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Let (R, m) be a complete local generalized Cohen-Macaulay ring of dimension
d. In this paper it is shown that Hompg(HZ(R), HE(R)) is a generalized Cohen-
Macaulay R-module.
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1. INTRODUCTION

Let (R,m) denote a commutative Noetherian local ring of dimension d
and assume that M is a non-zero finitely generated R-module of dimension
n. Then M is called a generalized Cohen-Macaulay R-module precisely when
HE (M) is finitely generated for all i # n. This family of modules for first time
were introduced in [7]. In this paper we will define the R-modules wg and Qg as
wr = D(HZ(R)) and Qg := D(HZ(D(HZ(R)))), where D(—) := Hompg(—, E)
denotes the Matlis dual functor and E := Er(R/m) is the injective hull of the
residue field R/m. We shall see in Lemma 2.4 that there is an isomorphism of
R-modules as Qr ~ Homp(HL(R), HE(R)), when R is complete.

The main goal of this paper is to prove that if (R, m) is a Noetherian
complete local generalized Cohen-Macaulay ring then the R-module Qp =
Hompg(HZ(R), HL(R)) is generalized Cohen-Macaulay too.

Recall that for an R-module M, the ith local cohomology module H(M)
with respect to the ideal I of R is defined as

Hi{(M) = lim Extl(R/I", M).
n>1

We refer the reader to [2] or [1] for more details about local cohomology.

Throughout this paper, for each R-module M, we denote by Er(M) the
injective envelope (or injective hull) of M. For any Noetherian local ring (R, m),
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we denote the Matlis dual functor Hompg(—, Er(R/m)) by D(—). Also, for any
ideal a of R, we denote {p € SpecR : p D a} by V(a). For each R-module
L, we denote by Asshp L the set {p € Assp L : dim R/p = dim L}. Also, for
any R-module M we denote the projective dimension of M by pdrM. For
any R-module L and any ideal I of R, the submodule |J,~,(0 :z, I") of L is
denoted by T';(L). Finally, for any ideal b of R, the radical of b, denoted by
Rad(b), is defined to be the set {x € R : 2™ € b for some n € N}. For any
unexplained notation and terminology we refer the reader to [1] and [4].

2. THE RESULTS

Recall that, for any ideal I of a Noetherian ring R, we say a sequence
Z1,...,Ty of elements R is an I-filter regular sequence for a finitely generated
R-module M, if x1,...,z, € I and

x; & pforallpeAssp M/(x1,...,xi—1)M/T1(M/(21,...,2i-1)M),

for all ¢+ = 1,...,n. The concept of an [-filter regular sequence for M is a
generalization of the filter regular sequence which has been studied in refer-
ences [7, 8, 9] and has led to some interesting results. Note that both concepts
coincide if I is the maximal ideal of a local ring. (For some applications of
the filter regular sequences see for example [5]). We start this section with the
following two well known lemmas.

LEMMA 2.1 (See [3, Proposition 1.2]). Let R be a Noetherian ring and
I an ideal of R. Let M be a finitely generated non-zero R-module and let
Tl .y Tp € I (n>0) be an I-filter reqular sequence on M. Then

Hi (M) if 0<i<n

i ~ (1505n)

(xlv-"vxn)

Recall that, the arithmetic rank of the ideal I, denoted by ara(I), is the
least number of elements of I required to generate an ideal which has the same
radical as I.

LEMMA 2.2 (See [5, Proposition 2.1]). Let I be a non-nilpotent proper
ideal of the Noetherian ring R with ara(I) = n. Then there exists an I-filter
reqular sequence yi, ...,y for R such that Rad(I) = Rad(y1,...,Yn)-

COROLLARY 2.3. Let (R,m) be a Noetherian ring of dimension d >
1. Then there exists a filter-reqular sequence x1,...,xqg € m such that m =
Rad(z1,...,zq). In particular, x1,...,xq is a system of parameters for R.
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Proof. Since ara(m) = d, the assertion follows from Lemma 2.2. [

PROPOSITION 2.4. Let (R,m) be a Noetherian local ring of dimension d.
Then the following statements hold:

i) There is an isomorphism of R-modules Hompg(wr,wr) ~ Qg.

ii) There is an isomorphism of R-modules Homg(HZ(R), HS(R)) ~ Qg,
whenever R is a complete local ring with respect to m-adic topology.

