otimes H)$ are factors without the property Γ of Murray and von Neumann when B is a finite dimensional factor, the dimensions (over \mathbb{C}) of the spaces $D_k(S)$ (see Def. 3.18 in [5]) are sub-exponential and the dimension of H is finite and larger than a constant depending on q. A type II_1 factor (M,τ) has property Γ , according to Murray and von Neumann, if there exists a sequence (u_n) of unitaries in M such that $||xu_n - u_n x||_2 \to 0$ for all $x \in M$ and $\tau(u_n) = 0$ for all n (see [9]). Murray and von Neumann used this property to distinguish between the hyperfinite factor R and $L(\mathbb{F}_2)$. Central sequences in type II_1 factors were further studied by Dixmier ([3]) and Lance ([4]). In the 70's, property Γ played an important role in the work of McDuff ([8]) and Connes ([2]) regarding the classification of injective factors. The absence of central sequences in the context of q-gaussian von Neumann algebras was investigated by Sniady ([14], see also [6, 7, 13] for the factoriality of these algebras).

In [5] we introduced a new class of von Neumann algebras, the so-called generalized q-gaussian von Neumann algebras with coefficients $\Gamma_q(B, S \otimes H)$ associated to a sequence of symmetric independent copies (π_j, B, A, D) , and we proved that under certain assumptions they display a powerful structural property, namely strong solidity relative to B. We continue our investigation of the generalized q-gaussians by proving that, under the same assumptions, they do not possess the property Γ if B is finite dimensional and the dimension of H is finite and exceeds a constant depending on q.

2. THE MAIN THEOREM.

Throughout this section we use the notations and results from Section 3 of [5].

THEOREM 2.1. Let (π_j, B, A, D) a sequence of symmetric independent copies with B amenable, $1 \in S = S^* \subset A$ and assume that there exist constants C, d > 0 such that $\dim_B(D_k(S)) \leq Cd^k$, for all $k \geq 0$. Let H be a Hilbert space with $2 \leq \dim(H) < \infty$ and $M = \Gamma_q(B, S \otimes H)$. Assume that M is a factor. For $k \geq 0$, denote by $P_{\leq k}$ the orthogonal projection of $L^2(M)$ onto $\bigoplus_{s \leq k} L_s^2(M)$. Let $(x_n) \in M' \cap M^{\omega}$. Then for every $\delta > 0$, there exists a $k \geq 0$ such that

$$\lim_{n \to \infty} \|x_n - P_{\leq k}(x_n)\|_2 \le \delta.$$

If moreover B is finite dimensional, then $M' \cap M^{\omega} = \mathbb{C}$, i.e. M does not have the property Γ .

Proof. We use the spectral gap principle of Popa (see [11, 12]). Let $\tilde{M} = \Gamma_q(B, S \otimes (H \oplus H))$ and for every $m \geq 1$ let $\mathcal{F}_m \subset L^2(\tilde{M})$ be the M - M bimodule introduced in [5], Sections 6 and 7. Namely, \mathcal{F}_m is the closed linear span of reduced Wick words $W_{\sigma}(x_1, \ldots, x_s, h_1, \ldots, h_t) \in \tilde{M}$ such that $h_i \in H \oplus \{0\} \cup \{0\} \oplus H$ and at least m of them are in $\{0\} \oplus H$. Also let (α_t) be the 1-parameter group of *-automorphisms of \tilde{M} introduced in [5], Thm. 3.16. Let's note the following transversality property, due to Avsec (see [1], Prop. 5.1).

LEMMA 2.2. There exists a constant $C_m > 0$ such that for $0 < t < 2^{-m-1}$ we have

$$\|\alpha_{t^{m+1}}(\xi) - \xi\|_2 \le C_m \|P_{\mathcal{F}_m}\alpha_t(\xi)\|_2 \text{ for all } \xi \in \bigoplus_{k\ge m+1} L^2_k(M) \subset L^2(\tilde{M}).$$

