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1. INTRODUCTION

Let q ě 3 be a positive integer. For any positive integers k ą h ě 1 and
any integersm and n, the generalized two-term exponential sumsGpm,n, k, h, χ; qq
is defined by

Gpm,n, k, h, χ; qq “

q
ÿ

a“1

χpaqe

ˆ

mak ` nah

q

˙

,

where epyq “ e2πiy, and χ denotes a Dirichlet character mod q.
Several authors have studied various properties of Gpm,n, k, h, χ; qq, and

the second author together with H. Liu [8] and D. Han [9] have obtained a
series of interesting results. Using a consequence of the very important result
of A. Weil [7], in the odd prime modulus p case, one immediately obtains the
general estimate

|Gpm,n, k, h, χ; pq| !k
?
p,

for any integers m ą h ě 1 with gcdpm, pq “ 1 (The subscript in !k means
that the involved constant depend only on k).

W. Zhang and H. Liu [8] have studied the fourth power mean of the
generalized 3rd Gauss sums with 3|pp´ 1q, and obtained a complex but exact
closed-form expression. Precisely, they proved the identity

ÿ

χ mod p

ˇ

ˇ

ˇ

ˇ

ˇ

p´1
ÿ

a“1

χpaqe

ˆ

a3

p

˙

ˇ

ˇ

ˇ

ˇ

ˇ

4

“ 5p3´18p2`20p`1`
U5

p
`5pU ´5U3´4U2`4U,
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where U “

p
ÿ

a“1

e

ˆ

a3

p

˙

is a real constant.

Some other results related to the two-term exponential sums can also be
found in the works [2]-[6], but they will not be repeated here.

Very recently, H. Zhang and W. Zhang [11] also studied the related prob-
lem and proved an identity

p´1
ÿ

m“1

ˇ

ˇ

ˇ

ˇ

ˇ

p´1
ÿ

a“0

e

ˆ

ma3 ` na

p

˙

ˇ

ˇ

ˇ

ˇ

ˇ

4

“

"

2p3 ´ p2 if 3 - p´ 1,
2p3 ´ 7p2 if 3|p´ 1,

where p is an odd prime and gcdpn, pq “ 1.
In this paper, we will consider the following fourth power mean of the

generalized two-term exponential sums

q´1
ÿ

m“1

ˇ

ˇ

ˇ

ˇ

ˇ

q
ÿ

a“1

χpaqe

ˆ

ma3 ` na

q

˙

ˇ

ˇ

ˇ

ˇ

ˇ

4

,(1)

where n is any integer with gcdpn, qq “ 1.
An interesting question that one may ask is whether there exists a closed-

form expression or just an asymptotic formula of the sum in (1).
As far as we know, it seems that nobody has studied this problem yet. In

this paper, we shall use analytic methods and properties of the classical Gauss
sums to study this problem, and obtain an interesting closed-form formula for
it, if q “ p is an odd prime. The result is detailed in the following theorem.

Theorem. Let p be an odd prime with gcdp3, p ´ 1q “ 1, and let n be
any integer with gcdpn, pq “ 1. Then, for any character λ mod p, we have

p´1
ÿ

m“1

ˇ

ˇ

ˇ

ˇ

ˇ

p´1
ÿ

a“1

λpaqe

ˆ

ma3 ` na

p

˙

ˇ

ˇ

ˇ

ˇ

ˇ

4

“

$

’

’

&

’

’

%

3p3 ´ 8p2 if λ “
´

˚
p

¯

,

2p3 ´ 7p2 if λ ‰ χ0,
´

˚
p

¯

,

2p3 ´ 3p2 ´ 3p´ 1 if λ “ χ0,

where
´

˚
p

¯

denotes the Legendre symbol and χ0 is the principal character mod
p.

