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In this paper we investigate the approximate biflatness of semigroup algebras.
Under some conditions we show that approximate biflatness of semigroup alge-
bra `1(S) implies amenability of semigroup S. Also we study the approximate
biflatness of group algebra L1(G) and its Segal algebra S(G) according to the
amenability of G.
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1. INTRODUCTION

The concept of amenability of Banach algebras was introduced by Johnson
in [9]. The notions related to amenability in the theory of homological Banach
algebras are biflatness and biprojectivity which were introduced by Helemskii
[7]. Choi [2], showed, for any semilattice S, that `1(S) is biflat if and only if
S is uniformly locally finite. He also proved, for a Clifford semigroup S, that
`1(S) is biflat if and only if

(i) (E(S),≤) is uniformly locally finite and

(ii) each maximal subgroup of S is amenable.

Afterwards Ramsden [13] extended this result for any inverse semigroup S. He
showed that

(i) `1(S) is biflat if and only if S is uniformly locally finite and GP the
maximal subgroup of S at p ∈ E(S) is amenable.

(ii) `1(S) is biprojective if and only if S is uniformly locally finite and Gp the
maximal subgroup of S at p ∈ E(S) is finite.

Samei et al. in [17] provided a natural generalization of biflatness, called
approximate biflatness. They characterized a sufficient condition for Banach
algebra A to be pseudo-amenable. Indeed a Banach algebra A is pseudo-
amenable whenever it is approximately biflat and has an approximate identity.
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Also they studied approximate biflatness for various Segal algebra in both
group algebra L1(G) and the Fourier algebra A(G). The question then arises,
what will happen when the semigroup algebra `1(S) is approximately biflat?

In this paper, we investigate the concept of approximate biflatness in the
category of semigroup algebras. We study the conditions such that approxi-
mate biflatness of semigroup algebra `1(S) implies amenability of semigroup
S. Also we study the relationship between approximate biflatness of group
algebra L1(G) and Segal algebra S(G) with the amenability group G. Finally
we give an example of Banach algebra which is approximately biflat but it is
not approximately biprojective. Also we present an example of Banach algebra
which is approximately biflat but it is not pseudo-contractible.

2. PRELIMINARIES

The main reference for the semigroup theory is [8]. Suppose that S is a
semigroup and E(S) is the set of its idempotents. We have a partial order on
E(S), which is defined by

i ≤ j ⇔ i = ij = ji (i, j ∈ E(S)).

An idempotent i ∈ E(S) is called maximal if i = j whenever i ≤ j.
A semigroup S is called an inverse semigroup, if for every s ∈ S there

exists a unique element s∗ ∈ S such that s = ss∗s and s∗ = s∗ss∗. Suppose
that S is an inverse semigroup. Then there exists a partial order on S defined
by s ≤ t ⇔ s = ss∗t, where s, t ∈ S. This partial order on S coincides
with the partial order on E(S). We denote (s] = {t ∈ S : t ≤ s} for any
s ∈ S. We recall that S is locally finite (uniformly locally finite), if |(s]| < ∞
(sup{|(s]| : s ∈ S} <∞, respectively) for every s ∈ S.

Suppose that S is an inverse semigroup and p ∈ E(S). Then Gp = {s ∈
S : ss∗ = s∗s = p} is a group with identity p and it is called the maximal
subgroup of S at p. A semigroup S is called a Clifford semigroup if it is an
inverse semigroup with ss∗ = s∗s (s ∈ S).

We recall that a semigroup S is a left amenable (right amenable) semi-
group if there is m ∈ `1(S)∗∗ such that s · m = m (m = m · s) and ‖m‖ =
m(φS) = 1 (s ∈ S), where φS is the augmentation character on `1(S). The
semigroup S is amenable, if it is both left and right amenable.

