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For a positive integer N, hypergeometric Cauchy numbers cn,, are defined by

1 B (— 1)1\7 1 N/N i "
2P (LN, N+ 1 -2)  log(1+a) — Y0 (-)mtan/n

n=1

where 2Fi(a, b;c; z) is the Gauss hypergeometric function. When N =1, ¢, =
c1,n are the classical Cauchy numbers. In 1875, Glaisher gave several interest-
ing determinant expressions of numbers, including Bernoulli, Cauchy and Euler
numbers (see (4), (6) and (3) in the text). Hypergeometric numbers can be rec-
ognized as one of the most natural extensions of the classical Cauchy numbers
in terms of determinants (see Section 2), though many kinds of generalizations
of the Cauchy numbers have been considered by many authors. In addition,
there are some relations between the hypergeometric Cauchy numbers and the
classical Cauchy numbers. In this paper, we give the determinant expressions of
hypergeometric Cauchy numbers and their generalizations, and show some inter-
esting expressions of hypergeometric Cauchy numbers. As applications, we can
get the inversion relations such that hypergeometric Cauchy numbers as ¢y, /n!
and the numbers N/(N + n) are interchanged in terms of determinants of the
so-called Hassenberg matrices.
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1. INTRODUCTION

Denote o F}(a, b; ¢; z) be the Gauss hypergeometric function defined by

> (n) (py(n) n
Filahes) =3 QOO

o ()™ nl

with the rising factorial ()™ = z(z+1)...(z+n—1) (n > 1) and () = 1.
For N > 1, define the hypergeometric Cauchy numbers ¢y, ([19]) by

1 —1)N=1N/N T
(1) F(LN;N+1,—2) = N-1 ‘ n—1,n :ZCN”L*'
24711, LIV + L=z log(l + I‘) - anl (_1) T /n n=0 "
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When N =1, ¢, = ¢1,, are classical Cauchy numbers ([5]) defined by

x s
S T
|
log(1+z) <= "n!
Notice that b, = ¢,/n! are sometimes called the Bernoulli numbers of the
second kind. In addition, the hypergeometric Cauchy polynomials cas,n (%)
([19]) are defined by

= c —
+x)% 2k s N+ L~z +x)* T
(I+2)2 2R (M,N;N +1;—z)  (1+z)7 &My

oo n
z
= cnnn(2)
n=0

so that ¢ yn(0) = cn -

Similar hypergeometric numbers are hypergeometric Bernoulli numbers
By, and hypergeometric Euler numbers. For N > 1, define hypergeometric
Bernoulli numbers By, ([9, 10, 11, 12, 14, 33]) by

1 N/N'
2 = = n 5
@) AN+ L) oo =y N n Z o

where 1 F}(a;b; z) is the confluent hypergeometric function defined by

. (a)™ zn
1F1(a;b;2) = Z ((b))(n) ol

When N =1, By, = B,, are classical Bernoulli numbers, defined by
& n
T x
et —1 Z Bnﬁ
n=0

The hypergeometric Euler numbers Ey ,, ([30]) are defined by

1
E
V(LN + 1, (2N + 1)/2;22/4) Z N” nl’
where 1 F5(a; b, ¢; z) is the hypergeometric functlon deﬁned by
o (a)(n) prg

1Fy(a;b,¢;2) = Z Wﬁ

n=0

When N = 0, then E,, = Ey,, are classical Euler numbers defined by

cosh x Z E
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Several kinds of generalizations of the Cauchy numbers (or the Bernoulli
numbers of the second kind) have been considered by many authors. For ex-
ample, poly-Cauchy numbers [17], multiple Cauchy numbers, shifted Cauchy
numbers [27], generalized Cauchy numbers [24], incomplete Cauchy numbers
[20, 22, 25], various types of g-Cauchy numbers [4, 18, 21, 28], Cauchy Carlitz
numbers [15, 16]. The situations are similar and even more for Bernoulli num-
bers and Euler numbers. Hypergeometric numbers can be recognized as one of
the most natural extensions of the classical numbers in terms of determinants,
though many kinds of generalizations of the classical numbers have been con-
sidered by many authors. In [23, 30], the hypergeometric Euler numbers En 2y,
can be expressed as

(2N)! 1
(2N+2)!
(2N)!
Exon = (=1)"(2n)t] BV (N20,n>1).
E . 1
(2N)! (2N)! (2N)!
@2N+2n)! 7 (2N+4)! (2N+2)!

