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Cohen-Macaulayness of bipartite graphs has been studied by some mathemati-
cians recently. During this researches, all Cohen-Macaulay bipartite graphs have
been characterized algebraically and combinatorially. In this note, we give an
algebraic necessary and sufficient condition for Cohen-Macaulayness of unmixed
r-partite graphs under a certain condition named (∗). Also we present a com-
binatorial necessary condition for Cohen-Macaulayness of an r-partite graph
satisfying (∗), and we show that this condition is not a sufficient condition.
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1. INTRODUCTION

In the sequel, we refer to [1], [3], [8], and [10] for backgrounds on hyper-
graphs, monomial ideals, commutative algebra, and graphs, respectively. Also
everywhere, the graphs are finite, simple, and without isolated vertices.

Let G be a graph with vertex set V (G) and edge set E(G). For two
vertices u, v ∈ V (G) which are adjacent, we write v ∼ w. The set of all vertices
adjacent to a vertex v, is said to be the neighborhood of v and is denoted by
N(v). A subset C of V (G) is called a vertex cover, if every edge of G intersects
C in at least one element. A vertex cover C is called minimal if there is no
proper subset of C which is a vertex cover. The minimum cardinality of all
minimal vertex covers of G, is said to be the vertex covering number of G and
is denoted by α0(G). A minimum vertex cover is a vertex cover of size α0(G).
A graph G is called unmixed if all minimal vertex covers of G have the same
size.

For a graph G, a subset T of V (G) is said to be independent if no two
elements of T are adjacent. A maximal independent set of G is an independent
set I such that there is no other independent set T with I $ T . Note that T
is a maximal independent set of G if and only if V (G)r T is a minimal vertex
cover of G. A graph G is called well-covered if all the maximal independent
sets of G have the same size. Therefore a graph is unmixed if and only if it is
well-covered.
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For an integer r ≥ 2, a graph G is called r-partite, if V (G) can be
partitioned into r disjoint parts such that for each edge {x, y}, x and y do
not lie in the same part. If r = 2, 3, G is called bipartite and tripartite,
respectively. If for every two distinct parts Vi, Vj and for every x ∈ Vi and
y ∈ Vj , x ∼ y, G is called a complete r-partite graph.

A pure simplicial complex ∆ is called completely balanced if there is a
partition of its vertex set as C1, . . . , Cr such that each facet of ∆ intersects
each Ci in exactly one element.

Let ∆ be a simplicial complex on [n], and let K be a field and S =
K[x1, . . . , xn] be the polynomial ring in n variables with coefficients in ∆. Let
I∆ be the ideal of S generated by all square-free monomials xi1 . . . xis which
{i1, . . . , is} /∈ ∆. The ring K[∆] := S

I∆
is called the Stanley-Reisner ring of ∆.

Let G be a graph with V (G) = {v1, . . . , vn} and let S = K[x1, . . . , xn].
The ideal I(G) of S, generated by all square-free monomials xixj which {vi, vj} ∈
E(G), is said to be the edge ideal of G. The quotient ring R(G) := S

I(G) is
called the edge ring of G. Define the independence complex of G by

∆G := {F ⊆ V (G)| F is an independent set of G}.

Indeed ∆G is a simplicial complex. Clearly K[∆G] = R(G).

A graph G is called Cohen-Macaulay if R(G) is a Cohen-Macaulay ring,
for every field K.

Characterization of special classes of Cohen-Macaulay graphs have been
noteworthy in recent decades. J. Herzog and T. Hibi in 2005, gave the following
criterion for Cohen-Macaulayness of bipartite graphs [2].

Theorem 1.1. Let G be a bipartite graph with parts V1 and V2. Then G
is Cohen-Macaulay if and only if |V1| = |V2| and there is an order on vertices
V1 and V2 as x1, . . . , xn and y1, . . . , yn respectively, such that:

1) xi ∼ yi, for i = 1, . . . , n,
2) if xi ∼ yj, then i ≤ j,
3) for each 1 ≤ i < j < k ≤ n, if xi ∼ yj and xj ∼ yk, then xi ∼ yk.

Although the above theorem characterizes all Cohen-Macaulay bipartite
graphs, if one wants to prove the Cohen-Macaulayness of a bipartite graph G
by means of it, then needs to find an appropriate order on vertices of G, a
difficult thing in practice.

