
A CLASSIFICATION OF UNIONS OF THE FREE SEMIGROUP IN
TWO GENERATORS IN THE IDEAL CASE

NABILAH HANI ABUGHAZALAH

Communicated by Constantin Năstăsescu

We prove that in the ideal case, up to isomorphism, there are only one type of
semigroups which are the union of two copies of the free monogenic semigroup.
Similarly, there are only five types of semigroups which are the union of three
copies of the free monogenic semigroup. And there are only two types of semi-
groups which are the union of two copies of the free semigroup in two generators.
We provide finite presentations for each of these semigroups
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INTRODUCTION AND PRELIMINARIES

There are several well-known examples of structural theorems for semi-
groups, which involve decomposing a semigroup into a disjoint union of sub-
semigroups. For example, up to isomorphism, the Rees Theorem states that
every completely simple semigroup is a Rees matrix semigroup over a group
G, and is thus a disjoint union of copies of G, see [10, Theorem 3.3.1]; every
Clifford semigroup is a strong semilattice of groups and as such it is a disjoint
union of its maximal subgroups, see [10, Theorem 4.2.1]; every commutative
semigroup is a semilattice of archimedean semigroups, see [9, Theorem 2.2].

If S is a semigroup which can be decomposed into a disjoint union of sub-
semigroups, then it is natural to ask how the properties of the subsemigroups
influence S. For example, if the subsemigroups are finitely generated, then so
is S. There are several further examples in the literature where such questions
are addressed: Araújo et al. [6] consider the finite presentability of semigroups
which are the disjoint union of finitely presented subsemigroups; Golubov [7]
showed that a semigroup which is the disjoint union of residually finite subsemi-
groups is residually finite; in [5] the authors proved that every semigroup which
is a disjoint union of finitely many copies of N is finitely presented, and such a
semigroup has linear growth which implies that the corresponding semigroup
algebra is a PI algebra, see [3, Theorem 2.10 and Corollary 2.11]; Abughazalah

MATH. REPORTS 22(72) (2020), 3-4, 341–350



342 N. H. Abughazalah 2

gave concrete algorithms for subsemigroup problem and word problem, as in
[1, Theorem 3.2 and Theorem 3.13]; further references are [8, 12]; in [4] we
completely classify those semigroups which are the disjoint union of two or
three copies of the free monogenic semigroup in general.

In this paper we classify those semigroups but in a special case when it
has an ideal, which is one of the copies or is a disjoint union of two copies.
And we classify also the semigroup which is a disjoint union of two copies of
the free semigroup in two generators in which one of the two copies is an ideal.

The main theorems of this paper are the following.

Theorem 0.1. Let S be a semigroup. Let ⟨a⟩ and ⟨b⟩ be two copies of the
free monogenic semigroup. Then S is a disjoint union of ⟨a⟩ and ⟨b⟩, where
⟨a⟩ is an ideal in S, if and only if S is isomorphic to the semigroup defined by
the following presentation:

⟨ c, d ∣ cd = dc = ck ⟩ for some k ≥ 1

.

Theorem 0.2. Let S be a semigroup. Let ⟨a⟩, ⟨b⟩ and ⟨c⟩ be three copies
of the free monogenic semigroup. Then S is a disjoint union of ⟨a⟩, ⟨b⟩ and
⟨c⟩, where the subsemigroup ⟨a⟩ or ⟨a⟩∪ ⟨b⟩ is an ideal in S, if and only if S is
isomorphic to the semigroup defined by one of the following presentations:

(i) ⟨ d, f, g ∣ df = di, fd = di, dg = dj , gd = dj , fg = dk, gf = dk ⟩ where
i + j = k + 2 and i, j, k ∈ N;

(ii) ⟨ d, f, g ∣ df = di, fd = di, dg = dj , gd = dj , fg = fk, gf = fk ⟩ where
i + j + k − ik = 2 and i, j, k ∈ N;

(iii) ⟨ d, f, g ∣ df = di, fd = di, dg = di, gd = di, fg = g2, gf = f2 ⟩ where i ∈ N;