Some notes: First in our theorem, we only considered the case that p
is an odd prime with gcdpp´ 1, 3q “ 1. If p is an odd prime with p ” 1 mod 3,
then the situation is more complex and we can’t give an exact formula for (1)
at the moment. This will be our subject of further study. Secondly, it is not
difficult to prove that |Gpm,n, k, h, χ; qq| is a multiplicative function of q, so
naturally we will ask whether there exists a closed-form expression or just an
asymptotic formula of (1) with q “ pα, a power of odd prime p, where α ě 2.
This is an open problem.
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2. SEVERAL LEMMAS

In this section, we shall present two simple lemmas that are necessary in
the proof of our theorem. Hereinafter, we shall use a few basic results from
elementary number theory, including the properties of the classical Gauss sums,
for which we refer the reader to the introductory books by Apostol [1] or W.
Zhang and H. Li [10]. Here we only list a few of them. The classical Gauss
sums τpχq is defined by

τpχq “

p´1
ÿ

a“1

χpaqe

ˆ

a

p

˙

,

and they satisfy the identity

p´1
ÿ

a“1

χpaqe

ˆ

na

p

˙

“ χpnqτpχq.(2)

If χ is a primitive character mod p, then we have |τpχq| “
?
p. Now we have:

Lemma 1. Let p be an odd prime with gcdpp ´ 1, 3q “ 1, and let λ be
any Dirichlet character mod p. Then, for any integer n with gcdpn, pq “ 1,
we have

p´1
ÿ

m“1

ˇ

ˇ

ˇ

ˇ

ˇ

p´1
ÿ

a“1

λpaqe

ˆ

ma3 ` na

p

˙

ˇ

ˇ

ˇ

ˇ

ˇ

2

“

"

ppp´ 2q if λ ‰ χ0;

p2 ´ p´ 1 if λ “ χ0.

Proof. Since p is an odd prime, so if λ ‰ χ0, then λ must be a primi-
tive character mod p. Note that gcdpn, pq “ 1 and the identity |τpλq| “

?
p,

applying the trigonometric identity

q
ÿ

m“1

e

ˆ

nm

q

˙

“

"

q if q | n,
0 if q - n(3)

we have

p´1
ÿ

m“1

ˇ

ˇ

ˇ

ˇ

ˇ

p´1
ÿ

a“1

λpaqe

ˆ

ma3 ` na

p

˙

ˇ

ˇ

ˇ

ˇ

ˇ

2

“

p´1
ÿ

m“0

ˇ

ˇ

ˇ

ˇ

ˇ

p´1
ÿ

a“1

λpaqe

ˆ

ma3 ` na

p

˙

ˇ

ˇ

ˇ

ˇ

ˇ

2

´

ˇ

ˇ

ˇ

ˇ

ˇ

p´1
ÿ

a“1

λpaqe

ˆ

na

p

˙

ˇ

ˇ

ˇ

ˇ

ˇ

2

“

p´1
ÿ

a“1

p´1
ÿ

b“1

λ
`

ab
˘

p´1
ÿ

m“0

e

˜

m
`

a3 ´ b3
˘

` npa´ bq

p

¸

´

ˇ

ˇ

ˇ

ˇ

ˇ

p´1
ÿ

a“1

λpaqe

ˆ

a

p

˙

ˇ

ˇ

ˇ

ˇ

ˇ

2
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“

p´1
ÿ

a“1

p´1
ÿ

b“1

λ paq

p´1
ÿ

m“0

e

˜

mb3
`

a3 ´ 1
˘

` nbpa´ 1q

p

¸

´ p.(4)

Since gcdp3, p ´ 1q “ 1, then the congruence x3 ” 1 mod p has only one
solution x ” 1 mod p. In fact, since gcdp3, p ´ 1q “ 1, then there exists an
integer k such that 3k ” 1 mod pp´ 1q. So from Euler theorem we know that
for any integer x, we have x3k ” x mod p. If x1 and x2 satisfy congruence
x3 ” 1 mod p, then x31 ” x32 ” 1 mod p, and x3k1 ” x3k2 ” 1 mod p, which
implies that x1 ” x2 ” 1 mod p. So the congruence x3 ” 1 mod p has only
one solution x ” 1 mod p.