As noted in Section 6 of [5], since B is amenable, there exists an $m \ge 1$ such that \mathcal{F}_m is weakly contained into the coarse bimodule $L^2(M) \otimes L^2(M)$. Fix such an m. Since M is a non-amenable factor, it follows that $L^2(M)$ is not weakly contained in \mathcal{F}_m . This means that for every $\delta > 0$ there exist a finite set $F \subset \mathcal{U}(M)$ and an $\varepsilon > 0$ such that if $\xi \in \mathcal{F}_m$ satisfies $||u\xi - \xi u||_2 \le \varepsilon$ for all $u \in$ F, then $||\xi||_2 \le \delta$. Fix such a δ , set $\delta' = \frac{\delta}{2C_m+1}$ and take ε and F corresponding to δ' . Take $(x_n) \in M' \cap M^{\omega}$. There's no loss of generality in assuming that $||x_n||_{\infty} \leq 1$ for all n. Fix $0 < t < 2^{-m-1}$ such that $||\alpha_t(u) - u||_2 \leq \frac{\varepsilon}{4}$ for all $u \in F$ and $||\alpha_t(\xi) - \xi||_2 \leq \delta'$ for all $\xi \in \bigoplus_{k \leq m} L_k^2(M)$ with $||\xi||_2 \leq 1$. For all $n \in \mathbb{N}$ we have

$$\begin{aligned} \|u\alpha_t(x_n) - \alpha_t(x_n)u\|_2 &= \|[\alpha_t(x_n), u]\|_2 = \|[x_n, \alpha_{-t}(u)]\|_2 \\ &\leq \|[x_n, \alpha_{-t}(u) - u]\|_2 + \|[x_n, u]\|_2 \\ &\leq 2\|\alpha_{-t}(u) - u\|_2 + \|[x_n, u]\|_2 \leq \frac{\varepsilon}{2} + \|[x_n, u]\|_2. \end{aligned}$$

Since $(x_n) \in M' \cap M^{\omega}$ we see that for *n* large enough and for all $u \in F$ we have

$$\|\alpha_t(x_n)u - u\alpha_t(x_n)\|_2 \le \varepsilon_1$$

which further implies $\|P_{\mathcal{F}_m}\alpha_t(x_n)\|_2 \leq \delta'$. Write $x_n = x'_n + x''_n$, where

$$x'_n \in \bigoplus_{k \le m} L^2_k(M) \text{ and } x''_n \in \bigoplus_{k \ge m+1} L^2_k(M).$$

Note that $||x'_n||_2 \leq 1$, $||x''_n||_2 \leq 1$. Due to our choice of t we see that, for n large enough,

$$\|P_{\mathcal{F}_m}\alpha_t(x'_n)\|_2 \le \|P_{\mathcal{F}_m}(\alpha_t(x'_n) - x'_n)\|_2 + \|P_{\mathcal{F}_m}(x'_n)\|_2 \le \delta'.$$

Using Avsec's transversality property, this further implies, for n large enough,

$$\delta' \ge \|P_{\mathcal{F}_m} \alpha_t(x_n)\|_2 \ge \|P_{\mathcal{F}_m} \alpha_t(x_n'')\|_2 - \|P_{\mathcal{F}_m} \alpha_t(x_n')\|_2 \ge \|P_{\mathcal{F}_m} \alpha_t(x_n'')\|_2 - \delta',$$

hence

$$2\delta' C_m \ge C_m \|P_{\mathcal{F}_m} \alpha_t(x''_n)\|_2 \ge \|\alpha_{t^{m+1}}(x''_n) - x''_n\|_2.$$

Thus, for $0 < s < t, t^{m+1}$ and n large enough we have

$$\|\alpha_s(x_n) - x_n\|_2 \le \|\alpha_s(x'_n) - x'_n\|_2 + \|\alpha_s(x''_n) - x''_n\|_2 \le (2C_m + 1)\delta'.$$

Using [5], Thm. 3.16, we see that there exists a $k = k(s, \delta)$ such that, for n large enough,

$$||x_n - P_{\leq k}(x_n)||_2 \le (2C_m + 1)\delta' = \delta.$$

Taking the limit with respect to $n \to \omega$ establishes the first statement. For the moreover part, assume first that $B = \mathbb{C}$. Let's make the following general remark. Suppose (M, τ) is a type II_1 factor, ω a free ultrafilter on \mathbb{N} and consider $M \subset M^{\omega}$ embedded in the canonical way, i.e. as constant sequences. Let $(x_n) \in M' \cap M^{\omega}$ such that $\tau(x_n) = 0$ for all n. Then for every $a \in M$ we have $\lim_{n\to\omega} \tau(ax_n) = 0$, i.e. $x_n \to 0$ ultraweakly as $n \to \omega$. To prove this, let $E_M : M^{\omega} \to M$ be the trace-preserving conditional expectation. Then $E_M((x_n)) \in \mathbb{C}$. Indeed, since (x_n) is a central sequence, for every $a \in M$ we have

