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We explicitly solve the Diophantine equations of the form

A1A2A3 · · ·An ± 1 = B`
m

where (An)n≥1 and (Bm)m≥1 are the Fibonacci or Lucas sequences and m, n, `
are positive integers. This extends some results concerning a Fibonacci version
of Brocard-Ramanujan equation.

AMS 2010 Subject Classification: Primary 11B39; Secondary 11D99.

Key words: Fibonacci number, Lucas number, Brocard-Ramanujan equation,
Diophantine equation.

1. INTRODUCTION AND STATEMENTS OF MAIN RESULTS

Let (Fn)n≥1 be the Fibonacci sequence given by F1 = F2 = 1, and Fn =
Fn−1+Fn−2 for n ≥ 3, and let (Ln)n≥1 be the Lucas sequence given by the same
recursive pattern as the Fibonacci sequence but with the initial values L1 = 1
and L2 = 3. The problem of finding all integral solutions to the Diophantine
equation

(1.1) n! + 1 = m2

is known as Brocard-Ramanujan problem. Berndt and Galway [1] use computer
programming to check that the only solutions to (1.1) in the range 1 ≤ n ≤ 109

are (n,m) = (4, 5), (5, 11), and (7, 71). It is still open whether the Brocard-
Ramanujan equation has a solution when n > 109. Some variations of (1.1)
have been considered by various authors and we refer the reader to [1], [6], [7],
[11] and references therein for additional information and history.

Improving the results of Marques [14] and Szalay [20], Pongsriiam [17],
[18] solves the Diophantine equations of the form

An1An2An3 · · ·Ank
+ a = B`

m

where (An)n≥1 and (Bm)m≥1 are the Fibonacci or Lucas sequences, a = ±1, ` ∈
{1, 2}, 1 ≤ n1 ≤ n2 ≤ · · · ≤ nk, andm is any positive integer. Similar equations
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where a = 0 and ` is any positive integer are also solved in [16]. In this article,
we continue this kind of investigation. Recall that Marques [15] considers a
variant of (1.1) by replacing n! by a Fibotorial number F1F2F3 · · ·Fn and m2 by
a power of Fibonacci number. He claims [15, Theorem 2] that the Diophantine
equation

(1.2) F1F2F3 · · ·Fn + 1 = F `
m

has no solutions in positive integers m, n, and 1 ≤ ` ≤ 10. But this is wrong,
for instance, F1 + 1 = F3, F1F2 + 1 = F3, and F1F2F3 + 1 = F4 give solutions
to the above equation. In fact, we can find all solutions to (1.2) in positive
integers m,n, and ` by applying the result of Bravo, Komatsu, and Luca [3,
Corollary 1] which is obtained by referring to lower bounds for linear forms in
p-adic logarithms. Nevertheless, it is possible to explicitly solve (1.2) by using
only elementary methods. Furthermore, they can also be used to solve the
following Diophantine equations:

F1F2F3 · · ·Fn + a = L`
m(1.3)

L1L2L3 · · ·Ln + a = F `
m(1.4)

L1L2L3 · · ·Ln + a = L`
m(1.5)

where a ∈ {1,−1}, m, n, and ` are arbitrary positive integers. Our main
tools are the primitive divisor theorem of Carmichael [5], the distribution of
Fibonacci numbers modulo 2k by Jacobson [8], and the distribution of Lucas
numbers modulo 2k by P. Bundschuh and R. Bundschuh [4]. The solutions to
(1.3), (1.4), and (1.5) are as follows.

Theorem 1.1. The following statements hold.

(i) For a = 1, the only solutions to (1.3) are (n,m, `) = (3, 2, 1), (4, 4, 1).

(ii) For a = −1, the only solutions to (1.3) are (n,m, `) = (5, 7, 1) or
(n,m, `) = (3, 1, `) where ` is any positive integer.

(iii) For a = 1, the only solutions to (1.4) are (n,m, `) = (1, 3, 1), (3, 7, 1), (2, 3, 2).

(iv) For a = −1, the only solution to (1.4) is (n,m, `) = (2, 3, 1).

(v) For a = 1, the only solution to (1.5) is (n,m, `) = (2, 3, 1).

(vi) For a = −1, the only solution to (1.5) is (n,m, `) = (3, 5, 1).

Finally, we remark that Luca and Shorey [12], [13] obtain a general result
which implies that if t = 0 or t is not a perfect square is fixed, then the
Diophantine equation

F1F2F3 · · ·Fn + t = y`
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with n ≥ 1, y ≥ 2, and ` ≥ 2 has only finitely many solutions. Nevertheless,
this does not give the explicit solutions and it cannot be applied in our situation
because 1 is a perfect square.

2. PRELIMINARIES AND LEMMAS

Since one of the main tools in solving the above equations is the primitive
divisor theorem of Carmichael [5], we first recall some facts about it. Let α and
β be algebraic numbers such that α + β and αβ are nonzero coprime integers
and αβ−1 is not a root of unity. Let (un)n≥0 be the sequence given by

u0 = 0, u1 = 1, and un = (α+ β)un−1 − (αβ)un−2 for n ≥ 2.

Then we have Binet’s formula for un given by

un =
αn − βn

α− β
for n ≥ 0.

So if α = 1+
√
5

2 and β = 1−
√
5

2 , then (un) is the Fibonacci sequence.

A prime p is said to be a primitive divisor of un if p | un but p does not
divide u1u2 · · ·un−1. Then the primitive divisor theorem of Carmichael can be
stated as follows.

