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1. INTRODUCTION

Let (R,m) denote a commutative Noetherian local ring of dimension d
and assume that M is a non-zero finitely generated R-module of dimension
n. Then M is called a generalized Cohen-Macaulay R-module precisely when
H i

m(M) is finitely generated for all i 6= n. This family of modules for first time
were introduced in [7]. In this paper we will define the R-modules ωR and ΩR as
ωR = D(Hd

m(R)) and ΩR := D(Hd
m(D(Hd

m(R)))), where D(−) := HomR(−, E)
denotes the Matlis dual functor and E := ER(R/m) is the injective hull of the
residue field R/m. We shall see in Lemma 2.4 that there is an isomorphism of
R-modules as ΩR ' HomR(Hd

m(R), Hd
m(R)), when R is complete.

The main goal of this paper is to prove that if (R,m) is a Noetherian
complete local generalized Cohen-Macaulay ring then the R-module ΩR =
HomR(Hd

m(R), Hd
m(R)) is generalized Cohen-Macaulay too.

Recall that for an R-module M , the ith local cohomology module H i
I(M)

with respect to the ideal I of R is defined as

H i
I(M) = lim

−→
n≥1

ExtiR(R/In,M).

We refer the reader to [2] or [1] for more details about local cohomology.

Throughout this paper, for each R-module M , we denote by ER(M) the
injective envelope (or injective hull) ofM . For any Noetherian local ring (R,m),
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we denote the Matlis dual functor HomR(−, ER(R/m)) by D(−). Also, for any
ideal a of R, we denote {p ∈ SpecR : p ⊇ a} by V (a). For each R-module
L, we denote by AsshR L the set {p ∈ AssR L : dimR/p = dimL}. Also, for
any R-module M we denote the projective dimension of M by pdRM . For
any R-module L and any ideal I of R, the submodule

⋃
n≥1(0 :L I

n) of L is
denoted by ΓI(L). Finally, for any ideal b of R, the radical of b, denoted by
Rad(b), is defined to be the set {x ∈ R : xn ∈ b for some n ∈ N}. For any
unexplained notation and terminology we refer the reader to [1] and [4].

2. THE RESULTS

Recall that, for any ideal I of a Noetherian ring R, we say a sequence
x1, . . . , xn of elements R is an I-filter regular sequence for a finitely generated
R-module M , if x1, . . . , xn ∈ I and

xi 6∈ p for all p ∈ AssRM/(x1, . . . , xi−1)M/ΓI(M/(x1, . . . , xi−1)M),

for all i = 1, . . . , n. The concept of an I-filter regular sequence for M is a
generalization of the filter regular sequence which has been studied in refer-
ences [7, 8, 9] and has led to some interesting results. Note that both concepts
coincide if I is the maximal ideal of a local ring. (For some applications of
the filter regular sequences see for example [5]). We start this section with the
following two well known lemmas.

Lemma 2.1 (See [3, Proposition 1.2]). Let R be a Noetherian ring and
I an ideal of R. Let M be a finitely generated non-zero R-module and let
x1, ..., xn ∈ I (n > 0) be an I-filter regular sequence on M . Then

H i
I(M) ∼=

{
H i

(x1,...,xn)(M) if 0 ≤ i < n

H i−n
I

(
Hn

(x1,...,xn)(M)
)

if i ≥ n.

Recall that, the arithmetic rank of the ideal I, denoted by ara(I), is the
least number of elements of I required to generate an ideal which has the same
radical as I.

Lemma 2.2 (See [5, Proposition 2.1]). Let I be a non-nilpotent proper
ideal of the Noetherian ring R with ara(I) = n. Then there exists an I-filter
regular sequence y1, . . . , yn for R such that Rad(I) = Rad(y1, . . . , yn).

Corollary 2.3. Let (R,m) be a Noetherian ring of dimension d ≥
1. Then there exists a filter-regular sequence x1, ..., xd ∈ m such that m =
Rad(x1, . . . , xd). In particular, x1, ..., xd is a system of parameters for R.
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Proof. Since ara(m) = d, the assertion follows from Lemma 2.2.

