
ON THE GENERALIZED BINOMIAL EDGE IDEALS OF
GENERALIZED BLOCK GRAPHS

FARYAL CHAUDHRY and RIDA IRFAN

Communicated by Lucian Beznea

We compute the depth and (give bounds for) the regularity of generalized bino-
mial edge ideals associated with generalized block graphs.

AMS 2010 Subject Classification: 16E05, 05E45, 13C15.

Key words: generalized binomial edge ideals, generalized block graph, depth,
Castelnuovo-Mumford regularity.

1. INTRODUCTION

Generalized binomial edge ideals were introduced by Rauh in [18]. They
are ideals generated by a collection of 2-minors in a generic matrix. The interest
in studying these ideals comes from their connection to conditional indepen-
dence ideals.

Let X = (xij) be an m×n-matrix of indeterminates and G be a graph on
the vertex set [n]. The generalized binomial edge ideal JG of G is generated by
all the 2-minors of X of the form [k, l|i, j] where 1 ≤ k < l ≤ m and {i, j} is an
edge of G with i < j. When m = 2, JG coincides with the classical binomial
ideal JG introduced in [11] and [16].

Generalized binomial edge ideals are a natural extension of the binomial
edge ideals considered in [11] and [16]. Some of the properties of the binomial
edge ideal JG extend naturally to its generalization JG. For example, as it was
proved in [18], JG is a radical ideal and its minimal primes are determined by
the so-called sets with the cut point property of G.

From homological point of view, we are interested in studying the res-
olution of generalized binomial edge ideals and of the numerical data arising
from it. There are already many interesting results concerning the invari-
ants of classical binomial edge ideals. For instance, it is known that the reg-
ularity of JG is bounded below by 1 + `, where ` is the length of longest
induced path in G and bounded above by the number of vertices of G; see
[15]. Other nice results on the homological properties of JG may be found in
[1, 3, 7, 8, 10, 12, 13, 14, 19, 20, 21, 22].
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For generalized binomial edge ideals, not so much is known about their
resolutions. For example, Madani and Kiani computed in [20] some of the
graded Betti numbers of binomial edge ideals associated to a pair of graphs.
In particular, they prove that JG has a linear resolution if and only if m = 2
and G is the complete graph, and JG has linear relations if and only if G is a
complete graph.

In this paper, we study the ideal JG where G is a generalized block
graph. We show that depth(JG) = depth(in<(JG)) and we express this depth
in terms of the combinatorics of the underlying graph G. Here < denotes
the lexicographic order on the set of indeterminates ordered naturally, that is,
x11 > · · · > x1n > x21 > · · · > x2n > · · · > xmn. Moreover, for m ≥ n, we
show that reg JG = reg(in<(JG)) = n, where n is the number of vertices of the
graph G. When m < n, then we provide an upper bound for the regularity of
in<(JG) and, therefore, for the regularity of JG as well. Our results generalize
the ones obtained in the papers [3, 8, 12] for classical binomial edge ideals
associated with (generalized) block graphs.

The organization of our paper is as follows. In Section 2 we recall basic
notions of graph theory including the definition of generalized block graphs
and review the definitions of depth and regularity. Section 3 contains our main
result, namely Theorem 3.3 and its proof.

In the last part, we derive some consequences of the main theorem. For
example, in Corollary 3.4 we particularize Theorem 3.3 to block graphs and in
Corollary 3.5 we show that if G is a block graph, then JG is unmixed if and
only if JG is Cohen-Maculay if and only if G is a complete graph.

Finally, in Corollary 3.6 we recover Corollary 15 in [20] which gives
the regularity of JG if G is a path graph, but we show more, namely that
reg in<(JG) is equal to reg JG.

2. PRELIMINARIES

In this section, we introduce the notation used in this paper and summa-
rize a few results on generalized binomial edge ideals.

Let m,n ≥ 2 be integers and let G be an arbitrary simple graph on the
vertex set [n]. Throughout this paper all the graphs are simple, that is, without
loops and multiple edges. We fix a field K; let X = (xij) be an (m×n)-matrix
of indeterminates, and denote by S = K[X] the polynomial ring in the variables
xij , i = 1, . . . ,m and j = 1, . . . , n.