Theorem 2.1 (Primitive Divisor Theorem of Carmichael [5])). If α and
β are real numbers and n 6= 1, 2, 6, then un has a primitive divisor except when
n = 12, α+ β = 1 and αβ = −1.

There is a long history about primitive divisors and the most remarkable
results in this topic are given by Bilu, Hanrot, and Voutier [2], by Stewart [19],
and by Kunrui [9], but Theorem 2.1 is good enough in our situation.

Recall that we can define Fn and Ln for a negative integer n by the
formula

F−k = (−1)k+1Fk and L−k = (−1)kLk for k ≥ 0.

Then we have the following identities which valid for all integers m, k.

(2.1) Fm−kFm+k = F 2
m + (−1)m−k+1F 2

k .

(2.2) FmLk = Fm+k + (−1)kFm−k.

The identities (2.1) and (2.2) can be proved using Binet’s formula and straight-
forward algebraic manipulation, see for example in [17], [18]. We will particu-
larly apply (2.1) and (2.2) in the following form.

Lemma 2.2. For every m ≥ 1, we have
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(i) F 2
m − 1 =

{
Fm−1Fm+1, if m is odd;

Fm−2Fm+2, if m is even.

(ii) F 2
m + 1 =

{
Fm−1Fm+1, if m is even;

Fm−2Fm+2, if m is odd.

(iii) Fm − 1 =


Fm+2

2
Lm−2

2
, if m ≡ 0 (mod 4);

Fm−1
2
Lm+1

2
, if m ≡ 1 (mod 4);

Fm−2
2
Lm+2

2
, if m ≡ 2 (mod 4);

Fm+1
2
Lm−1

2
, if m ≡ 3 (mod 4).

(iv) Fm + 1 =


Fm−2

2
Lm+2

2
, if m ≡ 0 (mod 4);

Fm+1
2
Lm−1

2
, if m ≡ 1 (mod 4);

Fm+2
2
Lm−2

2
, if m ≡ 2 (mod 4);

Fm−1
2
Lm+1

2
, if m ≡ 3 (mod 4).

Proof. This follows immediately from (2.2). For example, if m is even,
replacing m by m+2

2 and k by m−2
2 in (2.2), we obtain

Fm+2
2
Lm−2

2
= Fm + (−1)

m−2
2 F2,

which is equal to Fm − 1 if m ≡ 0 (mod 4) and is equal to Fm + 1 if m ≡ 2
(mod 4).

We also need a factorization of Lm ± 1 and L2
m ± 1 as follows.

Lemma 2.3. For every m ≥ 1, we have

(i) L2
m − 1 =

{
F3m/Fm, if m is even;

5Fm−1Fm+1, if m is odd.

(ii) L2
m + 1 =

{
F3m/Fm, if m is odd;

5Fm−1Fm+1, if m is even.

(iii) Lm − 1 =


L 3m

2
/Lm

2
, if m ≡ 0 (mod 4);

5Fm+1
2
Fm−1

2
, if m ≡ 1 (mod 4);

F 3m
2
/Fm

2
, if m ≡ 2 (mod 4);

Lm+1
2
Lm−1

2
, if m ≡ 3 (mod 4).
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(iv) Lm + 1 =


F 3m

2
/Fm

2
, if m ≡ 0 (mod 4);

Lm+1
2
Lm−1

2
, if m ≡ 1 (mod 4);

L 3m
2
/Lm

2
, if m ≡ 2 (mod 4);

5Fm+1
2
Fm−1

2
, if m ≡ 3 (mod 4).

Proof. Similar to (2.1), this can be checked easily using Binet’s formula.

Recall that for each m ∈ N, the p-adic valuation of m, denoted by vp(m),
is the exponent of p in the prime factorization of m. In addition, the order of
appearance of m in the Fibonacci sequence, denoted by z(m), is the smallest
positive integer k such that m | Fk. Then we have the following result.

Lemma 2.4 (Lengyel [10]). For every n ≥ 1, we have

v2(Fn) =


0, if n ≡ 1, 2 (mod 3);

1, if n ≡ 3 (mod 6);

v2(n) + 2, if n ≡ 0 (mod 6),

v2(Ln) =


0, if n ≡ 1, 2 (mod 3);

2, if n ≡ 3 (mod 6);

1, if n ≡ 0 (mod 6),

v5(Fn) = v5(n), v5(Ln) = 0, and if p is a prime, p 6= 2 and p 6= 5, then

vp(Fn) =

{
vp(n) + vp(Fz(p)), if n ≡ 0 (mod z(p));

0, otherwise.

vp(Ln) =

{
vp(n) + vp(Fz(p)), if z(p) is even and n ≡ z(p)

2 (mod z(p));

0, otherwise.

We also refer the reader to Ward’s articles such as [22] for a general result
concerning with prime divisors of the Fibonacci and Lucas numbers. Next we
apply Lemma 2.4 to obtain the 2-adic valuations of the products F1F2F3 · · ·Fn

and L1L2L3 · · ·Ln.