Proposition 2.4. Let (R,m) be a Noetherian local ring of dimension d.
Then the following statements hold:

i) There is an isomorphism of R-modules HomR(ωR, ωR) ' ΩR.

ii) There is an isomorphism of R-modules HomR(Hd
m(R), Hd

m(R)) ' ΩR,
whenever R is a complete local ring with respect to m-adic topology.

Proof. (i) By using [1, Exercise 6.1.9] one sees that

ΩR = D(Hd
m(D(Hd

m(R))))

= HomR(Hd
m(D(Hd

m(R))), ER(R/m))

' HomR(Hd
m(R)⊗R D(Hd

m(R)), ER(R/m))

' HomR(D(Hd
m(R)),HomR(Hd

m(R), ER(R/m)))

= HomR(ωR, ωR).

(ii) Since by the hypothesis R is a complete local ring and in view of [1, Theo-
rems 7.1.3] the R-module Hd

m(R) is Artinian, it follows that D(D(Hd
m(R))) '

Hd
m(R) and hence

ΩR = D(Hd
m(D(Hd

m(R))))

= HomR(Hd
m(D(Hd

m(R))), ER(R/m))

' HomR(Hd
m(R)⊗R D(Hd

m(R)), ER(R/m))

' HomR(Hd
m(R),HomR(D(Hd

m(R)), ER(R/m)))

= HomR(Hd
m(R), D(D(Hd

m(R))))

' HomR(Hd
m(R), Hd

m(R)).

The following proposition plays a key role in this paper.

Proposition 2.5. Let (R,m) be a Noetherian local ring of dimension
d ≥ 1. Then for every R-module T the following statements hold:

i) (Ann
⊕d−1

i=0 H
i
m(R))2d−1 ⊆ Ann

⊕∞
i=1 ExtiR(T,Hd

m(D(Hd
m(R)))),

ii) (Ann
⊕d−1

i=0 H
i
m(R))2d−1 ⊆ Ann

⊕∞
i=1 TorRi (T,ΩR).

Proof. (i) Let Ji := AnnH i
m(R), for i = 0, 1, ..., d−1. In view of Corollary

2.3 there is a system of parameters x1, ..., xd for R such that x1, ..., xd is a filter-
regular sequence on R. Then by the definition we have

ΓRx1(R) = Γm(R) ' H0
m(R).
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So, by using [1, Remark 2.2.7 and Theorem 2.2.16] we get the following exact
sequence

0→ R/Γm(R)→ Rx1 → H1
Rx1

(R)→ 0,
which induces the following exact sequence

0→ D(H1
Rx1

(R))→ D(Rx1)→ D(R/Γm(R))→ 0. (2.5.1)

Since, the map Rx1

x1−→ Rx1 is an isomorphism it follows that the map

D(Rx1)
x1−→ D(Rx1)

is an isomorphism. Therefore, for each j ≥ 0, the map

Hj
m(D(Rx1))

x1−→ Hj
m(D(Rx1))

is an isomorphism. But the R-module Hj
m(D(Rx1)) is m-torsion and hence is

Rx1-torsion. So, we get Hj
m(D(Rx1)) = 0, for each j ≥ 0. Hence, by using the

exact sequence (2.5.1) we achieve the isomorphisms

ER/Γm(R)(R/m) ' D(R/Γm(R)) ' H0
m(D(R/Γm(R))) ' H1

m(D(H1
Rx1

(R))).

Therefore, for each i ≥ 0 we get the isomorphism

ExtiR(T,H1
m(D(H1

Rx1
(R)))) ' ExtiR(T,ER/Γm(R)(R/m)).