For 1 ≤ k < l ≤ m, and {i, j} ∈ E(G), with 1 ≤ i < j ≤ n, we set

pklij = [k, l|i, j] = xkixlj − xlixkj .
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The ideal JG = (pklij : 1 ≤ k < l ≤ m, {i, j} ∈ E(G)) is called the
generalized binomial edge ideal of G; see [18].

We first recall some basic definitions from graph theory. A chordal graph
is a graph without cycles of length greater than or equal to 4. A clique of
a graph G is a complete subgraph of G. The cliques of a graph G form a
simplicial complex, ∆(G), which is called the clique complex of G. Its facets
are the maximal cliques of G. A graph G is a block graph if and only if it is
chordal and every two maximal cliques have at most one vertex in common.
This class was considered in [8, Theorem 1.1]. A chordal graph is called a
generalized block graph if for any three maximal cliques whose intersection is
nonempty then intersection of each pair of them is same. In other words, for
every Fi, Fj , Fk ∈ ∆(G) with the property that Fi ∩ Fj ∩ Fk 6= ∅, we have
Fi ∩ Fj = Fj ∩ Fk = Fi ∩ Fk. This class of graphs was considered in [12].
Obviously, every block graph is a generalized block graph.

Let G be a graph. A vertex i of G whose deletion from the graph gives
a graph with more connected components than G is called a cut point of G.
A subset T ⊂ [n] is said to have the cut point property for G (cut point set,
in brief) if for every i ∈ T , c(T \ {i}) < c(T ), where c(T ) is the number of
connected components of the restriction of G to [n] \ T . A cut set of a graph
G is a subset of vertices whose deletion increases the number of connected
components of G. A minimal cut set of G is a cut set which is minimal with
respect to inclusion. The clique number of a graph G is the maximum size of
the maximal cliques of G. We denote it by ω(G).

Let G be a generalized block graph. Then Ai(G) is the collection of cut
sets ofG of cardinality i, where i = 1, . . . , ω(G)−1. We denote ai(G) = |Ai(G)|.
Clearly, ai(G) = 0 for all i > 1 if and only if G is a block graph.

The clique complex ∆(G) of a chordal graph G has the property that
there exists a leaf order on its facets. This means that the facets of ∆(G) may
be ordered as F1, . . . , Fr such that, for every i > 1, Fi is a leaf of the simplicial
complex generated by F1, . . . , Fi. A leaf F of a simplicial complex ∆ is a facet
of ∆ with the property that there exists another facet of ∆, say F ′, such that,
for every facet H 6= F of ∆, H ∩ F ⊆ F ′ ∩ F. Such facet F ′ is called a branch
of F .

Let < be the lexicographic order on S induced by the natural order of
the variables, that is, x11 > · · · > x1n > x21 · · · > xmn. As it was shown in [18,
Theorem 2], the Gröbner basis of JG with respect to this order may be given
in terms of the admissible paths of G. We recall the definition of an admissible
path from [11] (also see [18]).

Definition 2.1. Let i < j be two vertices of G. A path i = i0, i1, . . . , ir−1,
ir = j from i to j is called admissible if the following conditions are fulfilled:
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1. ik 6= il for k 6= l;

2. for each k = 1, . . . , r − 1 on has either ik < i or ik > j;

3. for any proper subset {j1, . . . , js} of {i1, . . . , ir−1}, the sequence i, j1, . . . , js,
j is not a path in G.

According to [18], a function κ : {0, . . . , r} → [m] is called π-antitone if
it satisfies

is < it ⇒ κ(s) ≥ κ(t), for all 0 ≤ s, t ≤ r.
To any admissible path π : i = i0, i1, . . . , ir−1, ir = j, where i < j and

any function
κ : {0, . . . , r} → [m] one associates the monomial

uκπ =

r−1∏
k=1

xκ(k)ik .

By [18, Theorem 2], it follows that the set of binomials

G =
⋃
i<j

{uκπp
κ(j)κ(i)
ij : i < j, π is an admissible path in G from i to j,

κ is stricly π-antitone}
is a reduced Gröbner basis of JG with respect to the lexicographic order. There-
fore, the initial ideal of JG is

(
⋃
i<j

{uκπxκ(j)ixκ(i)j : i < j, π is an admissible path in G from i to j,

κ is strictly π-antitone}).