Since λp1q “ 1, by (3) and (4) it follows that

p´1
ÿ

m“1

ˇ

ˇ

ˇ

ˇ

ˇ

p´1
ÿ

a“1

λpaqe

ˆ

ma3 ` na

p

˙

ˇ

ˇ

ˇ

ˇ

ˇ

2

“ ppp´ 1q ´ p “ ppp´ 2q.(5)

If λ “ χ0 is the principal character mod p, then from (3) we have the identity
ˇ

ˇ

ˇ

ˇ

ˇ

p´1
ÿ

a“1

χ0paqe

ˆ

na

p

˙

ˇ

ˇ

ˇ

ˇ

ˇ

2

“ 1.

Applying the same method used to demonstrate relation (5), we obtain

p´1
ÿ

m“1

ˇ

ˇ

ˇ

ˇ

ˇ

p´1
ÿ

a“1

λpaqe

ˆ

ma3 ` na

p

˙

ˇ

ˇ

ˇ

ˇ

ˇ

2

“ ppp´ 1q ´ 1 “ p2 ´ p´ 1.(6)

Now Lemma 1 follows from identities (5) and (6).

Lemma 2. Let p be an odd prime with gcdpp´ 1, 3q “ 1, and let λ be any
fixed character mod p. Then, for any integer n with gcdpn, pq “ 1 and any
non-principal character χ mod p, we have
(7)
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

p´1
ÿ

m“1

χpmq

ˇ

ˇ

ˇ

ˇ

ˇ

p´1
ÿ

a“1

λpaqe

ˆ

ma3 ` na

p

˙

ˇ

ˇ

ˇ

ˇ

ˇ

2
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

“ p2

ˇ

ˇ

ˇ

ˇ

ˇ

p´2
ÿ

a“1

λ pa` 1qχ
`

3a2 ` 3a` 1
˘

ˇ

ˇ

ˇ

ˇ

ˇ

2

.

Proof. From (2) and the properties of reduced residue system mod p we
have

p´1
ÿ

m“1

χpmq

ˇ

ˇ

ˇ

ˇ

ˇ

p´1
ÿ

a“1

λpaqe

ˆ

ma3 ` na

p

˙

ˇ

ˇ

ˇ

ˇ

ˇ

2

“

p´1
ÿ

a“1

p´1
ÿ

b“1

λ
`

ab
˘

p´1
ÿ

m“1

χpmqe

ˆ

mpa3 ´ b3q ` npa´ bq

p

˙
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“ τpχq

p´1
ÿ

a“1

λpaq

p´1
ÿ

b“1

χ
`

b3pa3 ´ 1q
˘

e

ˆ

nbpa´ 1q

p

˙

“ τpχqτ
`

χ3
˘

p´1
ÿ

a“1

λpaqχ
`

a3 ´ 1
˘

χ3 pa´ 1qχ3pnq

“ τpχqτ
`

χ3
˘

χ3pnq

p´2
ÿ

a“1

λpa` 1qχ
`

a3 ` 3a2 ` 3a
˘

χ3 paq

“ τpχqτ
`

χ3
˘

χ3pnq

p´2
ÿ

a“1

λpa` 1qχ
`

1` 3a` 3a2
˘

“ τpχqτ
`

χ3
˘

χ3pnq

p´2
ÿ

a“1

λ pa` 1qχ
`

3a2 ` 3a` 1
˘

.(8)

Since, by hypothesis χ ‰ χ0 and gcdpp´ 1, 3q “ 1, it follows that the order of
χ mod p is not equal to three, and also that χ3 is not equal to the principal
character mod p. Then, by (8) and |τpχq| “ |τ

`

χ3
˘

| “
?
p, we immediately

deduce the identity (7). This proves Lemma 2.