When N = 0, this is reduced to a famous determinant expression of Euler
numbers (cf. [6, p.52]):

o 1
1 S
(3) Eop = (=1)"(2n)!|
Ty @ 5 1
(2”1—2)- ( ne ! T
(2n)! (2n—2)! 4! 2!

In addition, When N = 1, Ej, can be expressed by Bernoulli numbers as
By = —(n— 1)B, (30).

In [1], the hypergeometric Bernoulli numbers By, can be expressed as

N! 1

(N+1)!
N! N!

(N+2)! (N+1)!

By = (—=1)"n! : : 1 (N>1,n>1).
N! N! N! 1
(N¥n—1)!  (N4n—2! ~°° (NfD)!

N! N! N! N!

(N-+n)! (N+n—D)! 77 (N+2)! (N+1)!

When N = 1, we have a determinant expression of Bernoulli numbers ([6,
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p.53)):
5 1
1 1
3! 2!

(4) By = (~1)"n!| : 1
1 1 1
n! (n—1)! 2!
1 1 1 1
=S 31

In addition, relations between By, and By_;, are shown in [1].

In this paper, we shall give similar determinant expression of hypergeo-
metric Cauchy numbers and their generalizations. We also study some inter-
esting relations between the hypergeometric Cauchy numbers and the classical
Cauchy numbers. As applications, we can get the inversion relations such that
hypergeometric Cauchy numbers as ¢y, /n! and the numbers N/(N + n) are
interchanged in terms of determinants of the so-called Hassenberg matrices.

2. A DETERMINANT EXPRESSION OF THE
HYPERGEOMETRIC CAUCHY NUMBERS

From the definition (1), we have

n

(5) Z M =0 (n>1)
par (N +n — i)l -
with ey o =1 ([19, Proposition 1]).
By using this expression, the first few values of ¢y, are given:

cno =1,

N
CN,21 = mv

2N
NETTINT I 1)
_ G6N(N*4+N+2)

NIZTINT13(N+2) (N +3)°

AIN(N5 +5N* + 14N3 + 24N? + 20N + 12)

N4 = (N + DA(N + 2)2(N + 3)(N + 4) ’

5IN(N7 + 8N+ 35N° + 96N* 4+ 160N3 + 184N? + 116N + 48)
C = .
.o (N +1)3(N +2)2(N + 3)(N +4)(N +5)

In [19, Theorem 1], an explicit expression of hypergeometric Cauchy numbers
is given.
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LEMMA 2.1. For N,n > 1, we have

n
1
CN, :(_1)nnl (_N)r . .
RO T et
iqseir>1

Such values of ¢y, can be expressed in terms of the determinant.

THEOREM 2.2. For N,n > 1, we have

o 1
N-+1
N N
N+2 N+1
CN,n = n! . 1
N N N 1
N+4+n—1 N+4n—2 N4+1
R NN
N+n N+n—1 N+2 N+1

Remark. When N = 1, we have a determinant expression of Cauchy numbers
([6, p.50]):

(6)

1
5 1
1 1
3 2
¢, = nl : 1
1 1
TS 7 1
1 1 1 1
n+1 n 3 2

The value of this determinant, that is, b, = ¢, /n! are called Bernoulli numbers
of the second kind.