Proof. (i) By using [1, Exercise 6.1.9] one sees that
U = DUHy (D))
= Homp(Hg(D(Hg(R))), ER(R/m))
~ Homp(Hy(R) ®r D(Hg(R)), Er(R/m))
~ Homp(D(Hy(R)), Homp(Hg (R), Er(R/m)))
Homp(wr, wr)-
(ii) Since by the hypothesis R is a complete local ring and in view of [1, Theo-

rems 7.1.3] the R-module HZ(R) is Artinian, it follows that D(D(HS(R))) ~
HZ(R) and hence
Op = D(HL(D(HL(R))))
— Homp(HA(D(HA(R))), Bn(R/m))
~ Homp(HL(R) & D(HA(R)), En(R/m)
~ Homp(HL(R), Homp(D(HA(R)), En(R/m))
= Homa(HA(R), DID(H(R))
~ Homp(HY(R), HL(R)). m

The following proposition plays a key role in this paper.

PROPOSITION 2.5. Let (R,m) be a Noetherian local ring of dimension
d > 1. Then for every R-module T the following statements hold:

i) (Ann @) Hi(R))* ™ € Aun @2, Extly(T, HE(D(HZ(R)))),
i) (Ann @) Hi(R))*! C Ann @2, Torf(T, Qp).

Proof. (i) Let J; :== Ann H}(R), fori = 0,1, ...,d—1. In view of Corollary
2.3 there is a system of parameters x1, ..., x4 for R such that x1, ..., z4 is a filter-
regular sequence on R. Then by the definition we have

I're (R) = T'n(R) ~ HO(R).
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So, by using [1, Remark 2.2.7 and Theorem 2.2.16] we get the following exact

sequence
0 — R/Tw(R) = Ry, — Hpy, (R) — 0,
which induces the following exact sequence

0— D(H}%xl(R)) — D(R;,) = D(R/Tw(R)) — 0. (2.5.1)
Since, the map R, = R, is an isomorphism it follows that the map
D(Ry,) = D(Ra,)
is an isomorphism. Therefore, for each j > 0, the map
H{(D(Ry.,)) =5 Hy(D(Rz,))

is an isomorphism. But the R-module H}(D(R,,)) is m-torsion and hence is
Rxy-torsion. So, we get Hj(D(R,,)) = 0, for each j > 0. Hence, by using the
exact sequence (2.5.1) we achieve the isomorphisms

Egyror)(R/m) = D(R/Twn(R)) = Hq(D(R/Tn(R))) ~ Hy(D(Hpy, (R)))-
Therefore, for each ¢ > 0 we get the isomorphism
Extip(T, Ho(D(Hpy, (R)))) = ExtR(T, Egyr,r)(R/ m)).
On the other hand, from the exact sequence
0 — H2(R) - R — R/Tw(R) — 0,
we achieve the exact sequence
0 — Eg/ro(ry(R/m) = Er(R/m) — D(H\(R)) — 0,
which yields the isomorphism of R-modules
Extiy (T, Erjr,(ry(R/m)) = ExtR(T, D(H(R))), for each i > 1,
and the exact sequence
Homp(T, D(Hp(R))) = Extp(T, Egr,(r)(R/m)) — 0.
Now, it is clear that
Jo € Ann @D Extiy (T, Egyr,(r) (R/ m))
i=1
and therefore one has
(e}
Jo € Ann (P Extly (T, Hy (D(Hp,, (R)))).-
i=1
Moreover, using [1, Exercise 2.1.9] and Lemma 2.1 we have
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H{y, ) (Hpay (R)) = Hy(Hp,, (R)) = Hy(R)

and hence FRIQ(H}%M(R)) = Fm(H}le (R)) ~ HL(R). Therefore, we obtain

the exact sequence
0 — Hy(R) = Hpy, (R) = Hpyy (R)/T ey (Hpy, (R)) = 0,
which induces the exact sequence
0= D(Hhy, (R)/T oy (Hby, (R))) = D(Hb, (R) = D(HL(R)) = 0. (25.2)
The exact sequence (2.5.2) induces the exact sequence
HY(D(HL(R))) & HL(D(H},, (R)/The,(H,, (R))))
B ml(D(Hh,, (R) B HL(DHL(R). (25.3)
Let
Ay = Hy(D(Hy(R))), Bi = Hy(D(Hpy, (R)/T Rey (Hpg, (R)))),
C1:= Hy(D(Hp,, (R)) and Dy := Hy(D(Hy(R))).