R. Zaare-Nahandi in 2015 presented the following combinatorial criterion
for Cohen-Macaulayness of a bipartite graph.

Theorem 1.2 ([11, Theorem 1] ). Let G be a bipartite graph with parts V1

and V2. Then, G is Cohen-Macaulay if and only if there is a perfect matching
in G as {x1, y1}, . . . , {xn, yn}, such that xi ∈ V1 and yi ∈ V2, for i = 1, . . . , n,
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and two following conditions hold.
1) The induced subgraph on N(xi) ∪N(yi) is a complete bipartite graph,

for i = 1, . . . , n.
2) If xi ∼ yj, then xj � yi.

Using the above criterion, there is not difficulty of finding an appropriate
order on vertices.

In Theorem 1.2, the condition 1 is equal to unmixedness of the graph G
(see [6]).

For proving Theorem 1.2, R. Zaare-Nahandi, first proves the following
algebraic criterion for Cohen-Macaulayness of a bipartite graph G.

Lemma 1.3 ([11, Lemma 2]). Let G be an unmixed bipartite graph with
a perfect matching {x1, y1}, . . . , {xn, yn}. Then G is Cohen-Macaulay if and
only if the sequence x1 + y1, . . . , xn + yn is a regular sequence in R(G).

We intend to investigate the Cohen-Macaulayness of r-partite graphs.
In the proof of Theorems 1.1 and 1.2, and also Lemma 1.3, the existence

of a perfect matching plays an essential role. According to this and for ease of
argument, we restrict ourselves to the class of r-partite graphs which satisfy
the following condition.
We say a graph G satisfies the condition (∗) for an integer r ≥ 2, if G can
be partitioned into r parts Vi = {x1i, . . . , xni},(1 ≤ i ≤ r), such that for all
1 ≤ j ≤ n, {xj1, xj2, . . . , xjr} is a clique.

Let G be an r-partite graph which satisfies (∗) for r ≥ 2. By Theorem
4.2 in [5] (where d = 2), G is unmixed if and only if no term of sequence∑r

i=1 x1i, . . . ,
∑r

i=1 xni is zero-divisor in the ring R(G). This is an algebraic
criterion for unmixedness of an r-partite graph satisfying the condition (∗).

In this paper, we give first an algebraic criterion, and then a combinatorial
necessary condition for Cohen-Macaulayness of an r-partite graph satisfying
(∗). Also by an appropriate counterexample, we show that this condition is
not a sufficient condition.

2. THE MAIN RESULTS

As an algebraic criterion for Cohen-Macaulayness of an r-partite graph
G satisfying the condition (∗) for r ≥ 2, we prove the following criterion.

Theorem 2.1. Let G be an unmixed r-partite graph satisfying the condi-
tion (∗) for r ≥ 2. Then G is Cohen-Macaulay if and only if the sequence

r∑
i=1

x1i, . . . ,
r∑

i=1

xni
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is a regular sequence in R(G).

Proof. Let G be Cohen-Macaulay. We prove that the sequence

r∑
i=1

x1i, . . . ,
r∑

i=1

xni

is a regular sequence in R(G). The cliques {xj1, xj2, . . . , xjr}, 1 ≤ j ≤ n, form
a partition of V (G), and every maximal independent set intersects any one
of these cliques in exactly one element (because a maximal independent set
can not intersect a clique in more than one element and if there is a maximal
independent set M which dose not intersect one of the cliques, then |M | is at
most n − 1, a contradiction. Note that the size of all maximal independent
sets is the same and equals n, since V1 is a maximal independent set and G
is well-covered). Therefore, the simplicial complex ∆G is completely balanced.
Now by Corollary 4.2 and its Remark in [7],

{
r∑

i=1

x1i, . . . ,
r∑

i=1

xni}

is a homogeneous system of parameters in K[∆G]. But K[∆G] = R(G) is
Cohen-Macaulay. Then by Theorem 5.9 in [8], the sequence

r∑
i=1

x1i, . . . ,

r∑
i=1

xni

is a regular sequence in R(G).

Conversely, let the mentioned sequence be regular. We have

dim(R(G)) = dim(S)− ht(I(G)) = rn− (r − 1)n = n,

for S = K[x11, . . . , xn1, x12, . . . , xn2, . . . , x1r, . . . , xnr], where K is a field and
R(G) = S

I(G) . Note that by Corollary 7.2.4 in [9], ht(I(G)) is equal to the
cardinality of a minimum vertex cover of G and by unmixedness of G and
the fact that

⋃r−1
i=1 Vi is a minimal vertex cover, this cardinality is (r − 1)n.