$$aE_M((x_n)) = E_M(a(x_n)) = E_M((x_n)a) = E_M((x_n))a.$$

Thus $E_M((x_n))$ is in the center of M, so there exists a scalar λ such that $E_M((x_n)) = \lambda 1$. Then $\lambda = \tau(E_M((x_n))) = \tau_{\omega}((x_n)) = \lim \tau(x_n) = 0$. Hence $E_M((x_n)) = 0$ and for every $a, b \in M$ we have

$$\lim \tau(ax_n b) = \tau_{\omega}((ax_n b)) = \tau(E_M((ax_n b))) = \tau(aE_M((x_n))b) = 0,$$

which proves the claim. Assume now that $(x_n) \in M' \cap M^{\omega}$ such that $x_n \in \mathcal{U}(M)$ and $\tau(x_n) = 0$ for all n. Fix $0 < \varepsilon < 1$ and k such that $\lim ||x_n - P_{\leq k}(x_n)||_2 \leq \varepsilon$, according to the first part of the proof. Since $D_s(S)$ is finitely generated over $B = \mathbb{C}$ for every s, according to Prop. 3.20 in [5], the space $\bigoplus_{s \leq k} L_s^2(M)$ is finite dimensional (over \mathbb{C}). Choose an orthonormal basis $\{\xi_j\}_{1 \leq j \leq N(k)}$ of $\bigoplus_{s \leq k} L_s^2(M)$, then write $P_{\leq k}(x_n) = \sum_{j=1}^{N(k)} \lambda_j(n)\xi_j$, with $\lambda_j(n) \in \mathbb{C}$. Note that $\sum_{j=1}^{N(k)} |\lambda_j(n)|^2 = 1$ for all n. For all n large enough we have

$$1 - \varepsilon \le |\langle x_n, P_{\le k}(x_n) \rangle| = |\langle x_n, \sum_{j=1}^{N(k)} \lambda_j(n)\xi_j \rangle| \le \sum_{j=1}^{N(k)} |\lambda_j(n)|| \langle x_n, \xi_j \rangle|$$
$$= \sum_{j=1}^{N(k)} |\lambda_j(n)|| \tau(\xi_j^* x_n)| \to 0,$$

which produces a contradiction. When B is finite dimensional, the same argument applies since $\bigoplus_{s \leq k} L_s^2(M)$ is again finitely generated over \mathbb{C} , and this finishes the proof. \Box

Remark 2.3. The moreover statement in Thm. 2.1 can also be obtained as a consequence of [10] and Cor. 7.5 in [5]. Indeed, due to Cor. 7.5 in [5], the von Neumann algebras $M = \Gamma_q(B, S \otimes H)$ are strongly solid under the assumptions of Thm. 2.1, hence they are also solid. Ozawa remarked in [10], based on a result of Popa, that a non-amenable solid factor is automatically non- Γ , which reproves the second statement of Thm. 2.1.

COROLLARY 2.4. Let -1 < q < 1 be fixed. There exists d = d(q) such that the following von Neumann algebras are non- Γ factors as soon as $\infty > dim(H) \ge d$:

- 1. $\Gamma_q(H);$
- 2. $B \otimes \Gamma_q(H)$, for B a type II₁ non- Γ factor;

3. $\Gamma_a(\mathbb{C}, S \otimes K)$ associated to the symmetric copies

$$(\pi_j, B = \mathbb{C}, A = \Gamma_{q_0}(H), D = \Gamma_q(\ell^2 \otimes H)),$$

where $-1 < q_0 < 1$, the symmetric copies are given by $\pi_j(s_{q_0}(h)) = s_q(e_j \otimes h)$ ((e_j) an orthonormal basis of ℓ^2) and K is a finite dimensional Hilbert space (see Example 4.4.1 in [5]);