Moreover, since in<(JG) is a radical ideal, it follows that JG is radical as well.
Consequently, JG is the intersection of its minimal primes.

We now explain how the minimal primes of JG can be identified. In [18,
Section 3] (see also [9]), it is shown that the minimal primes of JG are of the
form PW with W = [m]×T , where T ⊂ [n] is a set with the cut point property
of G. For a given cut point set T ⊂ [n], let G1, . . . , Gc(T ) be the connected

components of the restriction of G to [n] \ T and G̃1, . . . , G̃c(T ) the complete
graphs on the vertex sets V (G1), . . . , V (Gc(T )), respectively. Let Qt be the
prime ideal

Qt = (pklij : 1 ≤ k < l ≤ m, {i, j} ∈ E(G̃t)), for 1 ≤ t ≤ c(T ).

If W = [m]× T , then

PW = ({xij : (i, j) ∈W}, Q1, . . . , Qc(T )).
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We recall now the definition of some homological invariants of a finitely
generated S-module M . Let M be a graded finitely generated S-module and

F• : · · · → F2 → F1 → F0 →M → 0

be its minimal graded free S-resolution with Fi =
⊕

j∈Z S(−j)βij for all i.
Then the exponents βij = βij(M) are called the graded Betti numbers of M .
The number

proj dim(M) = max{i : βij 6= 0 for some j ∈ Z}

is called the projective dimension of M and the number

reg(M) = max{j : βi,i+j 6= 0 for some i}

is called the regularity of M . By Auslander-Buchsbam formula, we have

depthM = dimS − proj dimM.

3. MAIN RESULTS

In this section we prove the main results of this paper.

Lemma 3.1. Let m,n ≥ 2. Let G be a graph on the vertex set n and let
j be any vertex of G. Then

in<(JG, x1j , . . . , xmj) = (in<(JG), x1j , . . . , xmj).

Proof. The proof is similar to [3, Lemma 3.1]. Clearly, we have

in<(JG, x1j , . . . , xmj) = in<(JG\{j}, x1j , . . . , xmj) = (in<(JG\{j}), x1j , . . . , xmj).

Therefore, we have to show that

(in<(JG\{j}), x1j , . . . , xmj) = (in<(JG), x1j , . . . , xmj).

Since JG\{j} ⊂ JG, the inclusion ⊆ is obvious. For the other inclusion, let u be
any generator of in<(JG). If there exist some i such that xij |u, then obviously
u ∈ (in<(JG\{j}, x1j , . . . , xmj)). Now suppose that xij - u, for all 1 ≤ i ≤ m.
This means that u = uκπxκ(l)kxκ(k)l, for some admissible path π from k to l,
which does not contains the vertex j. This implies that π is a path in G \ {j}.
Hence u ∈ in<(JG\{j}). This completes the proof.

Remark 3.2. Following the proof of Lemma 3.1, we can extend our result
for any subset of vertices of G, that is, for any A ⊂ [n], we have:

in<(JG, {x1j , . . . , xmj | j ∈ A}) = (in<(JG), {x1j , . . . , xmj | j ∈ A}).
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First we observe that, in order to compute the depth and the regularity
of S/JG or S/ in<(JG) we may reduce to connected graphs. Indeed, if G is
disconnected and has the connected components G1, . . . , Gc, we have

(1) S/JG ∼= S1/JG1 ⊗K · · · ⊗K Sc/JGc

where Si = K[x1j , . . . , xmj : j ∈ V (Gi)].

The above isomorphism is due to the fact that JG1 , . . . , JGc are generated
in pairwise disjoint sets of variables. Equation (1) implies that

depth(S/JG) =

c∑
i=1

depth(Si/JGi),

and

reg(S/JG) =
c∑
i=1

reg(Si/JGi).

Same arguments work for the depthS/ in<(JG) and regS/ in<(JG) if G is dis-
connected.