(7)

Proof of Theorem 2.2. Put by, = cny/n!. Then, we shall prove that

Since by (5)

we have

_N_ 1
N+1
NN
N+2 N+1
bN,n: : 1
N N N 1
N+n—1 N+n—2 N+1
N i NN
N+n N+n— N+2 N+1
n—1
cN § :(_1)n—z—1n7| N CNi
e I N+n—i "
=0
n—l (—1)n—i-1
bN,n:NE by -
— +n-—1
7=
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When n =1, (7) is true as by = N/(N + 1). Assume that the result (7) is
true up to n — 1. Then, by expanding the last column of the right-hand side
of (7), it is equal to

_N_ 1
N N
N ) N?i-2 N?i-l .
N+ 1 N,n—1 N N .. ]{[
waz N+]<[173 Nﬁl ]{[
N+n N+n—1 3 N+2
N 1
Nyt N
- N ) ) . Nj&-2 N'+1 '
—N+1Nn—1 N+2N,n—2 N N . ]]\} )
N+J\TIL_3 N+J<7L—4 Nﬁl N
N+n N+n—1 N+4 N+3
_ N b b + b
—N_{_anfl N+2N,n72 N+3N,n3
1
L
N+n N+n—1

( 1>n i—1
_NZN—i—n -bni = bnn -

Note that

N
by, = —— d byo=1.
. R N an N,0

3. A RELATION BETWEEN Cyxy AND Cn_1 n

In this section, we show the following relation between cy,, and cy_1 .

ProrosiTION 3.1. For N > 2 and n > 1, we have

n m
_ N n! CN— 1zk1 ig+1
o= () X A Il

m=0 0<im <+ <11 <ip=n

where ig = n.

Examples

(i) eng =cn—11+
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. N CN-13 ) N CN-1,2
— _ - 2 _ _ - X N
(ii) en2 =cn—12+ TN ( 3 ten-rien-12) +{ 1w 5

LEMMA 3.2. For N > 2 and n > 0, we have

n+1
CNn = CN—1,n — ( 5 ( >CN,mCN—1,n—m+1-

m=0

Proof. From (1), we have

v @V N—2 . 13:
(—1) ZCNn log(1 + ) — Z
! n=1
N1
_(_DN_QN - 1}

By dividing log(1 + z) — Zivz_lz(—l)"_lx”/n, we have

1-N > " > " 1 > "
N T X ZCN—I,nH = ZCNWH - ZCN—l,nH )
n=0

n=0 n=0
and hence
o]
(1-N)n mtk
DN N-in- 1* ZCNn S Z ZCNmCN e —
n=1 m=0 k=0
x o0 n :L‘n
= Z CN,n F *Z Z CN,mCN—-1,n—m m‘(n_m)'
= n=0m=0
n z"
- Z Z CN.mCN—-1,n—m o
m n!
m=0
Therefore, we have

N { - n

CN—1n—1= 77—~ _ YCN,n — < >CN,mCN1,nm}
(1-—N)n L= \m
Sl 60 > (1) |
=T _ 3\ CN;n—1CN—-1,1 — CN.mCN—-1,n—m
(1-N)n n—1 L= \m
-2
N (1-N)n < n
= (1 — N)n { N CNn—1— Z:O m CNmCN—-1,n—m
m=

gl
o [ V]

B N — [n
= CN,n—1 (1 — N)n m CN,mCN—-1,n—m;

m=
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for n > 1, and the proof is complete. [

Proof of Proposition 3.1. We give the proof by induction for n. In the
case n = 1, the assertion means

N eN-1,00N-12
1-N 2 ’
and this equality follows from c¢n; = N/(N+1), ey—1,1 = (N—1)/N, eny—1,0 =

land cy_12 = —2(N —1)/N?(N +1). Assume that the assertion holds up to
n — 1. By Lemma 3.2, we have

