ON COHEN-MACAULAY R-PARTITE GRAPHS

REZA JAFARPOUR-GOLZARI

Communicated by Lucian Beznea

Abstract

Cohen-Macaulayness of bipartite graphs has been studied by some mathematicians recently. During this researches, all Cohen-Macaulay bipartite graphs have been characterized algebraically and combinatorially. In this note, we give an algebraic necessary and sufficient condition for Cohen-Macaulayness of unmixed r-partite graphs under a certain condition named $(*)$. Also we present a combinatorial necessary condition for Cohen-Macaulayness of an r-partite graph satisfying $(*)$, and we show that this condition is not a sufficient condition.

AMS 2010 Subject Classification: Primary: 05C25; Secondary: 13F55, 05C75.
Key words: Cohen-Macaulay r-partite graph, regular sequence.

1. INTRODUCTION

In the sequel, we refer to [1], [3], [8], and [10] for backgrounds on hypergraphs, monomial ideals, commutative algebra, and graphs, respectively. Also everywhere, the graphs are finite, simple, and without isolated vertices.

Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. For two vertices $u, v \in V(G)$ which are adjacent, we write $v \sim w$. The set of all vertices adjacent to a vertex v, is said to be the neighborhood of v and is denoted by $N(v)$. A subset C of $V(G)$ is called a vertex cover, if every edge of G intersects C in at least one element. A vertex cover C is called minimal if there is no proper subset of C which is a vertex cover. The minimum cardinality of all minimal vertex covers of G, is said to be the vertex covering number of G and is denoted by $\alpha_{0}(G)$. A minimum vertex cover is a vertex cover of size $\alpha_{0}(G)$. A graph G is called unmixed if all minimal vertex covers of G have the same size.

For a graph G, a subset T of $V(G)$ is said to be independent if no two elements of T are adjacent. A maximal independent set of G is an independent set I such that there is no other independent set T with $I \varsubsetneqq T$. Note that T is a maximal independent set of G if and only if $V(G) \backslash T$ is a minimal vertex cover of G. A graph G is called well-covered if all the maximal independent sets of G have the same size. Therefore a graph is unmixed if and only if it is well-covered.

For an integer $r \geq 2$, a graph G is called r-partite, if $V(G)$ can be partitioned into r disjoint parts such that for each edge $\{x, y\}, x$ and y do not lie in the same part. If $r=2,3, G$ is called bipartite and tripartite, respectively. If for every two distinct parts V_{i}, V_{j} and for every $x \in V_{i}$ and $y \in V_{j}, x \sim y, G$ is called a complete r-partite graph.

A pure simplicial complex Δ is called completely balanced if there is a partition of its vertex set as C_{1}, \ldots, C_{r} such that each facet of Δ intersects each C_{i} in exactly one element.

Let Δ be a simplicial complex on $[n]$, and let K be a field and $S=$ $K\left[x_{1}, \ldots, x_{n}\right]$ be the polynomial ring in n variables with coefficients in Δ. Let I_{Δ} be the ideal of S generated by all square-free monomials $x_{i_{1}} \ldots x_{i_{s}}$ which $\left\{i_{1}, \ldots, i_{s}\right\} \notin \Delta$. The ring $K[\Delta]:=\frac{S}{I_{\Delta}}$ is called the Stanley-Reisner ring of Δ.

Let G be a graph with $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$ and let $S=K\left[x_{1}, \ldots, x_{n}\right]$. The ideal $I(G)$ of S, generated by all square-free monomials $x_{i} x_{j}$ which $\left\{v_{i}, v_{j}\right\} \in$ $E(G)$, is said to be the edge ideal of G. The quotient ring $R(G):=\frac{S}{I(G)}$ is called the edge ring of G. Define the independence complex of G by

$$
\Delta_{G}:=\{F \subseteq V(G) \mid F \text { is an independent set of } G\}
$$

Indeed Δ_{G} is a simplicial complex. Clearly $K\left[\Delta_{G}\right]=R(G)$.
A graph G is called Cohen-Macaulay if $R(G)$ is a Cohen-Macaulay ring, for every field K.