Suppose that A is a Banach algebra. We denote the character space of A
by ∆(A), that is, all non-zero multiplicative linear functionals on A. Suppose
that φ ∈ ∆(A). Then φ̃ ∈ ∆(A∗∗) is a unique extension of φ to A∗∗ which is
defined by φ̃(F ) = F (φ) for every F ∈ A∗∗.
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Suppose that A is a Banach algebra. Then the projective tensor product
A⊗p A is a Banach A-bimodule with the following actions

a · (b⊗ c) = ab⊗ c, (b⊗ c) · a = b⊗ ca (a, b, c ∈ A).

The product morphism πA : A⊗pA→ A is defined by πA(a⊗ b) = ab for every
(a⊗ b) ∈ A⊗p A. We recall that for every φ ∈ ∆(A) and ψ ∈ ∆(B)}, the map
φ ⊗ ψ defined by φ ⊗ ψ(a ⊗ b) = φ(a)ψ(b), for every a ∈ A and b ∈ B, is a
character on A⊗p B.

A Banach algebra A is called approximately biflat if there exists a net
θα : (A⊗p A)∗ → A∗ of bounded A-bimodule morphisms such that

W∗OT− lim
α
θα ◦ π∗A = idA∗ ,

where W∗OT is the weak* operator topology on B(A∗) [17]. We remind that
the weak* operator topology on B(A∗) is the locally convex topology deter-
mined by the seminorms {pa,f : a ∈ A, f ∈ A∗}, where pa,f (T ) = |〈a, T (f)〉|.

A Banach algebra A is called approximately biprojective, if there is a net
ηα : A→ A⊗pA of continuous A-bimodule morphisms such that πA◦ηα(a) −→
a for every a ∈ A. See [19].

We say that a Banach algebra A is left ϕ-amenable (left ϕ-contractible),
where ϕ ∈ ∆(A), if there is m ∈ A∗∗ (m ∈ A) such that am = ϕ(a)m and
ϕ̃(m) = 1 (ϕ(m) = 1, respectively), for every a ∈ A. For more details see
[10, 12]. Equivalently, a Banach algebra A is called left φ-amenable, where
φ ∈ ∆(A), if there exists a bounded net (aα) ⊆ A such that for every a ∈ A

φ(aα) −→ 1, ‖aaα − φ(a)aα‖ −→ 0

and any such net is called a bounded approximate φ-mean [10].

We say that a Banach algebra A is pseudo-contractible if there is a (not
necessarily bounded) net (mβ)β ⊆ A ⊗p A such that a · mβ = mβ · a and
limβ πA(mβ)a = a for every a ∈ A. See [6].

3. APPROXIMATE BIFLATNESS OF SEMIGROUP ALGEBRAS

Throughout this section, S is a semigroup and `1(S) is its semigroup
algebra. We begin with the following lemma.

Lemma 3.1. Let A be a Banach algebra and m ∈ (A ⊗p A)∗∗ such that
a · m = m · a for every a ∈ A and let ϕ ∈ ∆(A) such that ϕ̃ ◦ π∗∗A (m) = 1,
where ϕ̃ is extension of ϕ to A∗∗. Then there exists η ∈ (A ⊗p A)∗∗ such that
a · η = η · a = ϕ(a)η for every a ∈ A and ϕ̃ ◦ π∗∗A (η) = 1.
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Proof. Let ϕ be a character on A. Then there exists a bounded linear
map T : A⊗p A→ A defined by T (a⊗ b) = ϕ(b)a [16, proposition 2.2]. Since
the adjoint map T ∗∗ : (A ⊗p A)∗∗ → A∗∗ is a bounded linear map, we show
that T ∗∗(m · a) = ϕ(a)T ∗∗(m) and T ∗∗(a · m) = a · T ∗∗(m). To see this, let
b∗ ∈ A∗. Then

T ∗∗(m · a)(b∗) =(m · a) ◦ T ∗(b∗)
=(m · a) ◦ (b∗ ◦ T ) = m(a · b∗ ◦ T ).