Let us recall from Section 2, that if G is a generalized block graph, then
Ai(G) is the collection of cut sets ofG of cardinality i, where i = 1, . . . , ω(G)−1.
We denote ai(G) = |Ai(G)|.

Theorem 3.3. Let m,n ≥ 2 and let G be a connected generalized block
graph on the vertex set [n]. The following statements hold:

(a) depthS/JG = depthS/ in<(JG) = n+ (m− 1)−
ω(G)−1∑
i=2

(i− 1)ai(G);

(b) If m ≥ n, then regS/JG = regS/ in<(JG) = n− 1;

(c) If m < n, then regS/JG ≤ reg(S/ in<(JG)) ≤ n− 1.

Proof. We split the proof of our theorem in two parts. In the first part
we give the results for generalized binomial edge ideals, while in the second
part we will present the results for their initial ideals. This proof is based on
the techniques used in the proof of [8, Theorem 1.1], [3, Theorem 3.2] and [12,
Theorem 3.2]. Since G is a chordal graph, then by Dirac’s theorem [6], ∆(G)
is a quasi forest which means that there is a leaf order say F1, . . . , Fr, for the
facets of ∆(G). Let Ft1 , . . . , Ftq be the branches of Fr. Since G is a generalized
block graph, the intersection of any pair of facets from Ft1 , . . . , Ftq , Fr is the
same set of vertices. Let Fi ∩ Fj = A, for all i, j ∈ {t1, . . . , tq, r} and let
|A| = α ≥ 1. Moreover, Fr ∩ Fk = ∅ for all k 6= t1, . . . , tq, r. This implies that
A ∩ Fk = ∅ for all k 6= t1, . . . , tq, r. Hence A is a (q + 1)-minimal cut set of G.
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For any cut point set T of G, we have A * T if and only if A ∩ T = ∅ (see
proof of Theorem 3.2 in [12]).

Let JG = J1 ∩ J2, where J1 =
⋂
T ⊆[n]
A∩T =∅

PT (G) and J2 =
⋂
T ⊆[n]
A⊆T

PT (G). It

follows that J1 = JG′ where G′ is obtained from G by replacing the cliques
Ft1 , . . . , Ftq and Fr by the clique on the vertex set Fr ∪ (

⋃q
i=1 Fti). Also,

J2 = (x1j , . . . , xmj | j ∈ A)+JG′′ where G′′ is the restriction of G to the vertex
set [n]\A. We observe that S/J2 = SA/JG′′ , where SA = K[x1j , . . . , xmj : j ∈
[n] \A] and J1 + J2 = (x1j , . . . , xmj : j ∈ A) + JG′

[n]\A
. Moreover, G′, G′′ and

G′[n]\A inherits the properties of G, that is, they are also generalized block

graphs. According to the proof of Theorem 3.2 in [12], we have Ai(G′) =
Ai(G′[n]\A) = Ai(G) and Ai(G′′) ⊆ Ai(G), for all i 6= α. But Aα(G′) =

Aα(G′[n]\A) = Aα(G) \ {A} and Aα(G′′) ⊆ Aα(G) \ {A}.
This implies that

(2) ai(G
′) = ai(G

′
[n]\A) = ai(G)

and

(3) ai(G
′′) ≤ ai(G), for all i 6= α.

On the other hand,

(4) aα(G′) = aα(G′[n]\A) = aα(G)− 1

and

(5) aα(G′′) ≤ aα(G)− 1.

For r > 1, we have the following exact sequence of S-modules

(6) 0 −→ S

JG
−→ S

J1
⊕ S

J2
−→ S

J1 + J2
−→ 0.

(a) We apply induction on the number r of maximal cliques of G. If
r = 1, then G is a simplex and the equality depthS/JG = n+ (m− 1) follows
by [9, Theorem 4.4]. For r > 1, we can apply the inductive step. Since G′

has a smaller number of maximal cliques than G, it follows, by the inductive
hypothesis, that

depth(S/JG′) = n+ (m− 1)−
ω(G′)−1∑
i=2

(i− 1)ai(G
′)

= n+(m−1)−
ω(G′)−1∑
i=2
i 6=α

(i−1)ai(G
′)− (α−1)aα(G′)
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= n+(m−1)−
ω(G)−1∑
i=2
i 6=α

(i−1)ai(G)−(α−1)(aα(G)−1).