Characterization of special classes of Cohen-Macaulay graphs have been noteworthy in recent decades. J. Herzog and T. Hibi in 2005, gave the following criterion for Cohen-Macaulayness of bipartite graphs [2].

Theorem 1.1. Let G be a bipartite graph with parts V_{1} and V_{2}. Then G is Cohen-Macaulay if and only if $\left|V_{1}\right|=\left|V_{2}\right|$ and there is an order on vertices V_{1} and V_{2} as x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n} respectively, such that:

1) $x_{i} \sim y_{i}$, for $i=1, \ldots, n$,
2) if $x_{i} \sim y_{j}$, then $i \leq j$,
3) for each $1 \leq i<j<k \leq n$, if $x_{i} \sim y_{j}$ and $x_{j} \sim y_{k}$, then $x_{i} \sim y_{k}$.

Although the above theorem characterizes all Cohen-Macaulay bipartite graphs, if one wants to prove the Cohen-Macaulayness of a bipartite graph G by means of it, then needs to find an appropriate order on vertices of G, a difficult thing in practice.
R. Zaare-Nahandi in 2015 presented the following combinatorial criterion for Cohen-Macaulayness of a bipartite graph.

Theorem 1.2 ([11, Theorem 1]). Let G be a bipartite graph with parts V_{1} and V_{2}. Then, G is Cohen-Macaulay if and only if there is a perfect matching in G as $\left\{x_{1}, y_{1}\right\}, \ldots,\left\{x_{n}, y_{n}\right\}$, such that $x_{i} \in V_{1}$ and $y_{i} \in V_{2}$, for $i=1, \ldots, n$,
and two following conditions hold.

1) The induced subgraph on $N\left(x_{i}\right) \cup N\left(y_{i}\right)$ is a complete bipartite graph, for $i=1, \ldots, n$.
2) If $x_{i} \sim y_{j}$, then $x_{j} \nsim y_{i}$.

Using the above criterion, there is not difficulty of finding an appropriate order on vertices.

In Theorem 1.2, the condition 1 is equal to unmixedness of the graph G (see [6]).

For proving Theorem 1.2, R. Zaare-Nahandi, first proves the following algebraic criterion for Cohen-Macaulayness of a bipartite graph G.

Lemma 1.3 ([11, Lemma 2]). Let G be an unmixed bipartite graph with a perfect matching $\left\{x_{1}, y_{1}\right\}, \ldots,\left\{x_{n}, y_{n}\right\}$. Then G is Cohen-Macaulay if and only if the sequence $\bar{x}_{1}+\bar{y}_{1}, \ldots, \bar{x}_{n}+\bar{y}_{n}$ is a regular sequence in $R(G)$.

We intend to investigate the Cohen-Macaulayness of r-partite graphs.
In the proof of Theorems 1.1 and 1.2, and also Lemma 1.3, the existence of a perfect matching plays an essential role. According to this and for ease of argument, we restrict ourselves to the class of r-partite graphs which satisfy the following condition.
We say a graph G satisfies the condition (*) for an integer $r \geq 2$, if G can be partitioned into r parts $V_{i}=\left\{x_{1 i}, \ldots, x_{n i}\right\},(1 \leq i \leq r)$, such that for all $1 \leq j \leq n,\left\{x_{j 1}, x_{j 2}, \ldots, x_{j r}\right\}$ is a clique.

Let G be an r-partite graph which satisfies $(*)$ for $r \geq 2$. By Theorem 4.2 in [5] (where $d=2$), G is unmixed if and only if no term of sequence $\sum_{i=1}^{r} \bar{x}_{1 i}, \ldots, \sum_{i=1}^{r} \bar{x}_{n i}$ is zero-divisor in the ring $R(G)$. This is an algebraic criterion for unmixedness of an r-partite graph satisfying the condition $(*)$.