Then, the exact sequence (2.5.3) yields the exact sequences
0 — ker(f3) - Cy — im(f3) — 0, (2.5.4)

and
0 — im(f1) = B1 — im(f2) — 0. (2.5.5)
Since, Jiim(f3) = 0, it follows that (Jp N J1)im(f3) = 0 and hence one
sees that
(Jo N Jy) Exth(T,im(f3)) = 0, for each i > 0.
Moreover, from the fact that

o0
Jo € Ann @ Exth (T, C1),
i=1
we get
oo
(Jo N J1) € Ann @D Extp (T, Ch).
i=1
The exact sequence (2.5.4) yields the long exact sequence

0 — Homp(T, ker(f3)) — Hompg(T,C1) — Homp(T,im(f3))
— BExth (T, ker(f3)) — Exth(T,C1) — BExth(T,im(f3)) — -- -,
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which implies that
(JonJ1)* C Ann@ Ext'y (T, ker(f3)).

=1

Hence, one has
(JonJ1)% C Ann@Eth (T,im(f2)).

Since Jiim(f1) = 0 it is clear that (Jy f Jl)lm(fl) = 0 and hence one sees that
(Jo N J1) Exth(T,im(f;)) = 0, for each i > 0.
So, the exact sequence (2.5.5) yields the exact sequence
0 — Hompg(T,im(f1)) — Homp(7T, B;) — Hompg(T,im(f2))
— Bxtp(T,im(f1)) — Extp (T, B1) — Extp(T,im(f2)) — -+,
which implies that

(JoNJ1)* € Ann @) Exti (T, By) =
=1

Ann@Hl (Hho, (R)/T sy (Hho, (R))).

Let I'y := FRM(H}% (R)). Then, by using [1, Remark 2.2.7 and Theorem
2.2.16] we achieve the exact sequence

0 = Hpy, (R)/T2 = (Hp, (R)/T2)ay = Hppyy (Hpy, (R)) = 0,
which by using [6, Corollary 3.5], yields the isomorphic short exact sequence
0 Hhy, (R)/Ts — (Hhy, (R)/Ta)ay — H2 () = 0. (25.6)
From the exact sequence (2.5.6), we get the exact sequence
0— D(H?, ) (R)) = D((Hpg, (R)/T2)a,) = D(Hpy,, (R)/T2) = 0 (2.5.7).

By, the same argument as in the first lines of the proof, the exact sequence
(2.5.7) yields the isomorphism

HE(D(HE,, 4,)(R))) = Hy(D(Hp,, (R)/T2)),

(w1,22)

1, mg)(

which implies that

(Jo N J1)* € Ann @) Extip (T, Ha(D(H{,, ., (R)))).
=1

Furthermore, by using [1, Exercise 2.1.9] and Lemma 2.1 we get

T Ros (Hiy, ) (R)) = Hiyy (HE,, 4, (R)) =~ H J(HE,, 2y (R)) = HY(R)

(z1,x2,73 (z1,22
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and hence FRxg(H(Qxlm)(R)) = Fm(H(lem)(R)) ~ H2(R). Therefore, we get
the exact sequence

0 — Ho(R) = HZ, ) (R) = H{, oy (R)/T ey (H

(a:l,:cz) J31@2)

(R)) =0,
which induces the exact sequence

0= D(H,, 1) (R)/TRag (HY,, 1y (R)) = D(HE,, 0 (R)) =

(z1,x2 (z1,22 (w1,m2)
D(H2(R)) — 0. (2.5.8)

Let I's := gy (H?