In the last equation, we used equations (2) and (4). Therefore, we have

(7) depth(S/JG′) = n+ (m− 1) + α− 1−
ω(G)−1∑
i=2

(i− 1)ai(G).

Now, G′′ has q+1 connected components, say, H1, . . . ,Hq+1 on the vertex
sets V (Hj), where |V (Hj)| = nj and 1 ≤ j ≤ q + 1. For j = 1, . . . , q + 1, we

set SjA = K[x1i, x2i . . . , xmi : i ∈ V (Hj)]. Also, G′′ has less number of maximal
cliques than G, so by the inductive hypothesis

depth(SA/JG′′) =

q+1∑
j=1

(depth(SjA/JHj ))

=

q+1∑
j=1

(nj + (m− 1)−
ω(Hj)−1∑
i=2

(i− 1)ai(Hj))

= n− α+ (q + 1)(m− 1)−
ω(G′′)−1∑
i=2
i 6=α

(i− 1)ai(G
′′)

−(α− 1)aα(G′′)

≥ n− α+ (q + 1)(m− 1)−
ω(G)−1∑
i=2
i 6=α

(i− 1)ai(G)

−(α− 1)(aα(G)− 1).

In the last inequality, we used inequalities (3) and (5). Consequently, we get

(8) depth(SA/JG′′) ≥ n+ (q + 1)(m− 1)− 1−
ω(G)−1∑
i=2

(i− 1)ai(G).

Moreover, G′[n]\A is a generalized block graph with the number of maximal
cliques less than r, hence by the inductive hypothesis, we have

depth(S/JG′
[n]\A

) = n− α+ (m− 1)−
ω(G′

[n]\A)−1∑
i=2

(i− 1)ai(G
′
[n]\A)

= n− α+ (m− 1)−
ω(G′

[n]\A)−1∑
i=2
i 6=α

(i− 1)ai(G
′
[n]\A)
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−(α− 1)aα(G′[n]\A)

= n− α+ (m− 1)−
ω(G)−1∑
i=2
i 6=α

(i−1)ai(G)−(α−1)(aα(G)−1).

In the last equation, we used equations (2) and (4). Therefore, we have

(9) depth(S/JG′
[n]\A

) = n+ (m− 1)− 1−
ω(G)−1∑
i=2

(i− 1)ai(G).

By applying Depth lemma to our exact sequence (6), and taking into
account equations (7), (8) and (9), we get

depthS/JG = n+ (m− 1)−
ω(G)−1∑
i=2

(i− 1)ai(G).

(b) Let m ≥ n. We apply again induction on r. If r = 1, then G is a
simplex and the equality regS/JG = n − 1 is true; see [5, Corollary 1] and
[2, Theorem 6.9]. Since G′ has smaller number of maximal cliques than G, it
follows by the inductive hypothesis, that regS/JG′ = n − 1. We have seen in
(a) that G′′ has q + 1 connected components, H1, . . . ,Hq+1 on the vertex sets
V (Hi), where |V (Hi)| = ni and 1 ≤ i ≤ q + 1. Since all Hi’s have less than r
maximal cliques, the inductive hypothesis implies that regS/JHi = ni − 1 for
all i = 1, . . . , q + 1. This implies that

regS/J2 = regS/JG′′ = (n− α)− (q + 1).

It follows that

reg(S/J1 ⊕ S/J2) = max{regS/J1, regS/J2} = n− 1.

Next,

regS/(J1 + J2) = regS/JG′
[n]\A

= n− α− 1.

Here we applied the inductive hypothesis since G′[n]\A has less number of max-
imal cliques than G. Consequently, it follows that

reg(S/J1 ⊕ S/J2) > regS/(J1 + J2),

which, by [17, Proposition 18.6], yields

regS/JG = n− 1.

(c) Since for any homogeneous ideal I in a polynomial ring, we have
βij(I) ≤ βij(in<(I)), it follows that reg(I) ≤ reg(in<(I)). Hence, to prove (c),
we just need to prove that reg(S/ in<(JG)) ≤ n− 1.