(3.1)

On the other hand, for all (f ⊗ g) ∈ A⊗p A we have

a · (b∗ ◦ T )(f ⊗ g) =b∗ ◦ T (f ⊗ ga) = b∗(T (f ⊗ ga))

=b∗(ϕ(ga)f) = ϕ(a)b∗(ϕ(g)f) = ϕ(a)b∗(T (f ⊗p g)).

Therefore

(3.2) a · (b∗ ◦ T ) = ϕ(a)b∗ ◦ T.

Using (3.2) from (3.1), we obtain

T ∗∗(m · a)(b∗) =m(ϕ(a)b∗ ◦ T )

=ϕ(a)(m(b∗ ◦ T ))

=ϕ(a)(m ◦ T ∗(b∗))
=ϕ(a)T ∗∗(m)(b∗).

Hence T ∗∗(m · a) = ϕ(a)T ∗∗(m). By a similar argument, we have T ∗∗(a ·m) =
a · T ∗∗(m). Now, we note that

‖T ∗∗(a ·m)− T ∗∗(m · a)‖ = ‖T ∗∗(a ·m−m · a)‖ ≤ ‖T ∗∗‖‖a ·m−m · a‖ = 0.

So we have

(3.3) T ∗∗(a ·m) = T ∗∗(m · a) = a · T ∗∗(m) = ϕ(a)T ∗∗(m).

Since m ∈ (A ⊗p A)∗∗, by Goldstine’s theorem, there exists a bounded net
(mα) ⊆ A⊗p A such that mα −→ m in the weak*-topology on (A⊗p A)∗∗ and
ϕ ◦ πA(mα) −→ 1. Since T ∗∗ is a bounded linear map on (A⊗p A)∗∗, we have
T ∗∗(mα) = T (mα) −→ T ∗∗(m) in the weak*-topology on A∗∗. Since a·m = m·a
for every a ∈ A, by the equation (3.3), we have ϕ(a)T ∗∗(m) = a · T ∗∗(m) and
hence

(3.4) ϕ(a)T (mα)− a · T (mα) −→ 0

in the weak*-topology on A∗∗. Since (mα) ⊆ A⊗p A one can assume that the
equation (3.4) holds in the weak-topology. As in the proof of [6, Proposition
2.3], by using Mazur’s theorem we can replace the weak-topology on A by a
norm-topology on A, so that the equation (3.4) holds in the norm-topology.
Take nα = T (mα). We have ϕ(πA(mα)) = ϕ(T (mα)) = ϕ(nα) −→ 1 and
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ϕ(a)nα − a · nα −→ 0. By replacing (nα) with ( nα
ϕ(nα)) we can assume that

ϕ(nα) = 1 for every α. Since (nα) is a bounded net by Alaoglu’s theorem
there exists N1 ∈ A∗∗ such that nα −→ N1 in the weak*-topology on A∗∗ such
that a · N1 = ϕ(a)N1 for every a ∈ A and ϕ̃(N1) = 1. Similarly, we can find
N2 ∈ A∗∗ such that N2 · a = ϕ(a)N2 for every a ∈ A and ϕ̃(N2) = 1. Now,
take M = N1 ⊗ N2 ∈ A∗∗ ⊗p A∗∗. By [5, Lemma 1.7], there is a continuous
linear map ψ : A∗∗ ⊗p A∗∗ → (A ⊗p A)∗∗ such that for every a, b, x ∈ A and
m ∈ A∗∗ ⊗p A∗∗, we have

ψ(a⊗ b) = a⊗ b, ψ(m) · x = ψ(m · x),

x · ψ(m) = ψ(x ·m), π∗∗A (ψ(m)) = πA∗∗(m).

By taking η = ψ(M) ∈ (A ⊗p A)∗∗ we have a · η = η · a = ϕ(a)η and
ϕ̃ ◦ π∗∗A (η) = 1.

Theorem 3.2. Let S be a semigroup and Z(S) 6= ∅, where Z(S) is the
center of semigroup S. Suppose that `1(S) is approximately biflat. Then S is
amenable.