In this paper, we give first an algebraic criterion, and then a combinatorial necessary condition for Cohen-Macaulayness of an r-partite graph satisfying $(*)$. Also by an appropriate counterexample, we show that this condition is not a sufficient condition.

2. THE MAIN RESULTS

As an algebraic criterion for Cohen-Macaulayness of an r-partite graph G satisfying the condition $(*)$ for $r \geq 2$, we prove the following criterion.

Theorem 2.1. Let G be an unmixed r-partite graph satisfying the condition $(*)$ for $r \geq 2$. Then G is Cohen-Macaulay if and only if the sequence

$$
\sum_{i=1}^{r} \bar{x}_{1 i}, \ldots, \sum_{i=1}^{r} \bar{x}_{n i}
$$

is a regular sequence in $R(G)$.

Proof. Let G be Cohen-Macaulay. We prove that the sequence

$$
\sum_{i=1}^{r} \bar{x}_{1 i}, \ldots, \sum_{i=1}^{r} \bar{x}_{n i}
$$

is a regular sequence in $R(G)$. The cliques $\left\{x_{j 1}, x_{j 2}, \ldots, x_{j r}\right\}, 1 \leq j \leq n$, form a partition of $V(G)$, and every maximal independent set intersects any one of these cliques in exactly one element (because a maximal independent set can not intersect a clique in more than one element and if there is a maximal independent set M which dose not intersect one of the cliques, then $|M|$ is at most $n-1$, a contradiction. Note that the size of all maximal independent sets is the same and equals n, since V_{1} is a maximal independent set and G is well-covered). Therefore, the simplicial complex Δ_{G} is completely balanced. Now by Corollary 4.2 and its Remark in [7],

$$
\left\{\sum_{i=1}^{r} \bar{x}_{1 i}, \ldots, \sum_{i=1}^{r} \bar{x}_{n i}\right\}
$$

is a homogeneous system of parameters in $K\left[\Delta_{G}\right]$. But $K\left[\Delta_{G}\right]=R(G)$ is Cohen-Macaulay. Then by Theorem 5.9 in [8], the sequence

$$
\sum_{i=1}^{r} \bar{x}_{1 i}, \ldots, \sum_{i=1}^{r} \bar{x}_{n i}
$$

is a regular sequence in $R(G)$.
Conversely, let the mentioned sequence be regular. We have

$$
\operatorname{dim}(R(G))=\operatorname{dim}(S)-\operatorname{ht}(I(G))=r n-(r-1) n=n,
$$

for $S=K\left[x_{11}, \ldots, x_{n 1}, x_{12}, \ldots, x_{n 2}, \ldots, x_{1 r}, \ldots, x_{n r}\right]$, where K is a field and $R(G)=\frac{S}{I(G)}$. Note that by Corollary 7.2 .4 in [9], ht $(I(G))$ is equal to the cardinality of a minimum vertex cover of G and by unmixedness of G and the fact that $\bigcup_{i=1}^{r-1} V_{i}$ is a minimal vertex cover, this cardinality is $(r-1) n$. Therefore

$$
\operatorname{dim}(R(G)) \leq \operatorname{depth}(R(G))
$$

Then $\operatorname{dim}(R(G))=\operatorname{depth}(R(G))$, and therefore G is Cohen-Macaulay.
Now we consider another class of r-partite graphs; We say that a graph G satisfies the condition ($\mathbf{\Delta})$ for an integer $r \geq 2$, if G is an r - partite graph with parts $V_{1}, V_{2}, \ldots, V_{r}$ such that $\left|V_{1}\right|=\left|V_{2}\right|=\ldots=\left|V_{r}\right|=n$ and:

1) every maximal clique in G is of size r,
2) we can order the vertices of $V_{i}(1 \leq i \leq r)$ in the form $x_{1 i}, x_{2 i}, \ldots, x_{n i}$ such that the sequence

$$
\sum_{i=1}^{r} \bar{x}_{1 i}, \ldots, \sum_{i=1}^{r} \bar{x}_{n i}
$$

is a regular sequence in $R(G)$.
The following theorem can be proved similarly to one part of Theorem 2.1. Note that if G satisfies $(\mathbf{\Lambda})$ for $r \geq 2$, then for every $1 \leq i, i^{\prime} \leq r$ whith $i \neq i^{\prime}$, every vertex in V_{i} is adjacent with at least one vertex in $V_{i^{\prime}}$, because it lies in a maximal clique.