390 F. Chaudhry, R. Irfan 10

Now we continue in the same way as above to get the results for the
initial ideal. We will use induction on number of maximal cliques of G. We
have in<(JG) = in<(J1 ∩ J2). By [4, Lemma 1.3], we get in<(J1 ∩ J2) =
in<(J1)∩ in<(J2) if and only if in<(J1 +J2) = in<(J1)+in<(J2). But in<(J1 +
J2) =in<(JG′ + (x1j , . . . , xmj : j ∈ A) + JG′′) =
in<(JG′ + (x1j , . . . , xmj : j ∈ A)). Hence, by Remark 3.2, we get

in<(J1 + J2) = in<(JG′) + (x1j , . . . , xmj : j ∈ A) = in<(J1) + in<(J2).

Therefore, we get in<(JG) = in<(J1) ∩ in<(J2) and, consequently, we have an
exact sequence of S-modules

(10) 0 −→ S

in<(JG)
−→ S

in<(J1)
⊕ S

in<(J2)
−→ S

in<(J1 + J2)
−→ 0,

which is similar to exact sequence (6).
By using again Remark 3.2, we have

in<(J2) = in<((x1j , . . . , xmj : j ∈ A), JG′′) = (x1j , . . . , xmj : j ∈ A)+in<(JG′′).

Thus, we have actually the following exact sequence

0→ S

in<(JG)
→ S

in<(JG′)
⊕ S

(x1j , . . . , xmj) + in<(JG′′)
→

S

(x1j , . . . , xmj) + in<(JG′)
→ 0.

(11)

(a) If r = 1, then G is a simplex and the equality

depthS/JG = depthS/ in<(JG),

follows since the ideal generated by all 2-minors of the matrix X is Cohen-
Macaulay and its initial ideal shares the same property [2]. For r > 1, since
G′ has smaller number of maximal cliques than G, it follows by the inductive
hypothesis, that

depth(S/JG′) = depth(S/ in<(JG′)).

By using equation (7), we have

depth(S/ in<(JG′)) = n+ (m− 1) + α− 1−
ω(G)−1∑
i=2

(i− 1)ai(G).

We have S/((x1j , . . . , xmj : j ∈ A) + in<(JG′′)) ∼= SA/ in<(JG′′). Since G′′ is
a graph on n − α vertices with q + 1 connected components and satisfies our
conditions, by induction

depthS/((x1j , . . . , xmj : j ∈ A) + JG′′) = depthS/((x1j , . . . , xmj : j ∈ A)

+ in<(JG′′)).
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By using inequality (8), we have

depthS/((x1j , . . . , xmj : j ∈ A) + in<(JG′′)) ≥ n+ (q + 1)(m− 1)− 1

−
ω(G)−1∑
i=2

(i− 1)ai(G).

We observe that S/((x1j , . . . , xmj : j ∈ A)+in<(JG′)) ∼= SA/ in<(JG′
[n]\A

).

The inductive hypothesis implies that,

depth(S/((x1j , . . . , xmj : j ∈ A) + JG′)) = depth(S/((x1j , . . . , xmj : j ∈ A)

+ in<(JG′))).

By using equation (9), we have

depth(S/((x1j , . . . , xmj : j ∈ A)+in<(JG′))) = n+(m−1)−1−
ω(G)−1∑
i=2

(i−1)ai(G).

Hence, by applying Depth lemma to our exact sequence (11), we get

depthS/ in<(JG) = n+ (m− 1)−
ω(G)−1∑
i=2

(i− 1)ai(G).

(b) For r = 1, JG and in<(JG) are Cohen-Macaulay ideals, see, for exam-
ple, [2]. Since they share the same Hilbert series, then they have also the same
regularity. By [5, Corollary 1] and [2, Theorem 6.9], regS/JG = min(m,n) −
1 = n− 1. Therefore reg(S/ in<(JG)) = n− 1. Since G′ has smaller number of
maximal cliques than G, by the inductive hypothesis, reg(S/ in<(J′G)) = n−1.
The graph G′′ is the restriction of G on the vertex set [n] \ A and G′′ has
q + 1 connected components H1, . . . ,Hq+1 on the vertex sets V (Hi), where
|V (Hi)| = ni and 1 ≤ i ≤ q + 1. Also, each Hi has less number of maximal
cliques than G, so by induction reg(S/ in<(JHi)) = ni−1, for all i = 1, . . . , q+1.
This implies that

regS/ in<(J2) = regS/ in<(JG′′) = (n− α)− (q + 1).