3. PROOF OF THE THEOREM

Now we will complete the proof of our main result. First, for any odd
prime p with gcdp3, p ´ 1q “ 1 and any integer n with gcdpn, pq “ 1, by the
orthogonality of characters mod p, we see that

ÿ

χ mod p

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

p´1
ÿ

m“1

χpmq

ˇ

ˇ

ˇ

ˇ

ˇ

p´1
ÿ

a“1

λpaqe

ˆ

ma3 ` na

p

˙

ˇ

ˇ

ˇ

ˇ

ˇ

2
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

“ pp´ 1q

p´1
ÿ

m“1

ˇ

ˇ

ˇ

ˇ

ˇ

p´1
ÿ

a“1

λpaqe

ˆ

ma3 ` na

p

˙

ˇ

ˇ

ˇ

ˇ

ˇ

4

.(9)

Then, on the other hand, if λ ‰ χ0, note that

p´2
ÿ

a“1

λ pa` 1qχ0

`

3a2 ` 3a` 1
˘

“

p´2
ÿ

a“1

λ pa` 1q “

p´1
ÿ

a“1

λpaq ´ 1 “ ´1.

By Lemmas 1 and 2 we also have

ÿ

χ mod p

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

p´1
ÿ

m“1

χpmq

ˇ

ˇ

ˇ

ˇ

ˇ

p´1
ÿ

a“1

λpaqe

ˆ

ma3 ` na

p

˙

ˇ

ˇ

ˇ

ˇ

ˇ

2
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
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“
ÿ

χ‰χ0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

p´1
ÿ

m“1

χpmq

ˇ

ˇ

ˇ

ˇ

ˇ

p´1
ÿ

a“1

λpaqe

ˆ

ma3 ` na

p

˙

ˇ

ˇ

ˇ

ˇ

ˇ

2
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

p´1
ÿ

m“1

ˇ

ˇ

ˇ

ˇ

ˇ

p´1
ÿ

a“1

λpaqe

ˆ

ma3 ` na

p

˙

ˇ

ˇ

ˇ

ˇ

ˇ

2
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

“ p2
ÿ

χ‰χ0

ˇ

ˇ

ˇ

ˇ

ˇ

p´2
ÿ

a“1

λ pa` 1qχ
`

3a2 ` 3a` 1
˘

ˇ

ˇ

ˇ

ˇ

ˇ

2

` p2pp´ 2q2.(10)

ÿ

χ‰χ0

ˇ

ˇ

ˇ

ˇ

ˇ

p´2
ÿ

a“1

λ pa` 1qχ
`

3a2 ` 3a` 1
˘

ˇ

ˇ

ˇ

ˇ

ˇ

2

“
ÿ

χ

ˇ

ˇ

ˇ

ˇ

ˇ

p´2
ÿ

a“1

λ pa` 1qχ
`

3a2 ` 3a` 1
˘

ˇ

ˇ

ˇ

ˇ

ˇ

2

´

ˇ

ˇ

ˇ

ˇ

ˇ

p´2
ÿ

a“1

λ pa` 1q

ˇ

ˇ

ˇ

ˇ

ˇ

2

“ pp´ 1q

p´2
ÿ

a“1

p´2
ÿ

b“1
a2`a”b2`b mod p

λ pa` 1qλ
`

b` 1
˘

´ 1

“ pp´ 1q

p´2
ÿ

a“1

p´2
ÿ

b“1
pa´bqpa`b`1q”0 mod p

λ pa` 1qλ
`

b` 1
˘

´ 1

“ pp´ 1qpp´ 2q ` pp´ 1q

p´2
ÿ

a“1

λ pa` 1qλ
´

´pa` 1q ` 1
¯

´pp´ 1qλ

˜

ˆ

p´ 1

2

˙

` 1

¸

λ

˜

ˆ

p´ 1

2

˙

` 1

¸

´ 1,(11)

where we have used the identity

p´2
ÿ

a“1

p´2
ÿ

b“1
pa´bqpa`b`1q”0 mod p

fpa, bq “

p´2
ÿ

a“1

fpa, aq `

p´2
ÿ

a“1

p´2
ÿ

b“1
a`b`1“p

fpa, bq ´ f

ˆ

p´ 1

2
,
p´ 1

2

˙

.