CN,1 = CN-1,1 1

N il
CN;n = CN-— n_— CN,i; C n—i
N, N—1, T DN =1 N,itCN—1,m—i1+1

i1=0 Zl
N it
= CN— — CN— —i
N—1,n (n+1)(N—1) = il N—-1,n—i1+1

2 —1 . m
y Zl N \™ Z iq! ‘ H CN 1,551 —ix+1
1-N 3 'CNfl,zm B 3

T Tp_1 —1 1!
m=1 0<im<<iy ™ k=2(k 1=k +1)

n—1 il

B N \™ n! o CN i1 —igt1
PN S YD (1_N) LN | SR

Im! Th_1 — 1 1!
=0 =1 0<ipy <--<i1 k=1 (ig—1 —ix +1)

n N m | m ) .
et X (725) 8 e flpmes
= CN-1,n — 1-N il N—1,im, . -

: T—1 — 1 1)!
0<ipy < <11 <ip=n m k=1 ( k—1 k+ )

SR S T e

z —1 1
0 iy < iy <ig=n '™ k-1 — i+ 1)!

O]

4. MULTIPLE HYPERGEOMETRIC CAUCHY NUMBERS

For positive integers N and r, define the hypergeometric Cauchy numbers
c%)n by the generating function

1 _ ( 1)N 1 N/N "
(21 (1, N; N +1;-2))"  \log(l +2) — SN (=1)n—1an/n

n=1
o0 . 2"
(8) =Y Ny
n=0 ’
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From the definition (8),

(_1)N—1xN r
N
_ i(_l)i+N—1xN+z‘ T/ C(T) "
; N +i o N

=0

— l,TN(_l)T(N—l) i Z (_l)ll' l;l ic(r) ﬁ
(N +id1)--- (N +i,) 1! N

1=0 i1+-+ir=l
i15eeesip >0

X n —D)" " (n—m)! () "
—NCy Y Y Y <m> (]57 +)i1)”(' (N+)Z_T)C§V?mm.

n=0m=0 i1 +:+ir=n—m
i1,e0s8r >0

Hence, as a generalization of Proposition (5), for n > 1, we have the
following.

PROPOSITION 4.1.
(_ 1)nfm (r)

g cN,m o
D RETnEEnETa ikl

m=0 i1+ +ir=n—-m
i15eeesir >0

By using Proposition 4.1 or

(9) ") - n—1 (71)n—mcg\7})m
C = —n! N . .
N,n mzo i1+---+zi7-—n—m m!(N + 11) e (N + Zr)
i1seeeyir >0

( (r)

with 01\7})0 =1 (N > 1), some values of cy/,
the following.

(0 < n < 4) are explicitly given by

c%?ozl,
rN
G-
NN+

C(T) _ T(T—i— 1)N2 _ 2rN

N2 O(N+1)2 N+2°

o0 r(r+1)(r + 2)N3 B 6r(r + 1) N> 6rN
Ns (N +1)3 (N+1)(N+2) N+3’
) r(r+1)(r+2)(r +3)N* 3 12r(r +1)(r +2)N3
N4 (N +1)* (N +1)2(N +2)
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24r(r + 1)N? 12r(r 4+ 1)N? _ 24rN
(N+D)(N+3)  (N+22 N+4

As a generalization of Lemma 2.1, we have an explicit expression of c%)n.

PrOPOSITION 4.2. For N,n > 1, we have

K=Y S Do) Dilen),
k=1

where

(10) D)= Y Al

The first few values of D, (e) are given by the following.

1) = 5

) = g + o

D8 = 55t (NT(+T1_)(1JLN+22) i (g)wjlf’
D)= 1 (J\;Yl_)(ljszjm i (;)(NTDQ

T (T 2 1) N+ 1;\2]2N ) (D (N]fl)‘l ‘

We shall introduce the Hasse-Teichmiiller derivative in order to prove
Proposition 4.2 easily. Let F be a field of any characteristic, F[[z]] the ring of
formal power series in one variable z, and F((z)) the field of Laurent series in
z. Let n be a nonnegative integer. We define the Hasse-Teichmiiller derivative
H™ of order n by

o0 o0
H(n) (Z szm> _ Z . <m> =
m=R m=R "

for Y0 pemz™ € F((2)), where R is an integer and ¢, € F for any m > R.
Note that (™) =0 if m < n.