Lemma 2.5. For every n ≥ 1, we have

(i) v2(F1F2F3 · · ·Fn) =

⌊
n+ 3

6

⌋
+ 3

⌊n
6

⌋
+ v2

(⌊n
6

⌋
!
)
,

(ii) v2(L1L2L3 · · ·Ln) = 2

⌊
n+ 3

6

⌋
+
⌊n

6

⌋
.
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Proof. By Lemma 2.4, we obtain

v2(F1F2F3 · · ·Fn) =
∑

k≤n+3
6

v2 (F6k−3) +
∑
k≤n

6

v2 (F6k)

=

⌊
n+ 3

6

⌋
+
∑
k≤n

6

(v2(6k) + 2)

=

⌊
n+ 3

6

⌋
+ 3

⌊n
6

⌋
+
∑
k≤n

6

v2(k)

=

⌊
n+ 3

6

⌋
+ 3

⌊n
6

⌋
+ v2

(⌊n
6

⌋
!
)
.

Similarly, part (ii) can be proved by using Lemma 2.4.

Wall [21] proves that any recurrence sequence (an) given by an = an−1 +
an−2 with initial values a1, a2 ∈ Z is simply periodic if reduced modulo any
m ∈ N. So in particular, the sequences (Fn mod m)n≥1 and (Ln mod m)n≥1
are simply periodic. For each m ∈ N, let sF (m) and sL(m) be the (shortest)
period of (Fn mod m)n≥1 and (Ln mod m)n≥1, respectively. In addition, for
a modulus m ≥ 2 and a residue b mod m, let vF (m, b) and vL(m, b) be the
number of occurrences of b as a residue in a period of the Fibonacci sequence
modulo m and in a period of the Lucas sequence modulo m, respectively.

For example, the sequence (Fn mod 4)n≥1 is 1, 1, 2, 3, 1, 0, and repeated.
So sF (4) = 6, vp(4, 1) = 3, vp(4, 2) = vp(4, 3) = vp(4, 0) = 1. It is well-known
that sF (2k) = sL(2k) = 3 · 2k−1 (see for instance, a general result obtained by
Wall [21, Theorems 5 and 9]). Furthermore, Jacobson [8] obtains the result
concerning with the distribution of Fn mod 2k as follows.

Lemma 2.6 (Jacobson [8]). For k ≥ 5, we have

vF (2k, b) =



1, if b ≡ 3 (mod 4);

2, if b ≡ 0 (mod 8);

3, if b ≡ 1 (mod 4);

8, if b ≡ 2 (mod 32);

0, otherwise.

By using Jacobson’s result, it is easy to solve the congruences Fm ≡ 1
(mod 2k) and Fm ≡ −1 (mod 2k) as follows.

Lemma 2.7. For m ≥ 1, we have

(i) Fm ≡ 1 (mod 2k) if and only if m ≡ 1, 2, 3 · 2k−1 − 1 (mod 3 · 2k−1),
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(ii) Fm ≡ −1 (mod 2k) if and only if m ≡ 3 · 2k−1 − 2 (mod 3 · 2k−1).

Proof. As mentioned above, sF (2k) = 3 · 2k−1. Therefore Fm ≡ F`

(mod 2k) if and only if m ≡ ` (mod 3 · 2k−1). By Lemma 2.6, we have
v(2k, 1) = 3. So there are exactly three values of m such that 1 ≤ m ≤ 3 · 2k−1
and Fm ≡ 1 (mod 2k). Two obvious values of m are m = 1 and m = 2. By
the property of the period, we have

F3·2k−1 ≡ F0 ≡ 0 (mod 2k) and F3·2k−1+1 ≡ F1 ≡ 1 (mod 2k),

which implies F3·2k−1−1 = F3·2k−1+1 − F3·2k−1 ≡ 1 (mod 2k). Therefore

Fm ≡ 1 (mod 2k) if and only if m ≡ 1, 2, 3 · 2k−1 − 1 (mod 3 · 2k−1).

In addition, we have

F3·2k−1−2 = F3·2k−1 − F3·2k−1−1 ≡ −1 (mod 2k).

By Lemma 2.6, v(2k,−1) = 1. So we see that

Fm ≡ −1 (mod 2k) if and only if m ≡ 3 · 2k−1 − 2 (mod 3 · 2k−1).

This completes the proof.

The distribution of Ln mod 2k is obtained by P. Bundschuh and R. Bund-
schuh [4]. In fact, they obtain more but we only need Theorem 2 in [4].

Lemma 2.8 (P. Bundschuh and R. Bundschuh [4, Theorem 2]). Suppose
k ∈ N and k ≥ 3. Then for each b in the least nonnegative residue system mod
2k, one has

vL(2k, b) =



1, if b ≡ 1 (mod 4);

3, if b ≡ 3 (mod 4);

2, if b ≡ 4 (mod 8);

2b
k
2c, if b = 2;

2b
k
2c, if b ≡ 22b

k−1
2 c + 2 and k ≥ 5;

16, if b ≡ 18 (mod 128) and k ≥ 7;

2`, if b ≡ 5 · 22`−4 + 2 (mod 22`−1) for some ` ∈
{

5, . . . ,
⌊
k+1
2

⌋}
;

0, otherwise.

By the above lemma, we can easily solve the congruence Lm ≡ 1 (mod 2k)
and Lm ≡ −1 (mod 2k) as follows.

Corollary 2.9. For every k ≥ 3, we have

(i) Lm ≡ 1 (mod 2k) if and only if m ≡ 1 (mod 3 · 2k−1),
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(ii) Lm ≡ −1 (mod 2k) if and only if m ≡ 2k−1, 2k, 3·2k−1−1 (mod 3·2k−1).