On the other hand, from the exact sequence

0→ H0
m(R)→ R→ R/Γm(R)→ 0,

we achieve the exact sequence

0→ ER/Γm(R)(R/m)→ ER(R/m)→ D(H0
m(R))→ 0,

which yields the isomorphism of R-modules

Exti+1
R (T,ER/Γm(R)(R/m)) ' ExtiR(T,D(H0

m(R))), for each i ≥ 1,

and the exact sequence

HomR(T,D(H0
m(R)))→ Ext1

R(T,ER/Γm(R)(R/m))→ 0.

Now, it is clear that

J0 ⊆ Ann

∞⊕
i=1

ExtiR(T,ER/Γm(R)(R/m))

and therefore one has

J0 ⊆ Ann

∞⊕
i=1

ExtiR(T,H1
m(D(H1

Rx1
(R)))).

Moreover, using [1, Exercise 2.1.9] and Lemma 2.1 we have

ΓRx2(H1
Rx1

(R)) ' H0
Rx2

(H1
Rx1

(R)) '
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H0
(x1,x2)(H

1
Rx1

(R)) ' H0
m(H1

Rx1
(R)) ' H1

m(R)

and hence ΓRx2(H1
Rx1

(R)) = Γm(H1
Rx1

(R)) ' H1
m(R). Therefore, we obtain

the exact sequence

0→ H1
m(R)→ H1

Rx1
(R)→ H1

Rx1
(R)/ΓRx2(H1

Rx1
(R))→ 0,

which induces the exact sequence

0→ D(H1
Rx1

(R)/ΓRx2(H1
Rx1

(R)))→ D(H1
Rx1

(R))→ D(H1
m(R))→ 0. (2.5.2)

The exact sequence (2.5.2) induces the exact sequence

H0
m(D(H1

m(R)))
f1→ H1

m(D(H1
Rx1

(R)/ΓRx2(H1
Rx1

(R))))

f2→ H1
m(D(H1

Rx1
(R)))

f3→ H1
m(D(H1

m(R))). (2.5.3)

Let

A1 := H0
m(D(H1

m(R))), B1 := H1
m(D(H1

Rx1
(R)/ΓRx2(H1

Rx1
(R)))),

C1 := H1
m(D(H1

Rx1
(R))) and D1 := H1

m(D(H1
m(R))).

Then, the exact sequence (2.5.3) yields the exact sequences

0→ ker(f3)→ C1 → im(f3)→ 0, (2.5.4)

and

0→ im(f1)→ B1 → im(f2)→ 0. (2.5.5)

Since, J1im(f3) = 0, it follows that (J0 ∩ J1)im(f3) = 0 and hence one
sees that

(J0 ∩ J1) ExtiR(T, im(f3)) = 0, for each i ≥ 0.

Moreover, from the fact that

J0 ⊆ Ann
∞⊕
i=1

ExtiR(T,C1),

we get

(J0 ∩ J1) ⊆ Ann

∞⊕
i=1

ExtiR(T,C1).

The exact sequence (2.5.4) yields the long exact sequence

0→ HomR(T, ker(f3))→ HomR(T,C1)→ HomR(T, im(f3))

→ Ext1
R(T, ker(f3))→ Ext1

R(T,C1)→ Ext1
R(T, im(f3))→ · · · ,
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which implies that

(J0 ∩ J1)2 ⊆ Ann

∞⊕
i=1

ExtiR(T, ker(f3)).

Hence, one has

(J0 ∩ J1)2 ⊆ Ann
∞⊕
i=1

ExtiR(T, im(f2)).

Since J1im(f1) = 0 it is clear that (J0 ∩ J1)im(f1) = 0 and hence one sees that

(J0 ∩ J1) ExtiR(T, im(f1)) = 0, for each i ≥ 0.

So, the exact sequence (2.5.5) yields the exact sequence

0→ HomR(T, im(f1))→ HomR(T,B1)→ HomR(T, im(f2))

→ Ext1
R(T, im(f1))→ Ext1

R(T,B1)→ Ext1
R(T, im(f2))→ · · · ,

which implies that

(J0 ∩ J1)3 ⊆ Ann

∞⊕
i=1

ExtiR(T,B1) =

Ann

∞⊕
i=1

H1
m(D(H1

Rx1
(R)/ΓRx2(H1

Rx1
(R)))).