(iv) ⟨ d, f, g ∣ df = di, fd = di, dg = g2, gd = d2, fg = gi, gf = di ⟩ where i ∈ N;

(v) ⟨ d, f, g ∣ df = di, fd = di, dg = g2, gd = d2, fg = gi, gf = gi ⟩ where i ∈ N;

Theorem 0.3. Let S be an Equitable semigroup. Let ⟨a1, a2⟩ and ⟨b1, b2⟩
be two copies of the free semigroup in two generators. Then S is a disjoint
union of ⟨a1, a2⟩ and ⟨b1, b2⟩, where the subsemigroup ⟨b1, b2⟩ is an ideal in S,
if and only if S is isomorphic to the semigroup defined by one of the following
presentations:

(i)
⟨ c1, c2, d1, d2 ∣ c1d1 = d

2
1, d1c1 = d

2
1, c2d1 = d2d1, d1c2 = d1d2,

c1d2 = d1d2, d2c1 = d2d1, c2d2 = d
2
2, d2c2 = d

2
2 ⟩;
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(ii)
⟨ c1, c2, d1, d2 ∣ c1d1 = d

2
1, d1c1 = d

2
1, c2d1 = d

2
1, d1c2 = d

2
1,

c1d2 = d1d2, d2c1 = d2d1, c2d2 = d1d2, d2c2 = d2d1⟩.

We prove Theorems 0.1 and 0.2 in Section 1, and Theorem 0.3 in Section
2 respectively.

Let A be a set, and let S be any semigroup. Then we denote by A+ the free
semigroup on A, which consists of the non-empty words over A. Any mapping
ψ ∶ A→ S can be extended in a unique way to a homomorphism φ ∶ A+ → S, and
A+ is determined up to isomorphism by these properties. If A is a generating
set for S, then the identity mapping on A induces an epimorphism π ∶ A+ → S.
The kernel ker(π) is a congruence on S; if R ⊆ A+×A+ generates this congruence
we say that ⟨A ∣R⟩ is a presentation for S. We say that S satisfies a relation
(u, v) ∈ A+ ×A+ if π(u) = π(v); we write u = v in this case: see [2]. Suppose we
are given a set R ⊆ A+ ×A+ and two words u, v ∈ A+. We write u ≡ v if u and
v are equal as elements of A+. We say that the relation u = v is a consequence
of R if there exist words u ≡ w1,w2, . . . ,wk−1,wk ≡ v (k ≥ 1) such that for each
i = 1, . . . , k − 1 we can write wi ≡ αiuiβi and wi+1 ≡ αiviβi where (ui, vi) ∈ R or
(vi, ui) ∈ R. We say that ⟨A ∣R⟩ is a presentation for S if and only if S satisfies
all relations from R, and every relation that S satisfies is a consequence of R:
see [11, Proposition 1.4.2]. If A and R are finite, then S is finitely presented.

Let ρ be a congruence on a semigroup S, and let φ ∶ S → T be a homomor-
phism such that ρ ⊆ kerφ. Then there is a unique homomorphism β ∶ S/ρ→ T
defined by s/ρ↦ φ(s) and such that imβ = imφ; [10, Theorem 1.5.3].

Proposition 0.4 ([11]). Let S be the semigroup defined by the presen-
tation ⟨A ∣ R⟩. If T is any semigroup satisfying the relations R, then T is a
homomorphic image of S.

Let ⟨a⟩ be the free monogenic semigroup. Then any two non-empty sub-
semigroups S and T of ⟨a⟩ have non-empty intersection, since ai ∈ S and aj ∈ T
implies aij ∈ S ∩ T . Let S be a semigroup which is the disjoint union of m ∈ N
copies of the free monogenic semigroup, and let a1, . . . , am ∈ S be the genera-
tors of these copies. Suppose that S is also the disjoint union of n ∈ N copies
of the free monogenic semigroup. Then there exist b1, . . . , bn ∈ S such that
⟨b1⟩, . . . , ⟨bn⟩ are free, disjoint, and

S = ⟨a1⟩ ∪⋯ ∪ ⟨am⟩ = ⟨b1⟩ ∪⋯ ∪ ⟨bn⟩.