THEOREM 2.2. Let G be an unmixed graph satisfying the condition ($\mathbf{\Delta}$) for $r \geq 2$. Then G is Cohen-Macaulay.

Now, we give a combinatorial necessary condition for Cohen-Macaulayness of an r-partite graph satisfying the condition ($*$) for $r \geq 2$.

THEOREM 2.3. Let G be an r-partite graph satisfying (*) for $r \geq 2$. If G is Cohen-Macaulay, then for every $1 \leq q, q^{\prime} \leq n$ with $q \neq q^{\prime}$, and for every $1 \leq i \leq r$, if for every $1 \leq i^{\prime}(\neq i) \leq r$, we have $x_{q i} \sim x_{q^{\prime} i^{\prime}}$, then there exists some $1 \leq i^{\prime}(\neq i) \leq r$ such that $x_{q^{\prime} i} \nsim x_{q i^{\prime}}$.

Proof. Suppose the contrary. Then there are distinct integers q and q^{\prime} and integer $1 \leq i \leq r$ such that for every $1 \leq i^{\prime}(\neq i) \leq r$,

$$
x_{q i} \sim x_{q^{\prime} i^{\prime}}, \quad x_{q^{\prime} i} \sim x_{q i^{\prime}} .
$$

Without loss of generality, we assume that $q<q^{\prime}$. Now in the ring

$$
R^{\prime}=\frac{R(G)}{\left(\sum_{t=1}^{r} \bar{x}_{1 t}, \ldots, \sum_{t=1}^{r} \bar{x}_{\left(q^{\prime}-1\right) t}\right)}
$$

the element $\overline{\bar{x}}_{q i}$ is not zero (here $\overline{\bar{x}}_{q i}$ is the image of $\bar{x}_{q i}$ in R^{\prime}), because otherwise

$$
\bar{x}_{q i} \in\left(\sum_{t=1}^{r} \bar{x}_{1 t}, \ldots, \sum_{t=1}^{r} \bar{x}_{\left(q^{\prime}-1\right) t}\right)
$$

and this means that there are $f_{k}+I(G)$ in $R(G)\left(1 \leq k \leq q^{\prime}-1\right)$ such that

$$
x_{q i}-f_{1} \sum_{t=1}^{r} x_{1 t}-\cdots-f_{q^{\prime}-1} \sum_{t=1}^{r} x_{\left(q^{\prime}-1\right) t} \in I(G)
$$

and this is impossible. Note that $I(G)$ is a monomial ideal generated by monomials of degree 2 .

Now

$$
\overline{\bar{x}}_{q i} \sum_{t=1}^{r} \overline{\bar{x}}_{q^{\prime} t}=\overline{\bar{x}}_{q i} \overline{\bar{x}}_{q^{\prime} i}=-\sum_{t(\neq i)=1}^{r} \overline{\bar{x}}_{q t} \overline{\bar{x}}_{q^{\prime} i}=0_{R^{\prime}}
$$

Therefore the sequence $\sum_{i=1}^{r} \bar{x}_{1 t}, \ldots, \sum_{i=1}^{r} \bar{x}_{n t}$ is not regular in $R(G)$, a contradiction (with Theorem 2.1).

The following example shows that the above necessary condition for CohenMacaulayness, is not a sufficient condition.

Example 2.4. Consider the graph G presented in Figure 1.