Let Γ2 := ΓRx2(H1
Rx1

(R)). Then, by using [1, Remark 2.2.7 and Theorem
2.2.16] we achieve the exact sequence

0→ H1
Rx1

(R)/Γ2 → (H1
Rx1

(R)/Γ2)x2 → H1
Rx2

(H1
Rx1

(R))→ 0,

which by using [6, Corollary 3.5], yields the isomorphic short exact sequence

0→ H1
Rx1

(R)/Γ2 → (H1
Rx1

(R)/Γ2)x2 → H2
(x1,x2)(R)→ 0. (2.5.6)

From the exact sequence (2.5.6), we get the exact sequence

0→ D(H2
(x1,x2)(R))→ D((H1

Rx1
(R)/Γ2)x2)→ D(H1

Rx1
(R)/Γ2)→ 0 (2.5.7).

By, the same argument as in the first lines of the proof, the exact sequence
(2.5.7) yields the isomorphism

H2
m(D(H2

(x1,x2)(R))) ' H1
m(D(H1

Rx1
(R)/Γ2)),

which implies that

(J0 ∩ J1)3 ⊆ Ann
∞⊕
i=1

ExtiR(T,H2
m(D(H2

(x1,x2)(R)))).

Furthermore, by using [1, Exercise 2.1.9] and Lemma 2.1 we get

ΓRx3(H2
(x1,x2)(R)) ' H0

Rx3
(H2

(x1,x2)(R)) ' H0
(x1,x2,x3)(H

2
(x1,x2)(R)) ' H2

m(R)
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and hence ΓRx3(H2
(x1,x2)(R)) = Γm(H2

(x1,x2)(R)) ' H2
m(R). Therefore, we get

the exact sequence

0→ H2
m(R)→ H2

(x1,x2)(R)→ H2
(x1,x2)(R)/ΓRx3(H2

(x1,x2)(R))→ 0,

which induces the exact sequence

0→ D(H2
(x1,x2)(R)/ΓRx3(H2

(x1,x2)(R)))→ D(H2
(x1,x2)(R))→

D(H2
m(R))→ 0. (2.5.8)

Let Γ3 := ΓRx3(H2
(x1,x2)(R)). Then, from the exact sequence (2.5.8) we

obtain the exact sequence

H1
m(D(H2

m(R)))
g1−→ H2

m(D(H2
(x1,x2)(R)/Γ3))

g2−→ H2
m(D(H2

(x1,x2)(R)))
g3−→ H2

m(D(H2
m(R))). (2.5.9)

Let

A2 := H1
m(D(H2

m(R))), B2 := H2
m(D(H2

(x1,x2)(R)/Γ3)),

C2 := H2
m(D(H2

(x1,x2)(R))), D2 := H2
m(D(H2

m(R))).

Then, the exact sequence (2.5.9) yields the exact sequences

0→ ker(g3)→ C2 → im(g3)→ 0, (2.5.10)
and

0→ im(g1)→ B2 → im(g2)→ 0. (2.5.11)

Since J2im(g3) = 0 it is clear that (J0 ∩ J1 ∩ J2)im(g3) = 0 and hence

(J0 ∩ J1 ∩ J2) ExtiR(T, im(g3)) = 0, for each i ≥ 0.

Moreover, from the fact that

(J0 ∩ J1)3 ⊆ Ann

∞⊕
i=1

ExtiR(T,C2),

we get

(J0 ∩ J1 ∩ J2)3 ⊆ Ann

∞⊕
i=1

ExtiR(T,C2).

The exact sequence (2.5.10) yields the long exact sequence

0→ HomR(T, ker(g3))→ HomR(T,C2)→ HomR(T, im(g3))

→ Ext1
R(T, ker(g3))→ Ext1

R(T,C2)→ Ext1
R(T, im(g3))→ · · · ,
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which implies that

(J0 ∩ J1 ∩ J2)4 ⊆ Ann
∞⊕
i=1

ExtiR(T, ker(g3)).