If n > m, say, then there exist i, j such that bi, bj ∈ ⟨ak⟩ for some k. But then
⟨bi⟩∩⟨bj⟩ /= ∅, a contradiction. Hence a semigroup cannot be the disjoint union
of m and n copies of the free monogenic semigroup when n /=m.

Lemma 0.5 ([4, Lemma 1.4]). Let S and T be semigroups which are the
disjoint union of m ∈ N copies of the free monogenic semigroup, and let A =
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{a1, . . . , am} and B = {b1, . . . , bm} be the generators of these copies in S and
T , respectively. Then every homomorphism ϕ ∶ T → S such that ϕ(ai) = bi for
all i is an isomorphism.

Proof. Since ϕ is surjective, it follows that the function f ∶ {1, . . . ,m} →
{1, . . . ,m} defined by ϕ(ai) ∈ ⟨bf(i)⟩ is a bijection.

Suppose that there exist x, y ∈ S such that ϕ(x) = ϕ(y). Then there
exist a, b ∈ A such that x = ai and y = bj for some i, j ∈ N. It follows that
ϕ(a)i = ϕ(b)j , which implies that ϕ(a), ϕ(b) ∈ ⟨c⟩ for some c ∈ B. Hence a = b,
since f is a bijection, and so x = y.

Since the free monogenic semigroup is anti-isomorphic to itself, it follows
that a semigroup S is the disjoint union of m copies of the free monogenic
semigroups if and only if any semigroup anti-isomorphic to S has this property.

Lemma 0.6. Let A be a set, let ρ be a congruence on A+, let ϕ ∶ A →
T ∪ {0} be any mapping where T is a free semigroup in two generators, and
let ψ ∶ A+ → T ∪ {0} be the unique homomorphism extending ϕ. If ρ ⊆ kerψ
and a, b ∈ A such that ϕ(a) ≠ 0 and ϕ(b) ≠ 0, then ⟨a/ρ⟩ ∪ ⟨b/ρ⟩ is infinite
subsemigroups of A+/ρ.

Proof. Since ρ ⊆ kerψ, it follows that ψ ∶ A+/ρ → T ∪ {0} defined by
ψ(w/ρ) = ψ(w) is a homomorphism. Homomorphisms map elements of finite
order to elements of finite order, and since ϕ(a) ≠ 0 and ϕ(b) ≠ 0 do not have
finite order, a/ρ ∪ b/ρ must have infinite order in A+/ρ.

1. TWO AND THREE COPIES OF THE FREE MONOGENIC
SEMIGROUP

In this section we prove Theorems 0.1 and 0.2.

Proof of Theorem 0.1. (⇐) We proved in [4, Theorem1.1] that the semi-
group S′ which defined by the presentation

⟨ c, d ∣ cd = dc = ck ⟩ for some k ≥ 1,

is a disjoint union of two copies of the free monogenic semigroup ⟨c⟩ and ⟨d⟩. It
is clear from the presentation that ⟨c⟩ ⋅S′ ⊆ ⟨c⟩ and S′ ⋅ ⟨c⟩ ⊆ ⟨c⟩, which implies
that ⟨c⟩ is an ideal in S′.

(⇒) Let S be a semigroup which is the disjoint union of the free semi-
groups ⟨a⟩ and ⟨b⟩. Clearly one of the following must hold:

(a) ab, ba ∈ ⟨a⟩,



5 Unions of semigroups 345

(b) ab, ba ∈ ⟨b⟩,

(c) ab ∈ ⟨a⟩ and ba ∈ ⟨b⟩,

(d) ab ∈ ⟨b⟩ and ba ∈ ⟨a⟩.

In case (b), S is isomorphic to a semigroup satisfying (a) and in case (c) and
(d) neither ⟨a⟩ nor ⟨b⟩ is an ideal which is a contradiction. Hence we may
assume without loss of generality that just (a) holds.