Proof. Since `1(S) is approximately biflat, there exists a net θα : (`1(S)⊗p
`1(S))∗ → `1(S)∗ of bounded `1(S)-bimodule morphisms such that

W∗OT− lim
α
θα ◦ π∗`1(S) = id`1(S)∗ .

Clearly θ∗α : `1(S)∗∗ → (`1(S) ⊗p `1(S))∗∗ is a net of bounded `1(S)-bimodule

morphisms. Suppose that φS is the augmentation character on `1(S) and φ̃S is
its extension to `1(S)∗∗. Then φS(δs0) = 1 for every s0 ∈ Z(S). Since θ∗α|`1(S) :
`1(S)→ (`1(S)⊗p `1(S))∗∗ is a net of bounded `1(S)-bimodule morphisms, we

have φ̃S ◦ π∗∗`1(S) ◦ θ
∗
α(a) = π∗∗`1(S) ◦ θ

∗
α(a)(φS) and

lim
α
〈φS , π∗∗`1(S) ◦ θ

∗
α(a)〉 = lim

α
〈φS , θ∗α(a) ◦ π∗`1(S)〉

= lim
α
〈a, θα ◦ π∗`1(S)(φS)〉 = 〈a, φS〉,

(3.5)

for every a ∈ `1(S). By taking µα = θ∗α(δs0), we have a · µα = µα · a. To see
this, since θ∗α is a net of bounded `1(S)-bimodule morphisms, we have

a · µα = a · θ∗α(δs0) = θ∗α(a · δs0) = θ∗α(δs0 · a) = θ∗α(δs0) · a = µα · a.

In contrast, the equation (3.5) follows that φ̃S ◦ π∗∗`1(S)(µα) −→ 1. We may

suppose that φ̃S ◦ π∗∗`1(S)(µα) = 1, by replacing µα with µα
φ̃S◦π∗∗`1(S)(µα)

. Hence

we have a · µα = µα · a and φ̃S ◦ π∗∗`1(S)(µα) = 1. Since a · µα = µα · a and

φ̃S ◦π∗∗`1(S)(µα) = 1, by Lemma 3.1 there exists ηα ∈ (`1(S)⊗`1(S))∗∗ such that
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a · ηα = ηα · a = φS(a)ηα and φ̃S(π∗∗`1(S)(ηα)) = 1 for every a ∈ `1(S). Similarly

to [4, Corollary 2.10], one can show that S is amenable

Theorem 3.3. Suppose that `1(S) has a central approximate identity.
Let `1(S) be approximately biflat. Then S is amenable.

Proof. Since `1(S) is approximately biflat, there exists a net ϑγ : (`1(S)⊗p
`1(S))∗ → `1(S)∗ of bounded `1(S)-bimodule morphisms such that

W∗OT− lim
γ
ϑγ ◦ π∗`1(S) = id`1(S)∗ .

Clearly ϑ∗γ : `1(S)∗∗ → (`1(S) ⊗p `1(S))∗∗ is a net of bounded `1(S)-bimodule

morphisms. Suppose that φS is the augmentation character on `1(S) and φ̃S
is its extension to `1(S)∗∗. Suppose that (eλ) is a central approximate identity
for `1(S). Then φS(eλ) −→ 1 and for every a ∈ A and ψ ∈ `1(S)∗ we have

lim
γ

lim
λ
〈ψ, π∗∗`1(S)(ϑ

∗
γ(eλ)) · a〉 = lim

γ
lim
λ
〈ψ, π∗∗`1(S)(ϑ

∗
γ(eλ · a))〉

= lim
γ

lim
λ
〈ψ, ϑ∗γ(eλ · a) ◦ π∗`1(S)〉

= lim
γ
〈eλ · a, ϑγ(π∗`1(S)(ψ))〉

= lim
γ
〈a, ϑγ(π∗`1(S)(ψ))〉 = 〈a, ψ〉.