. (w1,22
obtain the exact sequence

)(R)). Then, from the exact sequence (2.5.8) we

Hy(D(Hy(R))) = Hy(D(HE, ) (R)/T3))

(z1,72)
2y Ho(D(H?,, ., (R))) 2 Ha(D(Hg(R))). (2.5.9)
Let
Az = Hy(D(HR(R))), By := Ha(D(HE,, ) (R)/T3)),
Cy i= Hy(D(H?,, ,,\(R))), Ds:= Ha(D(Hy(R))).

Then, the exact sequence (2.5.9) yields the exact sequences

0 — ker(gz) — C2 — im(g3) — 0, (2.5.10)
and
0 — im(g1) — B2 — im(g2) — 0. (2.5.11)

Since Joim(g3) = 0 it is clear that (Jo N J; N J2)im(g3) = 0 and hence
(Jo N Jy N Jy) Ext(T,im(g3)) = 0, for each i > 0.
Moreover, from the fact that
(JoN Jp)? C Ann@ Exth (T, Cy),

i=1
we get

o0
(JoNJi N J2)* € Ann @) Extiy (T, Cy).
i=1
The exact sequence (2.5.10) yields the long exact sequence

0 — Hompg(T, ker(gs)) — Hompg (T, Csy) — Homp(7T,im(gs))
— Extp(T, ker(g3)) = Extp(T, Cy) — Extp(T,im(gs)) — -+ ,
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which implies that

(JonJiNJy)tC Ann@ Ext’ (T, ker(g3)).
i=1
Hence, one has

(JoN JiNJy)* C Ann@ Extl (T, im(gz)).
i=1
Since Joim(g1) = 0 we see that (Jo N J; N J2)im(g1) = 0 and hence
(Jo N Jy N Jo) BExth(T,im(g1)) = 0, for each i > 0.
The exact sequence (2.5.11) yields the exact sequence
0 — Homp(T,im(g1)) — Hompg(7, B2) — Hompg(T,im(g2))
— Exth(T,im(g1)) — Exth(T, By) — BExth(T,im(g2)) — - - -,
which implies that
(JoNJi N J2)° € Ann @) Extix (T, By) = Ann @ Ha(D(HE,, ., (R)/Ts)).
i=1

(z1,22)
i=1

Let I's := F};;gcg(H(Qx1 m)(R)). Then, by using [1, Remark 2.2.7 and The-

orem 2.2.16] we get the exact sequence

0= H{,, ) (R)/T3 = (HZ, 1) (R)/Ta)ey — Hpyy (HE,, 0 (R)) =0,

1,22 (z1,22)

which by using [6, Corollary 3.5], yields the isomorphic short exact sequence

0 HE oy (R)/Ts = (HE,, 4y (R)T3)ay — H{ (R) = 0. (2.5.12)

9
Z1,T2 (x1,22,73)

From the exact sequence (2.5.12) we get the exact sequence

0 = D(H{y, 4y 0q)(R)) = D((HE,, 4y (R)T3)as) —

(z1,72)

D(H},, ,,)(R)/T3) =0 (2.5.13).
By the same argument as in the first lines of the proof, the exact sequence
(2.5.13) yields the isomorphism

Hy (D(H! (R))) = Hy(D(H,, 4,)(R)/T3)),

(z1,72,23) (w1,22)

which implies that

(JoNJyNJy)° C AnnéExtiR(T, H3(D(H? ) (R))))-

(x1,22,23
=1

Proceeding in the same way, after finitely many steps we get

d—1 d—1
Am @ HL(R) = ([
i=0 i=0
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C  Amn P Exti(T, H(D(HE, . (R))))
i=1
— A @D Extia(T, HL(D(HE(R))).
i=1
(ii) Since T can be viewed as the direct limit of its finitely generated

submodules, we have
T =1lim Ty,
—

AEA
with finitely generated R-modules Ty. Then for each integer ¢ > 0 and each
A € A, by the adjointness we have
D(Extip(Th, HE(D(HL(R))))) = Torl (T}, Qp).

Therefore, by (i), for each integer i > 1 we have
d—1
(Ann @) Hi,(R)) C Ann Exti(T, HE(D(HL(R))))
i=0

C  Ann D(Exty(Ty, Ha(D(Hg(R)))))
= AnnTorlY(Ty, QR).