The Hasse-Teichmiiller derivatives satisfy the product rule [35], the quo-
tient rule [7] and the chain rule [8]. One of the product rules can be described
as follows.
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LEMMA 4.3. For f; € F[lz]] (i =1,...,k) with k > 2 and forn > 1, we

have _ A
HM(fy - f) = Z HOO(f) - HO(f)

i1+ tip=n
150y =0

The quotient rules can be described as follows.

LEMMA 4.4. For f € F[[2]]\{0} and n > 1, we have

any  m® <}‘>:Z(fljk)l S HE(f)- HO(f)

k=1 i1+ tig=n
i1seenif>1
~ (n+1 (=" (i1) (ik)
(12) =2 por)mr 2 HYWD-HYY).
k=t EN s

Proof of Proposition 4.2. Put h(x) = (f(a:))r, where
SENCDTE SN

f(z) = (_1)N—1% = N+j
Since
i = (—1)jN J —i
HO(f) M—; = ()y -
(-1)'N
T N+

by the product rule of the Hasse-Teichmiiller derivative in Lemma 4.3, we get

H®(R) — Z H(il)(f)‘xzo e H(ir)(f)‘

i1+ tir=e
i15eenyipr >0

_ oy GO D

i1+ tir=e
i1 0eeyie 20

€ NT e €
=(-1) ;;: CEEA A (=1)°Dy(e).

i15eesir >0
Hence, by the quotient rule of the Hasse-Teichmiiller derivative in Lemma 4.4
(11), we have
(r)
Ny C1)
n! hE+1

k=1

o Hew) (p
=0 ( ) z=0

> HE(h)

x=0 e1+tep=n
€1 ,enns ep=>1
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n
=> (=¥ > (=1)"D.(er) - Drler)
k=1 et tep=n
€1,5ens ep>1
]

. . T
Now, we can also show a determinant expression of cg\,)n.
b

THEOREM 4.5. For N,n > 1, we have

D.(1) 1
Dy(2) Dy(1)
(r) — . .
CN,n n: : . 1
Di(n—1) Dy(n—2) D.(1) 1
D,(n)  Dy(n—1) D,(2) D,(1)

where D,(e) are given in (10).
Remark. When r = 1 in Theorem 4.5, we have the result in Theorem 2.2.

Proof. For simplicity, put b%)n = c%)n /n!. Then, we shall prove that for

any n > 1

Dy(1) 1

Dy(2) Dy(1)
13 W= A

Dy(n—1) Dy(n—2) D,(1) 1

Dy(n)  Dy(n—1) D,(2) D,(1)

When n =1, (13) is valid because
B rN” N )
D,(1) = NONTD N1 by -

Assume that (13) is valid up to n — 1. Notice that by (9), we have

b, =Y ()Y D).
=1

Thus, by expanding the first row of the right-hand side (13), it is equal to

D, (2) 1
Dy(3) Dy(1)
Dr(l)bg\;,)nfl - 1
Dr(n_ 1) Dr(n_g) Dr(l) 1
Dr(n) Dr(n_2) Dr(2) Dr(l)
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D, ()b, — De(2)by),

Dy(3) 1
D,(4) D)
+ : : S |
Dr(n_l) Dr(n_4) Dr(l) 1
Dr(n) Dr(n_s) Dr(2) Dr(l)

= D),y — De(@) -+ (—1)

n—1

_Z l 1D gV)n l_bgV)n

Note that b%?l = D,(1) and b%’)o =1. 0O

5. A RELATION BETWEEN C{, AND Cy v

(r)

In this section, we show the following relation between c,/,, and ¢y .