Case (a) There exist m,n ∈ N such that ab = am and ba = an. Hence

am+1
= ama = (ab)a = a(ba) = aan = an+1

and so m = n. So, in this case, S is a homomorphic image of the semigroup T
defined by the presentation ⟨ a, b ∣ ab = ba = am ⟩. It follows from Lemma 0.5
that S is isomorphic to T .

Proof of Theorem 0.2. (⇐) We proved that the semigroup defined by
one of the presentations in [4, Theorem1.2] is a disjoint union of three copies
of the free monogenic semigroup.
Case (i): ⟨d⟩ is an ideal in S′ which implies that ⟨a⟩ is an ideal in S.
Case (ii):⟨d⟩ is an ideal in S′ which implies that ⟨a⟩ is an ideal in S.
Case (iii): ⟨d⟩ is an ideal in S′ which implies that ⟨a⟩ is an ideal in S.
Case (iv): ⟨d⟩∪ ⟨g⟩ is an ideal in S′ which implies that ⟨a⟩∪ ⟨c⟩ is an ideal in
S.
Case (v): ⟨d⟩ ∪ ⟨g⟩ is an ideal in S′ which implies that ⟨a⟩ ∪ ⟨c⟩ is an ideal in
S.
Cases (vi,vii,viii,ix)): There is no ideal which is a disjoint union of copies of
the free monogenic semigroup in these cases.
Thus, we just have 5 types of semigroups satisfy the ideal condition.

(⇒) As we have seen in [4, Theorem 1.2 ] that the semigroup which is a
disjoint union of three copies of the free monogenic semigroup is isomorphic to
a semigroup defined by one of the presentations in that theorem . Therefore,
the semigroup which is a disjoint union of three copies of the free monogenic
semigroup which contains an ideal ⟨a⟩ or ⟨a⟩ ∪ ⟨b⟩ must be defined by one of
the presentations (i,ii,iii,iv,v) in [4, Theorem 1.2].
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2. TWO COPIES OF THE FREE SEMIGROUP IN TWO
GENERATORS

Definition 2.1. An Equitable semigroup defines by a presentation of the
following form

⟨a, b, c, d ∣ ac = wac, ca = wca, bc = wbc, cb = wcb, ad = wad, da = wda,
bd = wbd, db = wdb ⟩

where wxy ∈ {a, b, c, d}
+, ∣wxy ∣ = 2.

Classifying all possible Equitable semigroups which are disjoint unions of
two copies of the free semigroup in two generators is still quite complicated.

In this paper, our aim is to classify Equitable semigroups in the case that
one of the two copies is an ideal in S.

Lemma 2.2. Let S be an Equitable semigroup which is the disjoint union
of the free semigroup ⟨a, b⟩, ⟨c, d⟩ where ⟨c, d⟩ is an ideal in S. Then one of the
following must hold:

(i) ac = c2 and then ca = c2, bc = cb = c2, ad = cd, da = dc, bd = cd, db = dc.

(ii) ac = dc and then ca = cd, bc = dc, cb = cd, ad = da = bd = db = d2.

Proof. As ⟨c, d⟩ is an ideal then ac ∈ {c2, dc, d2, cd}. But ac ≠ d2 and
ac ≠ cd because if ac = d2 or ac = cd then c(ac) ≠ (ca)c in the both cases. Thus
ac ∈ {c2, dc}.

Now if ac = c2 then by the associativity on c(ac) = c3 and (ca)c = wcac
which implies that wca = ca = c2. And c(ad) = cwa,d, (ca)d = c2d which
implies wad = ad = cd. Therefore da = dc by the associativity on (dad). Also,
d(bc) = dwbc and (db)c = wdbc, which means that the word wbc ends with the
letter c and the word wdb starts with the letter d. So there are two possibilities,
wbc = c

2 or dc and wdb = db = d
2 or dc and then if wbc = c

2 that gives us wdb = dc
by associativity, and if wbc = dc that implies wdb = d

2 and after that we can
continue to get cb and bd. So when wbc = c

2 this means cb = c2 and bd = cd and
when wbc = dc that means cb = cd and bd = d2. Therefore, if ac = c2 then we
have two types of semigroups:

(1) The semigroup with relations ac = ca = bc = cb = c2, ad = bd = cd, da = db =
dc;

(2) The semigroup with relations ac = ca = c2, ad = cb = cd, da = bc = dc, db =
bd = d2.
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The second value is when ac = dc and then by the associativity on (cac)
we get ca = cd. Then c(ad) = cwa,d and (ca)d = cd2 which implies that wa,d =

ad = d2 and similarly da = d2 by the associativity on (dad). Also by the
associativity on (cbc) we have two possibilities bc ∈ {c2, dc} and cb ∈ {c2, cd}
and we get that:

(i) cb = bc = c2 and,

(ii) cb = cd, bc = dc.

In case (i) we have db = dc, bd = cd by the associativity on (dbc) and (cbd)
respectively.
In case (ii) we have bd = d2, db = d2 by the associativity on (cbd) and (dbc)
respectively.

Therefore there are two types of semigroups.

(1′) The semigroup with the relations: ac = bc = dc, ca = cb = cd, ad = da = bd =
db = d2;

(2′) The semigroup with the relations: ac = db = dc, ca = bd = cd, ad = da =

d2, bc = cb = c2;

Notice that the semigroup in (1) is isomorphic to the semigroup in (1′)
by just replacing c by d and d by c in (1), and similarly the semigroup in (2)
is isomorphic to the semigroup in (2′) by, as above, replacing c by d and d by
c in (2). As a result, up to isomorphism, we just have two types of semigroups
with relations (1) and (2).

Proof of Theorem 0.3. (⇐) To prove the converse implication, it suffices
to show that the semigroups mentioned in Theorem 0.3 are disjoint unions of
two copies of the free semigroup in two generators.

Let S be the semigroup defined by the presentation

⟨ c1, c2, d1, d2 ∣ c1d1 = d
2
1, d1c1 = d

2
1, c2d1 = d2d1, d1c2 = d1d2, c1d2 = d1d2,

d2c1 = d2d1, c2d2 = d
2
2, d2c2 = d

2
2 ⟩.

It is clear that every word from S is a product of letters in {c1, c2} or in {d1, d2},
and so S = ⟨c1, c2⟩∪ ⟨d1, d2⟩. Since there is no relation in the presentation that
can be applied to a word from {c1, c2}

+, it follows that ⟨c1, c2⟩ ∩ ⟨d1, d2⟩ = ∅
and ⟨c1, c2⟩ is infinite. We show that ⟨d1, d2⟩ is infinite using Lemma 0.6. Let
ρ be the congruence on {c1, c2, d1, d2}

+ generated by the relations

c1d1 = d
2
1, d1c1 = d

2
1, c2d1 = d2d1, d1c2 = d1d2, c1d2 = d1d2, d2c1 = d2d1,

c2d2 = d
2
2, d2c2 = d

2
2,
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let ϕ ∶ {c1, c2, d1, d2} → T be defined by ϕ(c1) = f , ϕ(c2) = g, ϕ(d1) = f ,
ϕ(d2) = g, where T is a free semigroup in two generators f and g and let
ψ ∶ {c1, c2, d1, d2}

+ → T be the unique homomorphism extending ϕ. Then

ψ(c1d1) = ψ(c1)ψ(d1) = ff = f
2
= ψ(d21)

and, similarly,

ψ(d1c1) = ψ(d1)ψ(c1) = ff = f
2
= ψ(d21);

ψ(c2d1) = ψ(c2)ψ(d1) = gf = ψ(d2d1);

ψ(d1c2) = ψ(d1)ψ(c2) = fg = ψ(d1d2);

ψ(c1d2) = ψ(c1)ψ(d2) = fg = ψ(d1d2);

ψ(d2c1) = ψ(d2)ψ(c1) = gf = ψ(d2d1);

ψ(c2d2) = ψ(c2)ψ(d2) = gg = g
2
= ψ(d22);

ψ(d2c2) = ψ(d2)ψ(c2) = gg = g
2
= ψ(d22).

