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We show that the generalized g-gaussian von Neumann algebras with coefficients
I'¢(B,S ® H) with B a finite dimensional factor, dim(Dg(S)) sub-exponential
and the dimension of H finite and larger than a constant depending on ¢, have
no non-trivial central sequences.
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1. INTRODUCTION.

In this short note, which is a sequel to [5], we investigate the lack of non-
trivial central sequences in the generalized ¢-gaussian von Neumann algebras
with coefficients introduced in [5]. Specifically, we prove that the von Neumann
algebras M =T'y(B, S ® H) are factors without the property I' of Murray and
von Neumann when B is a finite dimensional factor, the dimensions (over C) of
the spaces Dg(S) (see Def. 3.18 in [5]) are sub-exponential and the dimension
of H is finite and larger than a constant depending on q. A type [I; factor
(M, 7) has property I', according to Murray and von Neumann, if there exists
a sequence (uy,) of unitaries in M such that ||zu, — upz|2 — 0 for all x € M
and 7(uy) = 0 for all n (see [9]). Murray and von Neumann used this property
to distinguish between the hyperfinite factor R and L(Fs). Central sequences
in type II; factors were further studied by Dixmier ([3]) and Lance ([4]). In
the 70’s, property I' played an important role in the work of McDuff ([8])
and Connes ([2]) regarding the classification of injective factors. The absence
of central sequences in the context of g-gaussian von Neumann algebras was
investigated by Sniady ([14], see also [6, 7, 13] for the factoriality of these
algebras).

In [5] we introduced a new class of von Neumann algebras, the so-called
generalized ¢-gaussian von Neumann algebras with coefficients I'y(B, S ® H)
associated to a sequence of symmetric independent copies (7, B, A, D), and
we proved that under certain assumptions they display a powerful structural
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property, namely strong solidity relative to B. We continue our investigation
of the generalized g-gaussians by proving that, under the same assumptions,
they do not possess the property I' if B is finite dimensional and the dimension
of H is finite and exceeds a constant depending on gq.

2. THE MAIN THEOREM.

Throughout this section we use the notations and results from Section 3
of [5].

THEOREM 2.1. Let (mj, B, A, D) a sequence of symmetric independent
copies with B amenable, 1 € S = 5* C A and assume that there exist constants
C,d > 0 such that dimp(Dy(S)) < Cd*, for all k > 0 . Let H be a Hilbert
space with 2 < dim(H) < oo and M =Ty(B,S ® H). Assume that M is a
factor. For k > 0, denote by P<y the orthogonal projection of L*(M) onto
D, LE(M). Let (zn) € M'NM*. Then for every § > 0, there exists a k > 0
such that

}nggj |2 — P<g(@n)2 < 0.

If moreover B is finite dimensional, then M' N MY = C, i.e. M does not have
the property .

Proof. We use the spectral gap principle of Popa (see [11, 12]). Let M =
T,(B,S® (H & H)) and for every m > 1 let F, C L*(M) be the M — M
bimodule introduced in [5], Sections 6 and 7. Namely, F,, is the closed linear
span of reduced Wick words Wy (x1,...,2s,h1,...,hy) € M such that h; €
H & {0} U{0} ® H and at least m of them are in {0} & H. Also let (ay) be
the 1-parameter group of *-automorphisms of M introduced in [5], Thm. 3.16.
Let’s note the following transversality property, due to Avsec (see [1], Prop.
5.1).

LEMMA 2.2. There exists a constant C,, > 0 such that for 0 <t < 27m~1
we have

lagms1(§) = €ll2 < Ol Prpcs(©)l2 forall €€ @ Li(M) C L*(M).
k>m—+1

As noted in Section 6 of [5], since B is amenable, there exists an m > 1
such that F,, is weakly contained into the coarse bimodule L?(M) ® L*(M).
Fix such an m. Since M is a non-amenable factor, it follows that L?(M) is not
weakly contained in F,,,. This means that for every § > 0 there exist a finite set
F CU(M) and an € > 0 such that if £ € F,,, satisfies || u{ —Eulls < e forall u €

F, then ||€]]2 < 6. Fixsuch a ¢, set §' = ﬁ and take € and F' corresponding
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to §'. Take (x,) € M’ N M*“. There’s no loss of generality in assuming that
[2n]loo < 1 for all n. Fix 0 <t < 27! such that [Ja;(u) — ulls < § for all
u € F and [Jay (&) — &]l2 < & for all € € @, Li(M) with [|£]]2 < 1. For all
n € N we have -

[ua(zn) = ar(zn)ullz = [llae(zn), ulllz = |[[2n, a—i(u)]]2

< Nlwn, ai(u) = ulllz + [0, ulll2

9
< 2f|a—t(w) = ull2 + [[lzn, ulllz < 5 + lllzn, ull2.

