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In this paper, we develop the concept of dual and approximately dual frames
in Banach spaces via semi-inner products and some properties of dual and ap-
proximate dual frames are investigated. Also, we introduce g-dual frames in
these spaces and some relationships between g-duals and approximate duals are
stated. Finally, the ε-nearly g-dual frames and their relations with g-duals are
studied in Banach spaces using semi-inner products.
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1. INTRODUCTION AND PRELIMINARIES

The concept of frame was introduced by Duffin and Schaeffer [12] in
1952. After some decades, Young reintroduced frames in abstract Hilbert
spaces [30]. Daubechies, Grossmann and Meyer studied frames deeply in 80’s
[8]. Feichtinger and Grochenig [16, 22] extended the concept of frames from
Hilbert spaces to Banach spaces and defined atomic decomposition and Ba-
nach frames. Frames have many nice properties which make them very useful
in sampling [13, 14], signal processing [17, 28], filter bank theory [3], and many
other fields. Recent applications of the frames in compressed sensing was given
in [4] and applications of the frames to operator theory was given in [21]. A
sequence {fj}j∈J in H is said to be a frame for H if there exist positive real
numbers A, B such that

A‖f‖2 ≤
∑
j∈J
|〈f, fj〉|2 ≤ B‖f‖2, f ∈ H.

The elements A and B are called the lower and the upper frame, respectively.
Suppose that {fj}j∈J is a frame of H. The operator T : H → `2(J ) defined by
T (f) = {〈f, fj〉}j∈J is called the analysis operator. T ∗ is called the synthesis
operator. The operator S = T ∗T is called the frame operator of {fj}j∈J .
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A very useful property of a frame {fj}j∈J for a Hilbert space H is that
{fj}j∈J has a dual frame {gj}j∈J , i.e. there exists a frame {gj}j∈J for H
such that for all f ∈ H,

f =
∑
j∈J
〈f, gj〉fj =

∑
j∈J
〈f, fj〉gj .

It is not easily to find a dual for a frame in general. A more general
concept, namely, approximate dual is introduced by O. Christensen and R. S.
Laugesen [6], which are more available. In this paper, we intend to introduce
these concepts on Banach spaces and so some necessary concepts are introduced
as follows.

A sequence space Xd is called a BK-space, if it is a Banach space and the
coordinate functionals are continuous on Xd. If the canonical vectors forms a
Schauder basis for Xd, then Xd is called a CB-space and its canonical basis
is denoted by {ej}∞1 . If Xd is reflexive and a CB-space, then Xd is called an
RCB-space. Also, the dual of Xd is denoted by X∗d .

The spaces `∞, c, c0, `
p(1 ≤ p < ∞) are BK-spaces with their natural

norms. Also the space `∞ has no Schauder basis, since it is not separable and
the spaces c0 and `p(1 ≤ p <∞) have {ej}∞1 as their Schauder bases.

The concept of semi-inner product, which was introduced in 1961 by G.
Lumer [27] and modified by other researchers, is presented in the following
definition.

Definition 1.1. [23] Let X be a complex (real) vector space. A semi-inner
product (in short s.i.p.) on X is a function from X ×X → C, denoted by [.,.],
such that for all f, g, h ∈ X and λ ∈ C,

1. [λf + g, h] = λ[f, h] + [g, h] and [f, λg] = λ̄[f, g],

2. [f, f ] ≥ 0, for all f ∈ X and [f, f ] = 0 implies f = 0,

3. |[f, g]|2 ≤ [f, f ][g, g].

However an s.i.p. space need not satisfy the following properties

(i) [f, g] = [g, f ],

(ii) [f, g + h] = [f, g] + [f, h].

If [., .] is a s.i.p. on X then ‖f‖ :=[f, f ]
1
2 is a norm on X. Conversely, if

X is a normed vector space then it has a s.i.p. that induces its norm in this
manner which is called the compatible semi-inner product [27].

Let X be a Banach space. We define a duality map ΦX : X → X∗ as
follows. Given f ∈ X, by the Hahn-Banach theorem, there exists an f∗ ∈ X∗

such that ‖f‖ = ‖f∗‖ and f∗(f) = ‖f‖2. Set ΦX(f) = f∗, and ΦX(λf) = λ̄f∗,
and define ΦX on the rest of X in the same manner. In general, ΦX is not
unique, linear or continuous. The duality map ΦX induces a semi-inner product
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[., .] if we set [f, g] = g∗(f) [29]. We shall use this definition for g∗, g ∈ X.
Note that if X is a Hilbert space, then the duality map is unique [29].