Proof. As mentioned earlier, we have sL(2k) = 3 · 2k−1. So we see that
Lm ≡ Lr (mod 2k) if and only if m ≡ r (mod 3 · 2k−1). So if m ≡ 1 (mod 3 ·
2k−1), then Lm ≡ L1 ≡ 1 (mod 2k). By Lemma 2.8, there is exactly one m
(mod 3 · 2k−1) with Lm ≡ 1 (mod 2k). This proves (i). Again, by Lemma 2.8,
there are exactly three m (mod 3 ·2k−1) with Lm ≡ −1 (mod 2k). So to prove
(ii), it is enough to show that

L2k−1 ≡ L2k ≡ L3·2k−1−1 ≡ −1 (mod 3 · 2k−1).

By the property of period, we have

L3·2k−1 ≡ L0 ≡ 2 (mod 2k) and L3·2k−1+1 ≡ L1 ≡ 1 (mod 2k),

which implies

L3·2k−1−1 = L3·2k−1+1 − L3·2k−1 ≡ −1 (mod 2k).

So it remains to show that

(2.3) L2k−1 ≡ L2k ≡ −1 (mod 2k).

We will prove (2.3) by induction on k ≥ 3. It is easy to check that (2.3) holds
when k = 3. So assume that k ≥ 3 and (2.3) holds for k. Then L2k−1 = −1+2k`
for some ` ∈ Z. Recall the identity that L2

n = L2n + 2(−1)n, which can be
verified by using Binet’s formula. Therefore

L2k = (L2k−1)2 − 2 = (−1 + 2k`)2 − 2 ≡ −1 (mod 2k+1), and

L2k+1 = (L2k)2 − 2 ≡ (−1)2 − 2 ≡ −1 (mod 2k+1).

This completes the proof.

3. PROOF OF MAIN RESULTS

We divide the proof of Theorem 1.1 into three steps and call them Theo-
rems 3.1, 3.2, and 3.3, respectively. Then we combine Theorems 3.1, 3.2, and
3.3 with a general result in [17], [18] to obtain Theorem 1.1.

Theorem 3.1. Let a ∈ {1,−1}, m ≥ 2, and ` ≥ 3. Then the Diophantine
equation

(3.1) F1F2F3 · · ·Fn + a = L`
m

has no solution in positive integers n ≥ 1.



9 Fibonacci Lucas Brocard-Ramanujan equation 221

Proof. Using a basic command in MAPLE, it is easy to check that the
left hand side of (3.1) is squarefree for a = 1 and 1 ≤ n ≤ 25. For a = −1,
the left hand side of (3.1) is also squarefree for every 3 ≤ n ≤ 25 except when
n = 13, where we have

F1F2F3 · · ·F13 − 1 = (23)(432)(8603183137).

In any case, they are not perfect ` power. Suppose for a contradiction that there
exists n ≥ 26 satisfying (3.1). Recall the well-known identity that F2k = FkLk.
So if m ≤ n

2 , then
Lm | F2m | F1F2F3 · · ·Fn,

and so 3 ≤ Lm | L`
m − F1F2F3 · · ·Fn = a, which is a contradiction. Therefore

(3.2) m >
n

2
.

Since n ≥ 26, we see that m > 13. Next, let A = L`
m−a

Lm−a . Then (3.1) can be
written as

(3.3) F1F2F3 · · ·Fn = (Lm − a)A.

Case 1. a = 1. Then A ∈ Z and by Lemma 2.3(iii) and the identity F2k =
FkLk, we can rewrite (3.3) according to the residue class of m modulo 4 as
follows:

for m ≡ 0 (mod 4), F1F2 · · ·FnF 3m
2
Fm = F3mFm

2
A(3.4)

for m ≡ 1 (mod 4), F1F2 · · ·Fn = 5Fm+1
2
Fm−1

2
A(3.5)

for m ≡ 2 (mod 4), F1F2 · · ·FnFm
2

= F 3m
2
A(3.6)

for m ≡ 3 (mod 4), F1F2 · · ·FnFm+1
2
Fm−1

2
= Fm+1Fm−1A.(3.7)

For (3.4), if 3m > n, then by Theorem 2.1, there exists a prime p dividing F3m

but p does not divide the left hand side of (3.4), which is not the case. So
3m ≤ n. Similarly m+1

2 ≤ n in (3.5), 3m
2 ≤ n in (3.6), and m+ 1 ≤ n in (3.7).

In any case,

(3.8) m ≤ 2n− 1.

Next we consider (3.1) in the following 3 subcases.
Case 1.1. a = 1, ` is even, and m is even. By Lemma 2.3(i), we have

F3m

Fm
= L2

m − 1 | L`
m − 1 = F1F2F3 · · ·Fn.

So F3m | F1F2F3 · · ·FnFm. But by (3.2), we have 3m > n and we obtain by
Theorem 2.1 that there exists a prime p dividing F3m but p does not divide
F1F2F3 · · ·FnFm, a contradiction. So there is no solution in this case.
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Case 1.2. a = 1, ` is even, and m is odd. If 4 | `, then by Lemma 2.3(ii), we
obtain

F3m

Fm
= L2

m + 1 | L4
m − 1 | L`

m − 1 = F1F2 · · ·Fn,

which leads to a contradiction in the same way as in Case 1.1. So assume that
` = 2`0 and `0 is odd. Since ` ≥ 3, we have `0 ≥ 3. By Lemma 2.3(i), we
obtain

(3.9) 5Fm−1Fm+1 = L2
m − 1 | L`

m − 1 = F1F2F3 · · ·Fn.