G

Figure 1

The graph G is 3-partite with parts:

$$
V_{1}=\left\{x_{1}, x_{2}, x_{3}\right\}, \quad V_{2}=\left\{y_{1}, y_{2}, y_{3}\right\}, \quad V_{3}=\left\{z_{1}, z_{2}, z_{3}\right\} .
$$

Since $\left\{x_{1}, y_{1}, z_{1}\right\},\left\{x_{2}, y_{2}, z_{2}\right\},\left\{x_{3}, y_{3}, z_{3}\right\}$ are cliques, G satisfies the condition $(*)$ for $r=3$.

By Theorem 2.3 in [4], G is unmixed. Also G satisfies 2 in Theorem 2.3. We show that G is not Cohen-Macaulay (Of course this can be check by a suitable mathematical software, too). By Theorem 2.1 it is enough to show that $\overline{\bar{x}}_{3}+\overline{\bar{y}}_{3}+\overline{\bar{z}}_{3}$ is a zero-divisor in the ring $R^{\prime}=\frac{R(G)}{\left(\bar{x}_{1}+\bar{y}_{1}+\bar{z}_{1}, \bar{x}_{2}+\bar{y}_{2}+\bar{z}_{2}\right)}$. But we have

$$
\left(\overline{\bar{y}}_{1} \overline{\bar{z}}_{2}\right)\left(\overline{\bar{x}}_{3}+\overline{\bar{y}}_{3}+\overline{\bar{z}}_{3}\right)=0_{R^{\prime}},
$$

because

$$
y_{1} z_{2}\left(x_{3}+y_{3}+z_{3}\right)-z_{2} x_{3}\left(x_{1}+y_{1}+z_{1}\right) \in I(G)
$$

Note that $\bar{y}_{1} \bar{z}_{2} \notin\left(\bar{x}_{1}+\bar{y}_{1}+\bar{z}_{1}, \bar{x}_{2}+\bar{y}_{2}+\bar{z}_{2}\right)$ and therefore $\overline{\bar{y}}_{1} \overline{\bar{z}}_{2}$ is not zero in R^{\prime}.

Acknowledgments. I would like to thank Rashid Zaare-Nahandi who motivated me to this work. I would also like to thank the referee for his or her useful and valuable comments.

REFERENCES

[1] C. Berge, Hypergraphs. Elsevier Science Publishers B. V., 1989.
[2] J. Herzog and T. Hibi, Distributive lattices, bipartite graphs, and Alexander duality. J. Algebraic Combin., 22 (2005), 3, 289-302.
[3] J. Herzog and T. Hibi, Monomial Ideals. Graduate Texts in Mathematics 260, Springer, 2011.
[4] R. Jafarpour-Golzari and R. Zaare-Nahandi, Unmixed r-partite graphs. Bull. Iran. Math. Soc., 43 (2017), 3, 781-787.
[5] R. Jafarpour-Golzari and R. Zaare-Nahandi, Unmixed d-uniform r-partite hypergraphs. To appear in Ars Combin.
[6] G. Ravindra, Well-covered graphs. J. Combin. Inform., System Sci., 2 (1977), 1, 20-21.
[7] R. P. Stanley, Balanced Cohen-Macaulay complexes. Trans. Amer. Math. Soc., 249 (1979), 139-157.
[8] R. P. Stanley, Combinatorics and Commutative Algebra. Birkhäuser, Boston, 1983.
[9] R. H. Villarreal, Monomial Algebras, Second Edition. Monographs and Research Notes in Mathematics, CRC Press, 2015.
[10] D. West, Introduction to graph theory. 2nd Ed., Prentic Hall, Upper Saddle River, NJ, 2001.
[11] R. Zaree-Nahandi, Cohen-Macaulayness of bipartite graphs, revisited. Bull. Malays. Math. Sci. Soc., 38 (2015), 4, 1601-1607.

Received November 25, 2017
Institute for Advanced Studies in Basic Science (IASBS)
Department of Mathematics
P.O.Box 45195-1159, Zanjan, Iran
r.golzary@iasbs.ac.ir