Using the properties of multiplicative characters and suitable operations
in the multiplicative group of residue classes mod p we also have

p´2
ÿ

a“1

λ pa` 1qλ
´

´pa` 1q ` 1
¯

“
řp´2
a“1 λpaqλpa` 1qλpa` 1qλp´1` a` 1q

“
řp´2
a“1 λ

2
paqλ2pa` 1q “

řp´2
a“1 λ

2 p1` aq “
řp´2
a“1 λ

2 p1` aq
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“ ´1`
řp´1
a“1 λ

2 paq “

$

&

%

p´ 2 if λ “
´

˚
p

¯

,

´1 if λ ‰ χ0,
´

˚
p

¯(12)

and

λ

˜

ˆ

p´ 1

2

˙

` 1

¸

λ

˜

ˆ

p´ 1

2

˙

` 1

¸

“ 1.(13)

Combining (10), (11), (12) and (13) we immediately deduce that

ÿ

χ mod p

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

p´1
ÿ

m“1

χpmq

ˇ

ˇ

ˇ

ˇ

ˇ

p´1
ÿ

a“1

λpaqe

ˆ

ma3 ` na

p

˙

ˇ

ˇ

ˇ

ˇ

ˇ

2
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

“

$

&

%

p2pp´ 1qp3p´ 8q if λ “
´

˚
p

¯

,

p2pp´ 1qp2p´ 7q if λ ‰ χ0,
´

˚
p

¯

,
(14)

where
´

˚
p

¯

denotes the Legendre symbol mod p.

Suppose now that λ “ χ0. Then, by following the similar steps as in the
previous case, applying again Lemmas 1 and 2 , and using the orthogonality
of multiplicative characters mod p, we obtain

ř

χ mod p

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

p´1
ÿ

m“1

χpmq

ˇ

ˇ

ˇ

ˇ

ˇ

p´1
ÿ

a“1

λpaqe

ˆ

ma3 ` na

p

˙

ˇ

ˇ

ˇ

ˇ

ˇ

2
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

“
ÿ

χ‰χ0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

p´1
ÿ

m“1

χpmq

ˇ

ˇ

ˇ

ˇ

ˇ

p´1
ÿ

a“1

λpaqe

ˆ

ma3 ` na

p

˙

ˇ

ˇ

ˇ

ˇ

ˇ

2
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

p´1
ÿ

m“1

ˇ

ˇ

ˇ

ˇ

ˇ

p´1
ÿ

a“1

λpaqe

ˆ

ma3 ` na

p

˙

ˇ

ˇ

ˇ

ˇ

ˇ

2
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

“

“ p2
ÿ

χ‰χ0

ˇ

ˇ

ˇ

ˇ

ˇ

p´2
ÿ

a“1

λ pa` 1qχ
`

3a2 ` 3a` 1
˘

ˇ

ˇ

ˇ

ˇ

ˇ

2

`
`

p2 ´ p´ 1
˘2

“ p2
ÿ

χ mod p

ˇ

ˇ

ˇ

ˇ

ˇ

p´2
ÿ

a“1

χ
`

3a2 ` 3a` 1
˘

ˇ

ˇ

ˇ

ˇ

ˇ

2

`
`

p2 ´ p´ 1
˘2
´ p2pp´ 2q2

“ 2p2pp´ 1qpp´ 2q ´ p2pp´ 1q `
`

p2 ´ p´ 1
˘2
´ p2pp´ 2q2

“ pp´ 1q
`

2p3 ´ 3p2 ´ 3p´ 1
˘

.(15)

The theorem now follows by putting together relations (9), (14) and (15).
This completes the proof of our theorem. l
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