If m+1 > n, then by Theorem 2.1, there is a prime p dividing Fm+1 but p does
not divide F1F2 · · ·Fn, which contradicts (3.9). So m + 1 ≤ n. Let x = L2

m.
Then we have

L`
m − 1 = x`0 − 1 = (x− 1)

(
x`0−1 + x`0−2 + · · ·+ x+ 1

)
,

and the factor x`0−1 + x`0−2 + · · · + x + 1 is odd because `0 is odd. This and
Lemma 2.3(i) lead to

(3.10) v2(L
`
m − 1) = v2(x− 1) = v2(L

2
m − 1) = v2(Fm−1Fm+1).

Sincem is odd, 2 divides bothm−1 andm+1, and because (m+1)−(m−1) = 2,
3 divides at most one of them. By Lemma 2.4, we see that

(3.11) v2(Fm−1Fm+1) ≤ max {v2(m− 1) + 2, v2(m+ 1) + 2} .
For any k ∈ N, we have the implication

v2(k) = a⇒ 2a | k ⇒ 2a ≤ k ⇒ a ≤ log k

log 2
.

So in particular,

(3.12) max {v2(m− 1) + 2, v2(m+ 1) + 2} ≤ log(m+ 1)

log 2
+ 2.

From (3.10), (3.11), (3.12), and (3.8), we obtain

(3.13) v2(L
`
m − 1) ≤ log(m+ 1)

log 2
+ 2 ≤ log n

log 2
+ 3.

On the other hand, v2(L
`
m − 1) = v2(F1F2F3 · · ·Fn). So we obtain by Lemma

2.5 that

v2

(
L`
m − 1

)
=

⌊
n+ 3

6

⌋
+ 3

⌊n
6

⌋
+ v2

(⌊n
6

⌋
!
)
.

By Legendre’s formula, we know that v2(m!) =
∑∞

k=1

⌊
m
2k

⌋
for any m ∈ N.

It is also well-known that
⌊
bxc
m

⌋
=
⌊
x
m

⌋
for every x ∈ R and m ∈ N. So in

particular,

v2

(⌊n
6

⌋
!
)
≥

⌊⌊
n
6

⌋
2

⌋
=
⌊ n

12

⌋
≥ n

12
− 1.
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So the above inequality implies that

(3.14) v2(L
`
m − 1) ≥ n+ 3

6
− 1 + 3

(n
6
− 1
)

+
n

12
− 1 >

3n

4
− 5.

By (3.13) and (3.14), we obtain

(3.15)
3n

4
− 5 <

log n

log 2
+ 3.

However, by considering the function f : [25,∞)→ R given by

f(x) =

(
3x

4
− 5

)
−
(

log x

log 2
+ 3

)
,

we see that f ′(x) > 0 for all x ≥ 25. So f is strictly increasing on [25,∞).
Since n > 25, we obtain f(n) > f(25) > 0. That is

3n

4
− 5 >

log n

log 2
+ 3,

which contradicts (3.15). So there is no solution in this case.
Case 1.3. a = 1 and ` is odd. Since n ≥ 26, we obtain by Lemma 2.5 that

v2(F1F2F3 · · ·Fn) ≥ v2(F1F2F3 · · ·F26) = 19.

Therefore

(3.16) L`
m ≡ 1 (mod 219).

For any x ∈ Z, we have

x` − 1 = (x− 1)(x`−1 + x`−2 + · · ·+ x+ 1),

and since ` is odd, the second factor on the right hand side of the above equation
is odd. Therefore 219 | x` − 1 if and only if 219 | x− 1. From this, we see that
(3.16) is equivalent to

(3.17) Lm ≡ 1 (mod 219).

By Corollary 2.9(i) and the fact that m > 1, we obtain m > 3 · 218. Then by
(3.8), we obtain n ≥ m+1

2 > 3 · 217. Now we can repeat this process as follows.
By Lemma 2.5, we have

v2(F1F2F3 · · ·Fn) ≥ v2(F1F2F3 · · ·F3·217) ≥ 218 =: b.

Then (3.16) and (3.17) become L`
m ≡ 1 (mod 2b) and Lm ≡ 1 (mod 2b), re-

spectively. Applying Corollary 2.9(i) and (3.8), respectively, we obtain

m > 3 · 2b−1 and n > 3 · 2b−2 ≥ 3 · 2218−2.

Repeating this process, we see that n ≥M for any given positive integer M , a
contradiction.
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From Cases 1.1, 1.2, and 1.3, we see that (3.1) has no solutions when
a = 1. Next we consider (3.1) when a = −1.
Case 2. a = −1 and ` is even. Then L`

m is a perfect square. So L`
m + 1 ≡ 1, 2

(mod 4), contradicting the fact that L`
m + 1 = F1F2F3 · · ·Fn which is divisible

by 4.
Case 3. a = −1 and ` is odd. Then A in (3.3) is an integer. Then we can
apply Lemma 2.3(iv) to obtain the same set of equations (3.6), (3.7), (3.4),
and (3.5), respectively. So we can use the same argument to obtain (3.8).
That is m ≤ 2n− 1. Then we can follow the argument in Case 1.3 to obtain,
respectively,

v2(F1F2F3 · · ·Fn) ≥ 19 and L`
m ≡ −1 (mod 219).