Recall that a Banach space X is called strictly convex, if for any pair of
vectors f, g 6= 0 in X, the equation ‖f + g‖X = ‖f‖X + ‖g‖X , implies that
there exists a λ > 0 such that f = λg [11]. In these spaces, the duality mapping
from X to X∗ is unique and bijective when X is reflexive [11, 15]. In other
words, for each f∗ ∈ X∗ there exists a unique g ∈ X such that f∗(g) = [g, f ],
for all g ∈ X. Moreover, we have ‖f∗‖X∗ = ‖f‖X . Also, [f∗, g∗]∗ := [g, f ],
f, g ∈ X, defines a compatible semi-inner product on X∗ [23]. Note that, in
this case g∗∗ = g, indeed for any f ∈ X

ĝ(f∗) = f∗(g) = [g, f ] = [f∗, g∗]∗ = g∗∗(f∗),

where ĝ is the Gelfand transform of g in X∗∗.
A Banach space X will be said to be uniformly convex if to each ε, 0 <

ε ≤ 2, there corresponds a δ(ε) > 0 such that the conditions ‖f‖X = ‖g‖X = 1,
‖f − g‖X ≥ ε imply ‖f+g

2 ‖X ≤ 1− δ(ε) [7]. We recall that Hilbert spaces, Lp

and `p for 1 < p <∞ are uniformly convex and C[0, 1] is not uniformly convex
[5, 7].

We know that a uniformly convex Banach space is reflexive [5], but a
reflexive Banach space is not necessarily uniformly convex [9]. Also, every
uniformly convex Banach space is strictly convex [5].

In 2011, H. Zhang and J. Zhang [31] introduced frames in Banach space
X via s.i.p. that is presented in the following definition.

Definition 1.2. [31] Let X be a separable Banach space and [., .] be a
compatible semi-inner product on X. Also let X be reflexive and strictly
convex and Xd be an CB- space. Then a sequence {fj}j∈J ⊆ X is called an
Xd-frame for X if for any f ∈ X

(i) {[f, fj ]}j∈J ∈ Xd ,
(ii) there exist positive constants A, B such that

A‖f‖X ≤ ‖{[f, fj ]}j∈J ‖Xd
≤ B‖f‖X , f ∈ X.

If the right side of this inequality holds then we say that {fj}j∈J is an
Xd-Bessel sequence for X.

Recall that an indexed set F = {fj}j∈J ⊆ X is an Xd-Riesz basis for X
if span{fj}j∈J = X and

∑
j∈J cjfj converges in X for all c = {cj}j∈J ∈ Xd

and there exists 0 < A ≤ B <∞ such that

A‖{cj}j∈J ‖Xd
≤ ‖

∑
j∈J

cjfj‖X ≤ B‖{cj}j∈J ‖Xd
, c = {cj}j∈J ∈ Xd.

Let F = {fj}j∈J be an Xd-Bessel sequence. The analysis operator UF :
X → Xd is defined by UF (f) := {[f, fj ]}j∈J and the adjoint U∗F : X∗d →
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X∗ of UF is called the synthesis operator which is given by U∗F ({cj}j∈J ) :=∑
j∈J cjf

∗
j .

Let X be a strictly convex separable Banach space, Xd be a uniformly
convex BK-space and F = {fj}j∈J and F ∗ := {f∗j }j∈J be Xd and X∗d -Bessel
sequences with analysis operators UF and UF ∗ for X and X∗, respectively. We
define the Xd-frame operator SF : X → X for {fj}j∈J by SF f := U∗F ∗UF f =∑

j∈J [f, fj ]fj , for any f ∈ X, that is well-defined bounded linear operator.
SF is not bijective in general (see [31] for more details).

We need the following results of [31] in our study.

Proposition 1.3. A subset F = {fj}j∈J ⊆ X forms an Xd-Bessel
sequence for X if and only if

∑
j∈J bjf

∗
j converges in X∗ for all b ∈ X∗d and

‖
∑
j∈J

bjf
∗
j ‖X∗ ≤ B‖b‖X∗

d
.