Hence ρ ⊆ kerψ and so ⟨d1, d2⟩ is infinite in S, by Lemma 0.6.
Let G be the semigroup defined by the presentation

⟨ c1, c2, d1, d2 ∣ c1d1 = d
2
1, d1c1 = d

2
1, c2d1 = d

2
1, d1c2 = d

2
1,

c1d2 = d1d2, d2c1 = d2d1, c2d2 = d1d2, d2c2 = d2d1⟩.

Then as above G = ⟨c1, c2⟩ ∪ ⟨d1, d2⟩. It is clear that every word from S is
a product of letters in {c1, c2} or in {d1, d2}, and so S = ⟨c1, c2⟩ ∪ ⟨d1, d2⟩.
Since there is no relation in the presentation that can be applied to a word
from {c1, c2}

+, it follows that ⟨c1, c2⟩ ∩ ⟨d1, d2⟩ = ∅. The proof that ⟨c1, c2⟩
and ⟨d1, d2⟩ are infinite follows using a similar argument as above but where
ϕ ∶ {c1, c2, d1, d2} → T is defined by ϕ(c1) = ϕ(c2) = ϕ(d1) = f and ϕ(d2) = g,
where T is a free semigroup in two generators f and g. Let ψ ∶ {c1, c2, d1, d2}

+ →
T be the unique homomorphism extending ϕ. Then

ψ(c1d1) = ψ(c1)ψ(d1) = ff = f
2
= ψ(d21)

and, similarly,
ψ(d1c1) = ψ(d1)ψ(c1) = ff = f

2
= ψ(d21);

ψ(c2d1) = ψ(c2)ψ(d1) = ff = f
2
= ψ(d21);

ψ(d1c2) = ψ(d1)ψ(c2) = ff = f
2
= ψ(d21);

ψ(c1d2) = ψ(c1)ψ(d2) = fg = ψ(d1d2);
ψ(d2c1) = ψ(d2)ψ(c1) = gf = ψ(d2d1);
ψ(c2d2) = ψ(c2)ψ(d2) = fg = ψ(d1d2);
ψ(d2c2) = ψ(d2)ψ(c2) = gf = ψ(d2d1).

Hence ρ ⊆ kerψ and so ⟨d1, d2⟩ is infinite in S, by Lemma 0.6.

(⇒) Let S′ be a semigroup defined by one of the following presentations:
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(a)
⟨ c1, c2, d1, d2 ∣ c1d1 = d

2
1, d1c1 = d

2
1, c2d1 = d2d1, d1c2 = d1d2,

c1d2 = d1d2, d2c1 = d2d1, c2d2 = d
2
2, d2c2 = d

2
2 ⟩;

(b)
⟨ c1, c2, d1, d2 ∣ c1d1 = d

2
1, d1c1 = d

2
1, c2d1 = d

2
1, d1c2 = d

2
1,

c1d2 = d1d2, d2c1 = d2d1, c2d2 = d1d2, d2c2 = d2d1⟩.

Let S be a semigroup which is the disjoint union of the free semigroups ⟨a, b⟩
and ⟨c, d⟩. Thus one of the following must hold by Lemma 2.2:

(i) ac = ca = bc = cb = c2, ad = bd = cd, da = db = dc;

(ii) ac = ca = c2, ad = cb = cd, da = bc = dc, db = bd = d2.

Clearly S with the relations in case (i) and case (ii) satisfies the relations in
the presentation (a) and (b) respectively and then S is a homomorphic image
of S′ by Proposition 0.4. If it is a proper homomorphic image then there is
without loss of generality u1 and u2 ∈ ⟨c1, c2⟩ or u and v in ⟨c1, c2⟩ and ⟨d1, d2⟩
respectively such that u1 = u2 or u = v which contradicts with the fact that
there is no element in the free semigroup of rank two is of finite order or
contradicts with ⟨c1, c2⟩ ∩ ⟨d1, d2⟩ = ∅. Thus S′ ≅ S.
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