Since ` is odd, we see that for any x ∈ Z,

x` + 1 = (x+ 1)
(
x`−1 − x`−2 + x`−3 − x`−4 + · · · − x+ 1

)
and the second factor on the right hand side of the above equation is odd. So
we can still use the argument in Case 1.3 to obtain

Lm ≡ −1 (mod 219).

Then by Corollary 2.9(ii), we obtain m ≥ 218. So n ≥ m+1
2 > 217. Then

repeating this process as in Case 1.3, we reach a contradiction. This completes
the proof.

Theorem 3.2. Let a ∈ {1,−1} and ` ≥ 3. Then the Diophantine equa-
tion

(3.18) L1L2L3 · · ·Ln + a = L`
m

has no solution in positive integers m, n.

Proof. Since some parts of the proof is similar to those in Theorem 3.1,
we leave some details to the reader. We first check using MAPLE that (3.18)
has no solutions when 1 ≤ n ≤ 25 or when m = 1. So we suppose n ≥ 26 and
m ≥ 2. If m ≤ n, then we would have

3 ≤ Lm | L`
m − L1L2L3 · · ·Ln = a,

which is a contradiction. Therefore

(3.19) m > n.

Let A = L`
m−a

Lm−a . We first consider the case a = 1. Then A ∈ Z. Similar to the
proof of Theorem 3.1, we apply Lemma 2.3(iii) and the identity F2k = FkLk

to write (3.18) according to the residue class of m modulo 4 as follows:

for m ≡ 0 (mod 4),
F2

F1

F4

F2

F6

F3
· · · F2n

Fn

Fm

Fm
2

F 3m
2

= F3mA,(3.20)
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for m ≡ 1 (mod 4), L1L2L2 · · ·Ln = 5Fm+1
2
Fm−1

2
A,(3.21)

for m ≡ 2 (mod 4),
F2

F1

F4

F2

F6

F3
· · · F2n

Fn
Fm

2
= F 3m

2
A,(3.22)

for m ≡ 3 (mod 4),
F2

F1

F4

F2

F6

F3
· · · F2n

Fn
Fm+1

2
Fm−1

2
= Fm+1Fm−1A.(3.23)

Since 5 does not divide any Lucas number, (3.21) is impossible. Next we
consider (3.20). If 3m > 2n, then by Theorem 2.1, there exists a prime p such
that p | F3m but p does not divide the left hand side of (3.20), which is a
contradiction. So 3m ≤ 2n. Similarly, 3m

2 ≤ 2n in (3.22) and m + 1 ≤ 2n in
(3.23). In any case, m ≤ 2n− 1.

Next we consider the case a = −1 and ` is odd. Then A ∈ Z and we
can apply Lemma 2.3(iv) and the identity F2k = FkLk to obtain the same set
of equations (3.22), (3.23), (3.20), and (3.21), respectively. Then by applying
Theorem 2.1, we obtain the same inequality m ≤ 2n−1. Therefore we conclude
that

(3.24) m ≤ 2n− 1 when a = 1 or a = −1 and ` is odd.

Since n ≥ 26, we obtain by Lemma 2.5(ii) that

(3.25) v2(L
`
m − a) = v2(L1L2L3 · · ·Ln) ≥ v2(L1L2L3 · · ·L26) = 12.

Case 1. a = 1 and ` is odd. Let x = Lm. Then

x` − 1 = (x− 1)(x`−1 + x`−2 + · · ·+ x+ 1)

and the second factor on the right hand side of the above equation is odd. So
for any k ∈ N, 2k | x`−1 if and only if 2k | x−1. By (3.25), we have 212 | x`−1.
So 212 | x− 1. That is

(3.26) Lm ≡ 1 (mod 212).

From (3.19), we have m > n ≥ 26. By Corollary 2.9(i) and (3.26), we obtain
m ≥ 3 · 211 and therefore we obtain by (3.24) that n ≥ m+1

2 > 3 · 210. Then we
repeat this process as follows. Let b = 210. Since n ≥ 3b, we obtain by Lemma
2.5 that

v2(L
`
m − 1) = v2(L1L2L3 · · ·Ln) ≥ v2(L1L2L3 · · ·L3b) ≥ b.

So we obtain L`
m ≡ 1 (mod 2b), which implies Lm ≡ 1 (mod 2b). Then we

obtain by Corollary 2.9(i) and (3.24) that

m ≥ 3 · 2b−1 and n ≥ m+ 1

2
> 3 · 2b−2 = 3 · 2210−2.

By repeating this process, we see that n ≥ M for any given positive integer
M , a contradiction. So there is no solution in this case.
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Case 2. a = 1, ` is even, and m is even. Then by Lemma 2.3(i), we obtain

F3m

Fm
= L2

m − 1 | L`
m − 1 = L1L2L3 · · ·Ln.

So

(3.27) F3m | L1L2L3 · · ·LnFm.

By (3.19), we have 3m > 3n > 2n, so there exists a prime p such that p | F3m

but p does not divide Fm and F2k for any 1 ≤ k ≤ n. Therefore

p -
F2

F1

F4

F2
· · · F2n

Fn
Fm = L1L2L3 · · ·LnFm,

which contradicts (3.27).
Case 3. a = 1, ` is even, and m is odd. Then by Lemma 2.3(i), we obtain

5 | 5Fm−1Fm+1 = L2
m − 1 | L`

m − 1 = L1L2L3 · · ·Ln,

which contradicts the fact that 5 does not divide any Lucas number.
Case 4. a = −1 and ` is even. Then L`

m is a perfect square. So L`
m − a =

L`
m + 1 ≡ 1, 2 (mod 4), which contradicts (3.25).