Proposition 1.4. A sequence F = {fj}j∈J ⊆ X is an Xd-frame for X
if and only if the operator U∗F is bounded and surjective from X∗d to X∗.

Theorem 1.5. Suppose that F = {fj}j∈J ⊆ X and F ∗ = {f∗j }j∈J ⊆
X∗ are Xd-Bessel sequence and X∗d -Bessel sequence with analysis operators
UF and UF ∗ for X and X∗, respectively. Then the operator SF : X → X is
bijective and bounded if and only if {fj}j∈J is an Xd-frame and {f∗j }j∈J is an
X∗d -frame and {fj}j∈J is an R(U)-Riesz basis for X and in this case we have

f =
∑
j∈J

[f, fj ]S
−1
F fj , f ∈ X

and
f∗ =

∑
j∈J

[fj , f ](S−1
F )∗f∗j =

∑
j∈J

[S−1
F fj , f ]f∗j , f ∈ X.

Theorem 1.6. If F = {fj}j∈J ⊆ X is an Xd-frame for X and R(UF )
has an algebraic complement in Xd then there exists an X∗d -frame
G∗ = {g∗j }j∈J ⊆ X∗ for X∗ such that

f =
∑
j∈J

[f, fj ]gj , f ∈ X(1.1)

and

f∗ =
∑
j∈J

[gj , f ]f∗j , f ∈ X.(1.2)

The content of the present paper is as follows. In section 2, we intro-
duce the dual, pseudo-dual and approximate dual of an Xd-Bessel sequence in
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Banach space via s.i.p. and some properties and relations between of these
concepts are given. In section 3, we describe the notions of g-dual frame and
some necessary and sufficient condition for their existence are discussed. Fi-
nally, we study the concept of ε-nearly g-dual frame for an Xd-Bessel sequence
and some results on them are obtained.

Throughout this paper, we assume that X is an uniformly convex separa-
ble Banach space, Xd is an uniformly convex BK-space, J a countable index
set and IX is the identity operator on X. For two Banach spaces X and Y ,
we denote by B(X,Y ) the collection of all bounded linear operators between
X and Y . Also, we write B(X) instead of B(X,X).

2. DUAL AND APPROXIMATELY DUAL VIA S.I.P

Theorem 2 leads us to introduce the dual of an Xd-Bessel sequence as
follows.

Definition 2.1. Let F = {fj}j∈J ⊆ X be an Xd-Bessel sequence for X.
An X∗d -Bessel sequence G∗ = {g∗j }j∈J ⊆ X∗ is called a dual of F if

f =
∑
j∈J

[f, fj ]gj , f ∈ X.

If G∗ is a dual of F then we can write f∗ =
∑

j∈J [gj , f ]f∗j , for all
f ∈ X. Note that, the relation f =

∑
j∈J [f, gj ]fj , is not true, in general.

This is established in the following example.

Example. Consider the space X := `3(N2) with the semi-inner product

[a, b] := ‖b‖−1
X

∑
j∈J

aj b̄j |bj |.

Let Xd be an arbitrary BK-space. For any f ∈ X, we have f∗ = f̄ |f |
‖f‖X . Let

F = {f1, f2} = {(1, 1), (4, 1)} ⊆ X. The facts that spanF ∗ = span{f∗1 , f∗2 } =

span{ (1,1)

(2)
1
3
, (16,1)

(65)
1
3
} = `

3
2 (N2) and spanF = `3(N2), imply that F and F ∗ are Xd

and X∗d -frame for X and X∗, respectively. Now consider

G = {(−(2)
1
3

15
,
16(2)

1
3

15
), (

(65)
1
3

15
,−(65)

1
3

15
)}.