- 4. $\Gamma_q(\mathbb{C}, S \otimes H)$ associated to the symmetric copies $(\pi_j, B_0 = \mathbb{C}, A_0 = L(\Sigma_{[0,1]}), D_0 = L(\Sigma_{[0,\infty)}))$ and $S = \{1, u_{(01)}\}$; the symmetric copies are defined by $\pi_j(a) = u_{(1j)}au_{(1j)}, a \in A_0$, where $u_\sigma, \sigma \in \Sigma_{[0,\infty)}$ are the canonical generating unitaries for D_0 (see Example 4.4.2 in [5]);
- 5. $\Gamma_q(\mathbb{C}, S \otimes H)$ associated to the symmetric copies $(\pi_j, \mathbb{C}, A, D)$, where $D = *_{\mathbb{N}}L(\mathbb{Z})$, the *j*-th copy of $L(\mathbb{Z})$ is generated by the Haar unitary u_j , $A = \{u_1\}''$, the copies π_j are defined by $\pi_j(u_1) = u_j$ and $S = \{1, u_1, u_1^*\}$ (see Example 4.4.3 in [5]).

Proof. The von Neumann algebras in (3), (4) and (5) are factors due to Prop. 3.23 in [5]. The second statement is a consequence of Cor. 2.3 in [2], while the rest follow from Thm. 2.1. Let's remark that (1) has been first proved by Sniady ([14]), and that for the examples in (1) and (2) the restriction on the dimension is not necessary, due to the fact that $\Gamma_q(H)$ is a factor for dim $(H) \ge 2$ (see [13]) and to Remark 2.3 above. \Box

REFERENCES

- S. Avsec, Gaussian-like Von Neumann algebras and noncommutative brownian motion. Thesis (Ph.D.)-University of Illinois at Urbana-Champaign, 2012.
- [2] A. Connes, Classification of injective factors. Cases II_1 , II_{∞} , III_{λ} , $\lambda \neq 1$. Ann. of Math. 2 (1976), 1, 73–115.
- [3] J. Dixmier, Quelques proprietes des suites centrales dans les facteurs de type II₁. Invent. Math. 7 (1969), 211–225.
- [4] J. Dixmier and E.C. Lance, Deux nouveaux facteurs de type II₁. Invent. Math. 7 (1969), 226–234.
- [5] M. Junge and B. Udrea, Generalized q-gaussian von Neumann algebras with coefficients, I. Relative strong solidity. Preprint arXiv 2015.
- [6] I. Krolak, Wick product for commutation relations connected with Yang-Baxter operators and new constructions of factors. Comm. Math. Phys., 210 (2000), 3, 685–701.
- [7] I. Krolak, Factoriality of von Neumann algebras connected with general commutation relations-finite dimensional case. In: Quantum probability pp. 277–284, Banach Center Publ., 73, Polish Acad. Sci. Inst. Math., Warsaw, 2006.
- [8] D. McDuff, Central sequences and the hyperfinite factor. Proc. London Math. Soc. 21 (1970), 443–461.

- [9] F. J. Murray and J. von Neumann, On rings of operators. IV. Ann. of Math. 44 (1943), 716–808.
- [10] N. Ozawa, Solid von Neumann algebras. Acta Math. 192 (2004), 1, 111–117.
- [11] S. Popa, On Ozawa's property for free group factors. Int. Math. Res. Notes **2007** (2007), 11.
- [12] S. Popa, On the superrigidity of malleable actions with spectral gap. J. Amer. Math. Soc. 21 (2008), 981–1000.
- [13] E. Ricard, Factoriality of q-Gaussian von Neumann algebras. Comm. Math. Phys. 257 (2005), 3, 659–665.
- [14] P. Sniady, Factoriality of Bożejko-Speicher von Neumann algebras. Comm. Math. Phys. 246 (2004), 3, 561–567.

Received August 23, 2017

Marius Junge University of Illinois Department of Mathematics Urbana, IL 61801, U.S.A. unge@math.uiuc.edu

Bogdan Udrea University of Iowa Department of Mathematics Iowa City, IA 52242, U.S.A. and "Simion Stoilow" Institute of Mathematics of the Romanian Academy P.O. Box 1-764, Bucharest, Romania bogdanteodor-udrea@uiowa.edu