Case 5. a = −1 and ` is odd. Then we can apply (3.24) and follow the
argument in Case 1. Let x = Lm. Then

x` + 1 = (x+ 1)(x`−1 − x`−2 + · · · − x+ 1)

and the second factor is odd. So 212 | x` + 1 if and only if 212 | x + 1. This
leads to the congruence

Lm ≡ −1 (mod 212).

By Corollary 2.9(ii) and (3.24), we obtain, respectivelym ≥ 211 and n ≥ m+1
2 >

210. Then repeating the process just like in Case 1, we reach a contradiction.
This completes the proof.

Theorem 3.3. Let a ∈ {1,−1} and ` ≥ 3. Then the Diophantine equa-
tion

(3.28) L1L2L3 · · ·Ln + a = F `
m

has no solution in positive integers m, n.

Proof. Some parts of the proof are similar to those of Theorems 3.1 and
3.2, so we leave some details to the reader. First, by using MAPLE we can
suppose that n ≥ 26. Then the left hand side of (3.28) is not divisible by 2

and 3, so m ≥ 5. Let A = F `
m−a

Fm−a . Similar to the proof of Theorems 3.1 and
3.2, we rewrite (3.28) according to the residue class of m modulo 4 by applying
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Lemma 2.2(iii) if a = 1 and Lemma 2.2(iv) if a = −1 and ` is odd, together
with the identity F2k = FkLk. Then we obtain the equations similar to (3.20)
to (3.23). By applying Theorem 2.1 to each case, we can conclude that

(3.29) m ≤ 2n+ 2 when a = 1 or when a = −1 and ` is odd.

Case 1. a = 1 and ` is odd. This case is similar to Case 1.3 of Theorem 3.1
and to Case 1 of Theorem 3.2. We first apply Lemma 2.5 to obtain

v2(F
`
m − 1) = v2(L1L2 · · ·Ln) ≥ v2(L1L2 · · ·L26) = 12.

Therefore F `
m ≡ 1 (mod 212) which leads to Fm ≡ 1 (mod 212). Then by

Lemma 2.7(i) and the fact that m ≥ 5, we conclude that m ≥ 3 · 211− 1. Then
by (3.29), we obtain

n ≥ m− 2

2
> 210.

By repeating this process just like in Case 1.3 of Theorem 3.1 or Case 1 of
Theorem 3.2, we see that n ≥ M for any given positive integer M , which is a
contradiction.
Case 2. a = 1, ` is even and m is even. If m ≤ 2n, then we have

3 ≤ Lm
2
| F `

m − L1L2L3 · · ·Ln = a,

which is a contradiction. So m > 2n. Then by Lemma 2.2(i), we have

Fm−2Fm+2 = F 2
m − 1 | F `

m − 1 = L1L2L3 · · ·Ln.

But m+ 2 > 2n+ 2 > 2n, so by Theorem 2.1, there exists a prime p dividing
Fm+2 but p does not divide F2

F1

F4
F2

F6
F3
· · · F2n

Fn
= L1L2L3 · · ·Ln, a contradiction.

Case 3. a = 1, ` is even, and m is odd. We first suppose that 4 | `. Then we
obtain by Lemmas 2.2(i) and 2.2(ii) that

(3.30) Fm−2Fm−1Fm+1Fm+2 = F 4
m − 1 | F `

m − 1 = L1L2L3 · · ·Ln.

Since m is odd, m + 2 is odd and is larger than 6. By Theorem 2.1, there
exists an odd prime p such that z(p) = m + 2. Since p and z(p) are odd, we
obtain by Lemma 2.4 that vp(Lk) = 0 for every k. So in particular, p | Fm+2

but p - L1L2L3 · · ·Ln, which contradicts (3.30). Hence ` = 2`0, `0 is odd, and
`0 ≥ 3. Then by an argument similar to that in Case 1.2 of Theorem 3.1, we
obtain

v2(F
`
m − 1) = v2(F

2
m − 1) = v2(Fm−1Fm+1)

≤ max{v2(m− 1) + 2, v2(m+ 1) + 2}

≤ log(m+ 1)

log 2
+ 2 ≤ log(2n+ 3)

log 2
+ 2,

(3.31)

where the last inequality is obtained by (3.29). On the other hand, by Lemma
2.5, we obtain

(3.32) v2(F
`
m− 1) = v2(L1L2L3 · · ·Ln) > 2

(
n+ 3

6
− 1

)
+
(n

6
− 1
)

=
n

2
− 2.
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From (3.31) and (3.32), we obtain

(3.33)
n

2
− 2 <

log(2n+ 3)

log 2
+ 2.

However, the function f given by

f(x) =
(x

2
− 2
)
−
(

log(2x+ 3)

log 2
+ 2

)
is increasing on [25,∞). So f(n) ≥ f(26) > 0, which contradicts (3.33).
Case 4. a = −1 and ` is even. Since ` is even, we have F `

m +1 ≡ 1, 2 (mod 4),
which contradicts the fact that F `

m + 1 = L1L2L3 · · ·Ln, which is divisible by
4.
Case 5. a = −1 and ` is odd. This case is similar to Case 3 of Theorem 3.1
and Case 5 of Theorem 3.2. First, by Lemma 2.5, we obtain v2(F

`
m + 1) ≥ 12,

so F `
m ≡ −1 (mod 212), which leads to Fm ≡ −1 (mod 212). Then by Lemma

2.7(ii) and (3.29), we obtain, respectively

m ≥ 3 · 211 − 2 and n ≥ m− 2

2
> 210.