Therefore

dim(R(G)) ≤ depth(R(G)).

Then dim(R(G)) = depth(R(G)), and therefore G is Cohen-Macaulay.

Now we consider another class of r-partite graphs; We say that a graph
G satisfies the condition (N) for an integer r ≥ 2, if G is an r- partite graph
with parts V1, V2, . . . , Vr such that |V1| = |V2| = . . . = |Vr| = n and:
1) every maximal clique in G is of size r,
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2) we can order the vertices of Vi (1 ≤ i ≤ r) in the form x1i, x2i, . . . , xni such
that the sequence

r∑
i=1

x1i, . . . ,

r∑
i=1

xni

is a regular sequence in R(G).
The following theorem can be proved similarly to one part of Theorem

2.1. Note that if G satisfies (N) for r ≥ 2, then for every 1 ≤ i, i′ ≤ r whith
i 6= i′, every vertex in Vi is adjacent with at least one vertex in Vi′ , because it
lies in a maximal clique.

Theorem 2.2. Let G be an unmixed graph satisfying the condition (N)
for r ≥ 2. Then G is Cohen-Macaulay.

Now, we give a combinatorial necessary condition for Cohen-Macaulay-
ness of an r-partite graph satisfying the condition (∗) for r ≥ 2.

Theorem 2.3. Let G be an r-partite graph satisfying (∗) for r ≥ 2. If
G is Cohen-Macaulay, then for every 1 ≤ q, q′ ≤ n with q 6= q′, and for every
1 ≤ i ≤ r, if for every 1 ≤ i′(6= i) ≤ r, we have xqi ∼ xq′i′, then there exists
some 1 ≤ i′(6= i) ≤ r such that xq′i � xqi′.

Proof. Suppose the contrary. Then there are distinct integers q and q′

and integer 1 ≤ i ≤ r such that for every 1 ≤ i′( 6= i) ≤ r,
xqi ∼ xq′i′ , xq′i ∼ xqi′ .

Without loss of generality, we assume that q < q′. Now in the ring

R′ =
R(G)

(
∑r

t=1 x1t, . . . ,
∑r

t=1 x(q′−1)t)

the element xqi is not zero (here xqi is the image of xqi in R′), because otherwise

xqi ∈ (

r∑
t=1

x1t, . . . ,

r∑
t=1

x(q′−1)t),

and this means that there are fk + I(G) in R(G) (1 ≤ k ≤ q′ − 1) such that

xqi − f1

r∑
t=1

x1t − · · · − fq′−1

r∑
t=1

x(q′−1)t ∈ I(G),

and this is impossible. Note that I(G) is a monomial ideal generated by mono-
mials of degree 2.

Now

xqi

r∑
t=1

xq′t = xqixq′i = −
r∑

t(6=i)=1

xqtxq′i = 0R′ .

Therefore the sequence
∑r

i=1 x1t, . . . ,
∑r

i=1 xnt is not regular in R(G), a con-
tradiction (with Theorem 2.1).
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The following example shows that the above necessary condition for Cohen-
Macaulayness, is not a sufficient condition.

Example 2.4. Consider the graph G presented in Figure 1.

x1

x2

x3

y1

y2

y3

z1

z2

z3

G

Figure 1

The graph G is 3-partite with parts:

V1 = {x1, x2, x3}, V2 = {y1, y2, y3}, V3 = {z1, z2, z3}.

Since {x1, y1, z1}, {x2, y2, z2}, {x3, y3, z3} are cliques, G satisfies the con-
dition (∗) for r = 3.

By Theorem 2.3 in [4], G is unmixed. Also G satisfies 2 in Theorem 2.3.
We show that G is not Cohen-Macaulay (Of course this can be check by a
suitable mathematical software, too). By Theorem 2.1 it is enough to show

that x3 + y3 + z3 is a zero-divisor in the ring R′ = R(G)
(x1+y1+z1,x2+y2+z2) . But we

have

(y1z2)(x3 + y3 + z3) = 0R′ ,

because

y1z2(x3 + y3 + z3)− z2x3(x1 + y1 + z1) ∈ I(G).

Note that y1z2 /∈ (x1 + y1 + z1, x2 + y2 + z2) and therefore y1z2 is not zero in
R′.
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