(3.6)

Since ϑ∗γ is a net of bounded `1(S)-bimodule morphisms, we have

(3.7) lim
γ

lim
λ
a · ϑ∗γ(eλ)− ϑ∗γ(eλ) · a = lim

γ
lim
λ
ϑ∗γ(a · eλ − eλ · a) = 0.

Suppose that Z = Λ × ΓΛ is directed by the product ordering and, for every
α = (λ, (γλ′)λ′∈Λ) ∈ Z, define mα = ϑ∗γλ(eλ). By iterated limit theorem [11, P.
69], the equation (3.7) gives the following

(3.8) a ·mα −mα · a −→ 0

and the equation (3.6) implies that π∗∗`1(S)(mα)a
w∗−→ a in the weak*-topology on

`1(S)∗∗ and so we have φ̃S(π∗∗`1(S)(mα)a) −→ φ̃S(a) = φS(a) for all a ∈ `1(S).

One can easily see that φ̃S(π∗∗`1(S)(mα)) −→ 1. Now, we show that a·mα = mα·a
for every a ∈ `1(S) and α ∈ Z. To see this, since ϑ∗γ is a net of bounded `1(S)-
bimodule morphisms, we have

a ·mα = a · ϑ∗γλ(eλ) = ϑ∗γλ(aeλ) = ϑ∗γλ(eλa) = ϑ∗γλ(eλ) · a = mα · a.

We may suppose that φ̃S(π∗∗`1(S)(mα)) = 1 by replacing mα with mα
φ̃S(π∗∗

`1(S)
(mα))

.

Hence there exists mα ∈ (`1(S)⊗p `1(S))∗∗ such that a ·mα = mα · a for every
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a ∈ `1(S) and φ̃S(π∗∗`1(S)(mα)) = 1 and so S is amenable by a similar argument
as in the previous Theorem.

Suppose that A is a Banach algebra and Λ is a non-empty set. The
Banach algebra MΛ(A) is the set of Λ×Λ-matrices over A with finite `1-norm
and matrix multiplication.

In the following example, we show that there exists an approximately
biflat Banach algebra which is not pseudo-contractible.

Example 3.4. Suppose that A = MΛ(C), where Λ is not a finite set. Then
A is biflat [13, Proposition 2.7] and so A is approximately biflat. Now let A be
pseudo-contractible. Then A has a central approximate identity. So Λ must
be finite [4, Theorem 2.2] which is a contradiction.

In the following example, we show that there exists an approximately
biflat Banach algebra which is not approximately biprojective.

Example 3.5. Let S be a uniformly locally finite inverse semigroup such
that all of its maximal subgroups are amenable and at least one of its maximal
subgroups is infinite. Then `1(S) is biflat [13, Theorem 3.7] and so it is ap-
proximately biflat but `1(S) is not biprojective [13, Theorem 3.7]. In contrast,
`1(S) is biprojective if and only if it is approximately biprojective [15, Theorem
3.6]. Therefore `1(S) is not approximately biprojective.

4. APPROXIMATE BIFLATNESS OF GROUP ALGEBRA AND
SEGAL ALGEBRA

Let G be a locally compact group. A linear subspace S(G) of L1(G) is
said to be a Segal algebra on G if it satisfies the following conditions

(i) S(G) is dense in L1(G),

(ii) S(G) with the norm || · ||S(G) is a Banach space and ||f ||L1(G) ≤ ||f ||S(G)

for every f ∈ S(G),

(iii) for every f ∈ S(G) and y ∈ G we have Lyf ∈ S(G) and the map y 7→ Lyf
of G into S(G) is continuous, where Lyf(x) = f(y−1x),

(iv) ||Lyf ||S(G) = ||f ||S(G) for every f ∈ S(G) and y ∈ G.

It is well-known that S(G) has a left approximate identity and by [1, Lemma
2.2] its character space is ∆(S(G)) = {φ|S(G) : φ ∈ ∆(L1(G))}.