Hence, one has

(J0 ∩ J1 ∩ J2)4 ⊆ Ann

∞⊕
i=1

ExtiR(T, im(g2)).

Since J2im(g1) = 0 we see that (J0 ∩ J1 ∩ J2)im(g1) = 0 and hence

(J0 ∩ J1 ∩ J2) ExtiR(T, im(g1)) = 0, for each i ≥ 0.

The exact sequence (2.5.11) yields the exact sequence

0→ HomR(T, im(g1))→ HomR(T,B2)→ HomR(T, im(g2))

→ Ext1
R(T, im(g1))→ Ext1

R(T,B2)→ Ext1
R(T, im(g2))→ · · · ,

which implies that

(J0 ∩ J1 ∩ J2)5 ⊆ Ann
∞⊕
i=1

ExtiR(T,B2) = Ann
∞⊕
i=1

H2
m(D(H2

(x1,x2)(R)/Γ3)).

Let Γ3 := ΓRx3(H2
(x1,x2)(R)). Then, by using [1, Remark 2.2.7 and The-

orem 2.2.16] we get the exact sequence

0→ H2
(x1,x2)(R)/Γ3 → (H2

(x1,x2)(R)/Γ3)x3 → H1
Rx3

(H2
(x1,x2)(R))→ 0,

which by using [6, Corollary 3.5], yields the isomorphic short exact sequence

0→ H2
(x1,x2)(R)/Γ3 → (H2

(x1,x2)(R)Γ3)x3 → H3
(x1,x2,x3)(R)→ 0. (2.5.12)

From the exact sequence (2.5.12) we get the exact sequence

0→ D(H3
(x1,x2,x3)(R))→ D((H2

(x1,x2)(R)Γ3)x3)→

D(H2
(x1,x2)(R)/Γ3)→ 0 (2.5.13).

By the same argument as in the first lines of the proof, the exact sequence
(2.5.13) yields the isomorphism

H3
m(D(H3

(x1,x2,x3)(R))) ' H2
m(D(H2

(x1,x2)(R)/Γ3)),

which implies that

(J0 ∩ J1 ∩ J2)5 ⊆ Ann

∞⊕
i=1

ExtiR(T,H3
m(D(H3

(x1,x2,x3)(R)))).

Proceeding in the same way, after finitely many steps we get

(Ann

d−1⊕
i=0

H i
m(R))2d−1 = (

d−1⋂
i=0

Ji)
2d−1
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⊆ Ann
∞⊕
i=1

ExtiR(T,Hd
m(D(Hd

(x1,··· ,xd)(R))))

= Ann

∞⊕
i=1

ExtiR(T,Hd
m(D(Hd

m(R)))).

(ii) Since T can be viewed as the direct limit of its finitely generated
submodules, we have

T = lim
−→
λ∈Λ

Tλ,

with finitely generated R-modules Tλ. Then for each integer i ≥ 0 and each
λ ∈ Λ, by the adjointness we have

D(ExtiR(Tλ, H
d
m(D(Hd

m(R))))) ' TorRi (Tλ,ΩR).

Therefore, by (i), for each integer i ≥ 1 we have

(Ann
d−1⊕
i=0

H i
m(R))2d−1 ⊆ Ann ExtiR(Tλ, H

d
m(D(Hd

m(R))))

⊆ AnnD(ExtiR(Tλ, H
d
m(D(Hd

m(R)))))

= Ann TorRi (Tλ,ΩR).

So, as the torsion functor TorRi (−,ΩR) commutes with direct limits, it follows
that

(Ann

d−1⊕
i=0

H i
m(R))2d−1 ⊆

⋂
λ∈Λ

Ann TorRi (Tλ,ΩR)

⊆ Ann lim
−→
λ∈Λ

TorRi (Tλ,ΩR)

= Ann TorRi (lim
−→
λ∈Λ

Tλ,ΩR)

= Ann TorRi (T,ΩR).