LEMMA 5.1. Forr > 2 and N,n > 0, we have

|
(7‘) . n:
CNp = E I | CN,’M "'CN,nM
TNyl
T yenes np>0
ny+-+nr=n

Proof. From the definition (8), we have
et - (Sont )

|

n! T

= E E RN CNmy "'CN,nrﬁa
nyl---ng! n!

and we get the assertion. [

Examples
(i) <o = o

(ii) c%?l =TrcN

(iii) 0%7)2 = TCNQC]NVBI +r(r— l)c?\,’lc}“\;g
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6. APPLICATIONS BY THE TRUDI’'S FORMULA AND
INVERSION EXPRESSIONS

The expressions in Theorem 2.2 and Theorem 4.5 are useful for several
applications too. We can obtain different explicit expressions for the numbers

(r)

C]\Tf'rw cn,n and ¢, by using the Trudi’s formula. We also show some inver-
sion formulas. The following relation is known as Trudi’s formula [31, Vol.3,
p.214],[36] and the case ap = 1 of this formula is known as Brioschi’s formula
[2],[31, Vol.3, pp.208—-209).

LEMMA 6.1. For a positive integer m, we have

al a2 DR ... am
ap ai

ai a2

ap ai

tit- i
m—t1—-—tm t1 .t t
= E < (—ag)™ ™™ mayag g
t1,.--,tm

t1+2to+-+mtm=m

t1+---+tm) _ (atettm)!

where ( bt T are the multinomial coefficients.

In addition, there exists the following inversion formula (see, e.g., [26]),
which is based upon the relation:

n

S ()" FarR(n —k) =0 (n>1).

k=0
LEMMA 6.2. If {ap}n>0 is a sequence defined by ap =1 and
R(1) 1 a; 1
= R(_2) h h , then R(n) = a.2
: . . 1 : . o1
R(n) --- R(2) R(1) o Y 51
Moreover, if
1 1
« 1 R(1 1
A= ! , then A™! = W
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From Trudi’s formula, it is possible to give the combinatorial expression
fbee ot
S < ot > (1)) R(2) - R(n)'
t14+2to+-4nt,=n 1ye--5lpn

By applying these lemmata to Theorem 4.5, we obtain an explicit expression

for the generalized hypergeometric Cauchy numbers c%)n. A different version
can be seen in [29].

THEOREM 6.3. Forn >1
N
t et
=nt > ( - ) (=17 D (1) D)2 - Dy(n)
t,.

Lt
142t A ntn=n v

where Dy, (e) are given in (10). Moreover,

(r)

C
a1
Dy(n)=| 2 ,
N e cvh
nl 2! 1!
and
1 —1
&0 1
1 }) D.(1) 1
5 1 _|p@ by 1
ST S D) - Di2) D(1) 1
n! 2! 1
When r = 1 in Theorem 6.3, we have an explicit expression for the

numbers ¢y .

COROLLARY 6.4. Forn >1

—ty ==t
N =nl > (” tll ”) (—1)tat ot
..

.t
t142ta+-+ntp=n »n




378 M. Aoki, T. Komatsu 16

and .
10 1
N Cg’!’Q . .
N+n N : T . 1 ’
C]\/:n CN2 CN,1
n! 2! 1!

When r = N = 1 in Theorem 6.3, we have a different expression of the
classical Cauchy numbers.

COROLLARY 6.5. We have forn > 1

t o4t
Cp = n! Z < 1+ “; n> (_1)n—t1—~~~—tn
s n

t1+2to+-+ntn=n by, -
1\ 71\ 1 \™
X J— p— )
() () ()

and

O
|

»—
|
S ST I

n—+1

—_

o
S

€2
2!

J—y

7. ADDITIONAL COMMENTS

Hypergeometric Cauchy numbers are not integers, but fractions. Hence,
combinatorial interpretations of the above results or congruent relations seem
to be difficult to obtain. Nevertheless, definition (1) is not obvious or artificial,
but has motivations from Combinatorics, in particular, graph theory. In 1989,
Cameron [3] considered the operator A defined on the set of sequences of non-
negative integers as follows. For = {z,}n>1 and z = {z,}n>1, let Az = 2,
where

o] o] -1
(14) L4 at” = (1 -y xnt”> .
n=1 n=1
For hypergeometric Cauchy numbers, we have
_ ()i
E R e

and vice versa. If x enumerates a class C, then Az enumerates the class of
disjoint unions of members. More concrete examples can be seen in [3].
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