It follows that

reg(S/ in<(J1)⊕ S/ in<(J2)) = max{regS/ in<(J1), regS/ in<(J2)} = n− 1.

Next,
regS/ in<(J1 + J2) = regS/ in<(JG′

[n]\A
) = n− α− 1.

Hence we applied the inductive hypothesis since G′[n]\A has less number of
maximal cliques than G. Consequently, it follows that

reg(S/ in<(J1)⊕ S/ in<(J2)) > regS/ in<(in<(J1) + in<(J2)),
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which by [17, Proposition 18.6], yields

regS/ in<(JG) = n− 1.

(c) For r = 1, by [5, Corollary 1] and [2, Theorem 6.9], regS/JG =
min(m,n) − 1 = m − 1. Therefore reg(S/ in<(JG)) = m − 1 < n − 1. The
graph G′ inherits the properties of G and it has a smaller number of maximal
cliques, so by the inductive hypothesis, reg(S/ in<(J′G)) ≤ n − 1. Similarly,
reg(S/ in<(JHi)) ≤ ni − 1 for all i = 1, . . . , q + 1, follow from the inductive
hypothesis. This implies that

regS/ in<(J2) = regS/ in<(JG′′) ≤ (n− α)− (q + 1).

It follows that

reg(S/ in<(J1)⊕ S/ in<(J2)) = max{regS/ in<(J1), regS/ in<(J2)} ≤ n− 1.

Now,
regS/ in<(J1 + J2) = regS/ in<(JG′

[n]\A
) ≤ n− α− 1.

Here we applied the inductive hypothesis since G′[n]\A has less number of max-

imal cliques than G. Consequently, it follows by [17, Corollary 18.7], that

regS/ in<(JG) ≤ max{n− 1, n− α} = n− 1.

When G is a block graph, we obviously have ai(G) = 0, for all i > 1, thus
Theorem 3.3 has the following consequences.

Corollary 3.4. Let m,n ≥ 2 and let G be a block graph on the vertex
set [n]. The following statements holds:

(a) depthS/JG = depthS/ in<(JG) = n+ (m− 1);

(b) If m ≥ n, then regS/JG = regS/ in<(JG) = n− 1;

(c) If m < n, then regS/JG =≤ n− 1 and regS/ in<(JG) ≤ n− 1.

In particular, the above statements hold for a tree on the vertex set [n].

Corollary 3.5. Let G be a block graph on [n] and m,n ≥ 3. Then the
following are equivalent:

(a) JG is unmixed;

(b) JG is Cohen-Macaulay;

(c) G = Kn.



13 On the generalized binomial edge ideals of generalized block graphs 393

Proof. (a)⇒ (c) By [9, Proposition 4.1], JG is unmixed if and only if

(c(T )− 1)(m− 1) = |T |

for all subsets T with cut point property of G. If G is not complete then we
have at least one cut point set of cardinality 1. Therefore, the above equality
is possible if and only if the empty set is the only cut point set of G. This is
equivalent to saying that G is complete.
(b)⇒ (a) and (c)⇒ (b) are known.

Corollary 3.6. Let m,n ≥ 2. If G is a path graph on the vertex set [n],
then regS/JG = regS/ in<(JG) = n− 1.

Proof. Let G be a path graph and JG be its classical binomial edge ideal.
We consider JG ⊂ S′ = K[xij : i = 1, 2, 1 ≤ j ≤ n]. Then, by using [20, Propo-
sition 8], we get regS′/JG ≤ regS/JG. As JG is a complete intersection, we get
regS′/JG = n−1. This implies that n−1 ≤ regS/JG ≤ reg(S/ in<(JG) ≤ n−1.
Therefore, the statement follows.
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