Thus, it is clear that

(Ann

d−1⊕
i=0

H i
m(R))2d−1 ⊆ Ann

∞⊕
i=1

TorRi (T,ΩR).

The following well known result is needed in the proof of Corollary 2.7.

Lemma 2.6 (See [4, §19 Lemma 1]). Let (R,m) be a Noetherian local ring
and M be a non-zero finitely generated R-module. Then

pdR(M) = sup{n ∈ N0 : TorRn (R/m,M) 6= 0}.
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The following consequence of Proposition 2.5 is needed in the proof of
Theorem 2.8. Recall that for an R-module M the free locus of M is defined as

frl(M) := {p ∈ SpecR : Mp is a free Rp-module}.

Corollary 2.7. Let (R,m) be a Noetherian complete local ring of di-
mension d ≥ 1. Then ΩR is a finitely generated R-module of dimension d such
that AssR ΩR = AsshRR. Moreover, we have

SpecR\V (Ann

d−1⊕
i=1

H i
m(R)) ⊆ frl(ΩR).

Proof. In view of [1, Theorems 7.1.3 and 7.3.2] theR-moduleHd
m(R) is Ar-

tinian with the set of attached primes AsshRR. As by the hypothesis R is com-
plete, one sees that D(Hd

m(R)) is a finitely generated R-module of dimension d
with AssRD(Hd

m(R)) = AsshRR and hence by [1, Theorems 7.1.3 and 7.3.2] the
R-module Hd

m(D(Hd
m(R))) is Artinian with AttRH

d
m(D(Hd

m(R))) = AsshRR.
Since by the hypothesis R is complete we see that D(Hd

m(D(Hd
m(R)))) = ΩR is

a finitely generated R-module of dimension d with AssR ΩR = AsshRR.

Now let p ∈ SpecR\V (Ann
⊕d−1

i=1 H
i
m(R)) and let j ≥ 1 be an integer.

Since by Proposition 2.5 one has

(Ann

d−1⊕
i=1

H i
m(R))2d−1 ⊆ Ann TorRj (R/ p,ΩR),

we get p 6∈ Supp TorRj (R/ p,ΩR) and hence

Tor
Rp

j (Rp/ pRp, (ΩR)p) ' (TorRj (R/ p,ΩR))p = 0.

So, if (ΩR)p = 0 then it is clear that p ∈ frl(ΩR). But, if (ΩR)p 6= 0 then
by Lemma 2.6 we deduce that pdRp

((ΩR)p) = 0 and hence as Rp is a local
Noetherian ring and (ΩR)p is a finitely generated projective Rp-module we see
that (ΩR)p is a free Rp-module and so p ∈ frl(ΩR).

Now we are ready to state and prove the main result of this paper.

Theorem 2.8. Let (R,m) be a complete local generalized Cohen-Macaulay
ring of dimension d ≥ 1. Then the R-module ΩR is generalized Cohen-Macaulay.

Proof. Since by the hypothesis R is a generalized Cohen-Macaulay ring,
from [1, Exercise 9.5.7(i)] it follows that AssRR\{m} = AsshRR and Rq is
Cohen-Macaulay ring for all q ∈ SpecR\{m}.

On the other hand, by the definition we have V (Ann
⊕d−1

i=1 H
i
m(R)) ⊆ {m}

and so for all q ∈ Supp ΩR\{m} by Corollary 2.7, (ΩR)q is a free Rq-module.
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Now, as Rq is a Cohen-Macaulay ring for all q ∈ SpecR\{m}, it follows
that (ΩR)q is a Cohen-Macaulay Rq-module for all q ∈ SpecR\{m}. Moreover,
by Corollary 2.7 we have AssR ΩR = AsshR ΩR.

Finally, since R is a complete local ring it follows from Cohen’s Structure
Theorem that R is a homomorphic image of a regular ring.

Now, it follows from [1, Exercise 9.5.7(ii)] that ΩR is generalized Cohen-
Macaulay R-module.
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