Then repeating this process just like before, we reach a contradiction. This
completes the proof.

Combining Theorems 3.1, 3.2, and 3.3 with Pongsriiam’s results [17], [18],
we obtain the proof of Theorem 1.1 as follows.

Proof of Theorem 1.1. For (i), we need to show that all solutions to (1.3)
when a = 1 are (n,m, `) = (3, 2, 1) and (4, 4, 1). It is easy to see that m = 1
does not lead to a solution. So assume that m ≥ 2. If ` ≥ 3, then Theorem 3.1
shows that (1.3) has no solution and if ` = 2, then Theorem 3.1 of [17] implies
that there is no solution to (1.3) either. For ` = 1, all solutions to (1.3) can be
obtained easily from Theorem 3.6 of [18].

For (ii), it is easy to check that m = 1 leads to the solution given by
(n,m, `) = (3, 1, `) where ` is any positive integer. So assume that m ≥ 2.
Then Theorem 3.2 of [17] implies that (1.3) has no solution when ` = 2 and
Theorem 3.1 shows that (1.3) has no solution when ` ≥ 3. If ` = 1, we apply
Theorem 3.7 of [18] to obtain the solution to (1.3), namely, (n,m, `) = (5, 7, 1).

For (iii), we obtain by Theorem 3.3 that there is no solution to (1.4) when
` ≥ 3. So we consider only ` ≤ 2. If ` = 1, we apply Theorem 3.1 of [18] to
obtain the solutions to (1.4), namely, (n,m, `) = (1, 3, 1), (3, 7, 1). If ` = 2,
then we apply Theorem 3.3 of [17] to obtain (n,m, `) = (2, 3, 2).

For (iv), we obtain by Theorem 3.3 that there is no solution to (1.4) when
` ≥ 3 and by Theorem 3.4 of [17], there is no solution to (1.4) when ` = 2 either.
If ` = 1, then we apply Theorem 3.3 of [18] to obtain (n,m, `) = (2, 3, 1).
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For (v), we obtain by Theorem 3.2 that there is no solution to (1.5) when
` ≥ 3, and by Theorem 3.6 of [17], there is no solution when ` = 2 either. For
` = 1, we apply Theorem 3.4 of [18] to obtain (n,m, `) = (2, 3, 1).

For (vi), we obtain by Theorem 3.2 that there is no solution to (1.5) when
` ≥ 3, and by Theorem 3.5 of [17], there is no solution to (1.5) when ` = 2
either. If ` = 1, we apply Theorem 3.5 of [18] to obtain (n,m, `) = (3, 5, 1).

We give the explicit solutions to (1.2) in the next theorem. Since it is
similar to the other theorems, we only give overall ideas of the proof.

Theorem 3.4. The Diophantine equation

F1F2F3 · · ·Fn + 1 = F `
m

has a solution in positive integers if and only if ` = 1. In this case, there are
exactly three solutions, namely, (m,n, `) = (3, 1, 1), (3, 2, 1), and (4, 3, 1).

Proof. We can limit the range of n by applying the result of Bravo, Ko-
matsu, and Luca [3, Corollary 1], which is obtained by referring to lower bounds
for linear forms in p-adic logarithms. Nevertheless, we can also solve this equa-
tion in an elementary way. For ` = 1 or 2, the result follows from [18, Corollary
4.1] and [17, Theorem 3.8]. So we assume ` ≥ 3. By using MAPLE and divis-
ibility relation, we see that n ≥ 26 and m ≥ n + 1. Then we divide the proof
into 2 cases.

Case 1 ` is odd. This case is similar to Case 1.3 of Theorem 3.1 and to Case
1 of Theorem 3.2. We first apply Lemma 2.5 to obtain v2(F

`
m − 1) ≥ 19 which

leads to Fm ≡ 1 (mod 219). Then we apply Lemma 2.7(i) and repeat the
process just like in Case 1.3 of Theorem 3.1 or Case 1 of Theorem 3.2. We see
that n ≥M for any given positive integer M , which is a contradiction.

Case 2 ` is even. Then we obtain by Lemma 2.2 that

Fm−bFm+b = F 2
m − 1 | F `

m − 1 = F1F2 · · ·Fn,

where b = 1 or 2. Since m + b ≥ m + 1 > n, we obtained by the primitive
divisor theorem that there exists a prime p dividing Fm+b but p - F1F2 · · ·Fn,
which is a contradiction.

This completes the proof.

Similarly, if 1 is replaced by −1, the solutions are as follows.

Theorem 3.5. The solutions to the Diophantine equation

F1F2F3 · · ·Fn − 1 = F `
m

are (m,n, `) = (1, 3, a), (2, 3, a), and (5, 4, 1), where a is any positive integer.
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Proof. The proof is similar to that of Theorem 3.4. The case when m or
n are small or ` = 1, 2 can be checked by using MAPLE and the result in [18,
Corollary 4.1] and [17, Theorem 3.7]. So assume that ` ≥ 3, m ≥ n+1 ≥ 27. If `
is odd, we apply Lemmas 2.5 and 2.7(ii) repeatedly to reach a contradiction. If `
is even, then F `

m ≡ 0, 1 (mod 4) which contradicts the fact that F1F2 · · ·Fn ≡ 0
(mod 4) for n ≥ 6. This completes the proof.
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