Since (x,) € M’ N M*“ we see that for n large enough and for all u € F we
have
lovt(zn)u — uae(zn)|l2 < e,
which further implies || Pr, ai(zy)]]2 < 8. Write x, = x}, + x//, where
z, € @ Li(M) and 2 € @ Li(M).
k<m k>m+1

Note that [|2],||2 < 1, [|z!/||2 < 1. Due to our choice of ¢ we see that, for n large
enough,

1PF, cu(@)ll2 < [|1PF,, (ou(@r) — 2p)ll2 + 1P, (27,) ]2 < 0",
Using Avsec’s transversality property, this further implies, for n large enough,
0" 2 || Pr0u(zn)ll2 = | PR, ce(ap)llz — [1PF, 00 (2)ll2 > |1 Pr,ae(ay)ll2 — &,

hence
26'Cp > Con|| Pr, ()12 > [lagmer (27,) — 2|2

n

Thus, for 0 < s < t,t™*! and n large enough we have
s (zn) = 2nll2 < [las(zh) — a2 + las(zy) —apll2 < (2Cm +1)4".

Using [5], Thm. 3.16, we see that there exists a k = k(s,d) such that, for n
large enough,
|zn — P<k(zn) |2 < (2Cm, 4+ 1)8" = 4.

Taking the limit with respect to n — w establishes the first statement. For
the moreover part, assume first that B = C. Let’s make the following general
remark. Suppose (M, 7) is a type II; factor, w a free ultrafilter on N and
consider M C M* embedded in the canonical way, i.e. as constant sequences.
Let (z,) € M’ N M% such that 7(x,) = 0 for all n. Then for every a € M
we have lim,_,, 7(azx,) = 0, i.e. z, — 0 ultraweakly as n — w. To prove
this, let Eys : M“ — M be the trace-preserving conditional expectation. Then
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Ey((zy)) € C. Indeed, since (x,) is a central sequence, for every a € M we
have

aBui((20)) = Entla(zn) = En((zn)a) = Exr((za))a.
Thus Ejp((x,)) is in the center of M, so there exists a scalar A such that
Ey((zn)) = Al. Then A\ = 7(Ey((z0))) = 7w((zp)) = lim7(z,) = 0. Hence
En((zr)) = 0 and for every a,b € M we have

lim 7(ax,b) = 7, ((ax,b)) = T(Ep((axyb))) = T(aEpy ((24))b) = 0,

which proves the claim. Assume now that (z,,) € M'NM* such that x,, € U(M)
and 7(zp) = 0 for all n. Fix 0 < ¢ < 1 and k such that lim ||z, — P<x(xy)||2 < ¢,
according to the first part of the proof. Since Dg(S) is finitely generated over
B = C for every s, according to Prop. 3.20 in [5], the space P, L2(M)
is finite dimensional (over C). Choose an orthonormal basis {&;}1<j<n) of
Ds<r L%(M), then write P<y(,) = Z;V:(f) Aj(n)&;, with Aj(n) € C. Note that
ZN(k 1Aj(n)[? =1 for all n. For all n large enough we have

N(k) N(k)
1_5<|<mmp<k’(1:n)>|—| xnaZA g] | < ZP‘ )| $na£j>|
7=1

= Z\A )& zn)| — 0,

which produces a contradiction. When B is finite dimensional, the same ar-
gument applies since @, ., L2(M) is again finitely generated over C, and this
finishes the proof. [

Remark 2.3. The moreover statement in Thm. 2.1 can also be obtained
as a consequence of [10] and Cor. 7.5 in [5]. Indeed, due to Cor. 7.5 in [5],
the von Neumann algebras M = I'y(B,S ® H) are strongly solid under the
assumptions of Thm. 2.1, hence they are also solid. Ozawa remarked in [10],
based on a result of Popa, that a non-amenable solid factor is automatically
non-I", which reproves the second statement of Thm. 2.1.

COROLLARY 2.4. Let —1 < q < 1 be fixred. There exists d = d(q) such

that the following von Neumann algebras are non-I' factors as soon as oo >
dim(H) > d:

1. T (H);

2. BQI'y(H), for B a type II; non-I' factor;
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to

2]

3. T'y(C, S ® K) associated to the symmetric copies
(mj,B=C,A=Tg4(H),D =Ty({*® H)),

where —1 < qo < 1, the symmetric copies are given by m;(sq (h)) =
sq(e;@h) ((e;) an orthonormal basis of (*) and K is a finite dimensional
Hilbert space (see Example 4.4.1 in [5]);

4. T4(C,S @ H) associated to the symmetric copies (mj,By = C,Ay =
L(X011), Do = L(Zj0,c))) and S = {1,u)}; the symmetric copies are
defined by mj(a) = uqjaun;),a € Ao, where us,0 € Xjg ) are the
canonical generating unitaries for Dy (see Example 4.4.2 in [5]);

5. I'y(C, S®H) associated to the symmetric copies (mj,C, A, D), where D =
*NL(Z), the j-th copy of L(Z) is generated by the Haar unitary uj, A =
{u1}”’, the copies mj are defined by m;(u1) = uj and S = {1,u1,uj} (see
Ezxample 4.4.3 in [5]).

Proof. The von Neumann algebras in (3), (4) and (5) are factors due
Prop. 3.23 in [5]. The second statement is a consequence of Cor. 2.3 in
, while the rest follow from Thm. 2.1. Let’s remark that (1) has been first

proved by Sniady ([14]), and that for the examples in (1) and (2) the restriction
on the dimension is not necessary, due to the fact that I';(H) is a factor for
dim(H) > 2 (see [13]) and to Remark 2.3 above. [
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