We start with the following basic theorem.
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Theorem 4.1. Suppose that A is an approximately biflat Banach algebra
and A has a left approximate identity (right approximate identity) and ψ ∈
∆(A). Then A is left ψ-amenable (right ψ-amenable, respectively).

Proof. Since A is approximately biflat, there is a net θα : (A⊗pA)∗ → A∗

of bounded A-bimodule morphisms such that W∗OT− lim θα ◦ π∗A = idA∗ .
Suppose that K = kerψ. Define ζα : (idA ⊗ q)∗∗ ◦ θ∗α|A : A → (A ⊗p A

K)∗∗,
where q : A → A

K is a quotient map. We have AK = K, because A has a left
approximate identity. Hence for every k1 ∈ K, there exist a ∈ A and k2 ∈ K
such that k1 = ak2 and so for every k1 ∈ K, we have

(4.1) ζα(k1) = (idA ⊗ q)∗∗ ◦ θ∗α(k1) = (idA ⊗ q)∗∗ ◦ θ∗α(ak2).

Since ζα is a net of A-bimodule morphisms, the equation (4.1) follows that
ζα(k1) = 0 for every k1 ∈ K. Hence we can drop ζα on A

K for every α and so

ζα : AK → (A⊗p A
K)∗∗ is a left A-module morphism. Define a character ψ̃ on A

K
by ψ̃(a+ K) = ψ(a).

Since ζα is a left A-module morphism, (idA⊗ ψ̃)∗∗ ◦ ζα : AK → A∗∗ is a left
A-module morphism for every α. To see this, for every a, b ∈ A we have

(idA ⊗ ψ̃)∗∗ ◦ ζα(a · (b+ K)) =(idA ⊗ ψ̃)∗∗ ◦ ζα(ab+ K)

=(idA ⊗ ψ̃)∗∗ ◦ ζα(ab)

=a · (idA ⊗ ψ̃)∗∗ ◦ ζα(b).

(4.2)

Since ψ is a non-zero character on A, there is c ∈ A such that ψ(c) = 1. Define
ϑα = (idA ⊗ ψ̃)∗∗ ◦ ζα(c+ K). So we have

〈ϑα, ψ〉 =〈(idA ⊗ ψ̃)∗∗ ◦ ζα(c+ K), ψ〉 = 〈(idA ⊗ ψ̃)∗∗ ◦ ζα(c), ψ〉
=〈ζα(c) ◦ (idA ⊗ ψ̃)∗, ψ〉 = 〈ζα(c), (idA ⊗ ψ̃)∗(ψ)〉
=〈ζα(c), ψ ◦ (idA ⊗ ψ̃)〉 = 〈ζα(c), ψ ⊗ ψ̃〉
=〈(idA ⊗ q)∗∗ ◦ θ∗α(c), ψ ⊗ ψ̃〉 = 〈θ∗α(c) ◦ (idA ⊗ q)∗, ψ ⊗ ψ̃〉
=〈θ∗α(c), (idA ⊗ q)∗ ◦ (ψ ⊗ ψ̃)〉 = 〈θ∗α(c), (ψ ⊗ ψ̃) ◦ (idA ⊗ q)〉
=〈θ∗α(c), ψ ◦ πA〉 = 〈c ◦ θα, π∗A(ψ)〉 = 〈c, θα ◦ π∗A(ψ)〉.

(4.3)

Since W∗OT− limα θα ◦ π∗A = idA∗ , the equation (4.3) implies that

lim
α
ψ(ϑα) = lim

α
θα ◦ π∗A(ψ)(c) = idA∗(ψ)(c) = ψ(c) = 1.