So, as the torsion functor TorlR(—, Qp) commutes with direct limits, it follows
that

d—1
(Ann@H;(R))zd_l C ﬂ Ann Tor?(Ty, QR)
1=0 AEA

C  Annlim Tor®(Ty,Qgr)
—
AEA

= AnnTorl*(lim Th,Qg)
xeh

= AnnTor’Y(T,Qpg).
Thus, it is clear that
d—1 0
(Ann @ H.(R))?*! C Ann @ Torl (T, QR).
=0 i=1 .

The following well known result is needed in the proof of Corollary 2.7.

LEMMA 2.6 (See [4, §19 Lemma 1]). Let (R, m) be a Noetherian local ring
and M be a non-zero finitely generated R-module. Then

pdp(M) = sup{n € Ny : TorZ(R/m, M) # 0}.



360 K. Bahmanpour 10

The following consequence of Proposition 2.5 is needed in the proof of
Theorem 2.8. Recall that for an R-module M the free locus of M is defined as

frl(M) := {p € Spec R : M, is a free Rp-module}.

COROLLARY 2.7. Let (R,m) be a Noetherian complete local ring of di-
mension d > 1. Then Qg is a finitely generated R-module of dimension d such
that Assg QQr = Asshg R. Moreover, we have

d—1
Spec R\V (Ann @ H!(R)) C frl(QR).
i=1

Proof. In view of [1, Theorems 7.1.3 and 7.3.2] the R-module H&(R) is Ar-
tinian with the set of attached primes Asshr R. As by the hypothesis R is com-
plete, one sees that D(HZ(R)) is a finitely generated R-module of dimension d
with Assg D(HZ(R)) = Asshg R and hence by [1, Theorems 7.1.3 and 7.3.2] the
R-module H(D(HZ(R))) is Artinian with Attg HS(D(HS(R))) = Asshg R.
Since by the hypothesis R is complete we see that D(HS(D(HZ(R)))) = Qg is
a finitely generated R-module of dimension d with Assg Q2 = Asshpr R.

Now let p € Spec R\V (Ann @f:_ll Hi(R)) and let j > 1 be an integer.
Since by Proposition 2.5 one has

d—1
(Ann@ H:(R))*~1 C Ann Torf(R/p7 Qr),
i=1

we get p & Supp Torf(R/p, Qpr) and hence

Tor:* (Ry/ p Ry, (QR)p) = (Torf(R/p, QR))p = 0.

So, if (2g)p, = 0 then it is clear that p € frl(2g). But, if (Qg), # 0 then
by Lemma 2.6 we deduce that pdg, ((€2r)p) = 0 and hence as R, is a local
Noetherian ring and (Q2g)y is a finitely generated projective Ry-module we see
that (Qg), is a free Ry-module and so p € frl(Qgr). O

Now we are ready to state and prove the main result of this paper.

THEOREM 2.8. Let (R, m) be a complete local generalized Cohen-Macaulay
ring of dimensiond > 1. Then the R-module Q2 is generalized Cohen-Macaulay.

Proof. Since by the hypothesis R is a generalized Cohen-Macaulay ring,
from [1, Exercise 9.5.7(i)] it follows that Assg R\{m} = Asshr R and R, is
Cohen-Macaulay ring for all q € Spec R\{m}.

On the other hand, by the definition we have V' (Ann @?;11 Hi(R)) C {m}
and so for all g € Supp Qr\{m} by Corollary 2.7, ()4 is a free Ry-module.
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Now, as Ry is a Cohen-Macaulay ring for all q¢ € Spec R\{m}, it follows

that ()4 is a Cohen-Macaulay Ry-module for all g € Spec R\{m}. Moreover,
by Corollary 2.7 we have Assg 2r = Asshpr Qpg.

Finally, since R is a complete local ring it follows from Cohen’s Structure

Theorem that R is a homomorphic image of a regular ring.

Now, it follows from [1, Exercise 9.5.7(ii)] that Qg is generalized Cohen-

Macaulay R-module. [

[9]
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