In contrast, since c− c2 ∈ K,

ac+ K =(a− ψ(a)c+ ψ(a)c)c+ K
=ac− ψ(a)c2 + ψ(a)c2 + K
=ψ(a)c2 + K = ψ(a)c+ K.
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Hence by using (4.2) we have

a · ϑα = ψ(a) · (idA ⊗ ψ̃)∗∗ ◦ ζα(c+ K) = ψ(a)ϑα,

for every a ∈ A. By replacing (ϑα) with ( ϑα
ψ(ϑα)), we have ψ(ϑα) = 1 and

a · ϑα = ψ(a)ϑα. Hence there is ϑα ∈ A∗∗ such that ψ(ϑα) = 1 and a · ϑα =
ψ(a)ϑα for every a ∈ A. Thus A is left ψ-amenable.

Proposition 4.2. Suppose that G is a locally compact group and A is a
unital Banach algebra with ∆(A) 6= ∅. Suppose that A ⊗p L1(G) is approxi-
mately biflat. Then G is amenable.

Proof. Note that L1(G) has a bounded approximate identity, say (eα)α∈I .
A is a unital Banach algebra with a unit element eA. So (eA ⊗ eα)α∈I is a
bounded approximate identity for A ⊗p L1(G). Since A ⊗p L1(G) is approxi-
mately biflat, by Theorem 4.1, A⊗pL1(G) is ψ⊗φ-amenable, where ψ ∈ ∆(A)
and φ ∈ ∆(L1(G)). [18, Theorem 3.3.2] implies that L1(G) is φ-amenable and
so L1(G) has a bounded approximate φ-mean. By an argument similar to the
one in [1, Corollary 3.4], we can show that L1(G) has a bounded approximate
φ1-mean, where φ1 is an augmentation character on L1(G). Therefore G is
amenable.

Proposition 4.3. Suppose that G is a locally compact group. Then the
following are equivalent

(i) M(G)⊗p L1(G) is biflat.

(ii) M(G)⊗p L1(G) is approximately biflat.

(iii) G is discrete and amenable.

Proof. (i)=⇒(ii) It is obvious.

(ii)=⇒(iii). Let M(G)⊗p L1(G) be approximately biflat. Since M(G) is
a unital Banach algebra, by an argument similar to the one in [13, Proposition
2.6], we can show that M(G) is approximately biflat. Hence by [17, Theo-
rem 4.2], M(G) is pseudo-amenable. It is well-known that M(G) is pseudo-
amenable if and only if G is discrete and amenable [6, Proposition 4.2].

(iii)=⇒(i). Suppose that G is discrete and amenable. Then by [3] M(G)
and L1(G) is amenable. Therefore M(G)⊗pL1(G) is amenable [9, Proposition
5.4] and so M(G)⊗p L1(G) is biflat [14].

Samei et al. in [17, Corollary 3.2] prove that if G is a SIN group, then
the followings are equivalent
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(i) G is amenable.

(ii) S(G) is approximately biflat.

(iii) S(G) is pseudo-amenable.

In the following proposition, we study approximate biflatness for Segal algebra
S(G) on locally compact group G.

Proposition 4.4. Let G be a locally compact group and let S(G) be ap-
proximately biflat. Then G is amenable.

Proof. Note that S(G) has a left approximate identity. Since S(G) is
approximately biflat, by Theorem 4.1, S(G) is left φ-amenable, where φ ∈
∆(S(G)). So [1, Corollary 3.4] implies that G is amenable .

Proposition 4.5. Let G be a locally compact group and let S(G)⊗pS(G)
be approximately biflat. Then G is amenable.

Proof. It is well-known that S(G) has a left approximate identity say
(eα)α∈I . Consider mα = eα ⊗ eα. It is easy to see that (mα)α∈I is a left
approximate identity for S(G)⊗p S(G). Since S(G)⊗p S(G) is approximately
biflat, S(G) ⊗p S(G) is left φ ⊗ ψ-amenable by Theorem 4.1, where φ, ψ ∈
∆(S(G)). This implies that S(G) is left φ-amenable [18, Theorem 3.3.2]. Hence
G must be amenable [1, Corollary 3.4].
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