Then G∗ is a dual of F and we can write f =
∑

j∈J [f, fj ]gj , for all
f ∈ X. But f =

∑
j∈J [f, gj ]fj does not hold for all f ∈ X, for example, if

we take f = (0, 2) ∈ X then∑
j∈J

[f, gj ]fj = (−1 + (16)3)
−1
3 (

32(2)
1
3

15
)(1, 1) 6= (0, 2).
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Remark 2.2. If UF : X → Xd, UF (f) = {[f, fj ]}j∈J is the analysis operator of
Xd-Bessel sequence {fj}j∈J ⊆ X for X with the adjoint operator U∗F : X∗d →
X∗, U∗F ({cj}j∈J ) =

∑
j∈J cjf

∗
j and UG∗ : X∗ → X∗d , UG∗(g∗) := {[gj , g]}j∈J

is the analysis operator of X∗d -Bessel sequence {g∗j }j∈J ⊆ X∗ for X∗ with the
adjoint operator U∗G∗ : Xd → X, U∗G∗({dj}j∈J ) =

∑
j∈J djgj , then the relation

(1.1), (1.2) can be written as follows

f = U∗G∗UF (f) , f ∈ X, i.e. IX = U∗G∗UF

and hence
f∗ = U∗FUG∗(f∗) , f ∈ X, i.e. IX∗ = U∗FUG∗ .

Recall that A ∈ B(X) is called an adjoint abelian operator if there exists
a duality map ΦX : X → X∗, such that A∗ΦX = ΦXA (equivalently, (Ax)∗ =
A∗x∗, for all x ∈ X or [Ax, y] = [x,Ay], for all x, y ∈ X). It is well-known that
if A is bijective and adjoint abelian then A−1 is also adjoint abelian (see [29]).

For example, if X is a Hilbert space, then the adjoint abelian operators
are precisely the self-adjoint ones [29], and every adjoint abelian operator on
C(K), (K compact) or Lp(1 < p <∞, p 6= 2) is a multiple of an isometry whose
square is the identity [18]. As another example of adjoint abelian operator, if
X is the `p sum of a one dimensional and a two dimensional space, then1 0 0

0 0 i
0 −i 0


is adjoint abelian on that space [19].

The following lemma shows that adjoint abelian operators preserve Xd-
Bessel sequences. For the ordinary frames, it has been shown that if {fj}j∈J
is a frame for Hilbert space H and T ∈ B(H) then {Tfj}j∈J is a frame for H
if and only if T is surjective. In the Banach setting we may have the following
lemma.

Lemma 2.3. Suppose that F = {fj}j∈J ⊆ X is an Xd-Bessel sequence
for X with the bound B and T ∈ B(X) is an adjoint abelian operator then

(i) TF = {Tfj}j∈J ⊆ X is an Xd-Bessel sequence for X with the bound
‖T‖B.

(ii) Let F be an Xd-frame for X and T ∈ B(X) is an adjoint abelian
operator then T ∗ ∈ B(X∗) is surjective if and only if TF is an Xd-frame for
X.

Proof. (i) For any {cj} ∈ X∗d , by Proposition 1, one can see that

‖
∑
j∈J

cj(Tfj)
∗‖X∗ = ‖T ∗

∑
j∈J

cjf
∗
j ‖X∗ ≤ ‖T ∗‖‖

∑
j∈J

cjf
∗
j ‖X∗
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≤ B‖T ∗‖‖{cj}‖X∗
d

= B‖T‖‖{cj}‖X∗
d
.

(ii) First, suppose that T ∈ B(X) is an adjoint abelian operator such
that T ∗ ∈ B(X∗) is surjective. Let F be an Xd-frame for X, then U∗F is
bounded and surjective. On the other hand, the synthesis operator of TF is
U∗TF : X∗d → X∗ which is of the following form

U∗TF ({cj}j∈J ) =
∑
j∈J

cj(Tfj)
∗ =

∑
j∈J

cjT
∗f∗j = T ∗

∑
j∈J

cjf
∗
j = T ∗U∗F ({cj}j∈J ).

Now, since T ∗U∗F is bounded and surjective hence, by Proposition 2, TF
is an Xd-frame for X. For the inverse, let TF be an Xd-frame for X then
U∗TF = T ∗U∗F is bounded and surjective and thus T ∗ is surjective.

Now, the notions pseudo-dual and approximate dual of an Xd-Bessel se-
quence for X are introduced and their relations and properties are established.

Definition 2.4. Let F = {fj}j∈J ⊆ X be an Xd-Bessel sequence for X
and G∗ = {g∗j }j∈J ⊆ X∗ be an X∗d -Bessel sequence for X∗ then F and G∗ are
said to be

(i) approximately dual Xd-frames if

‖IX − U∗G∗UF ‖X < 1 or ‖IX∗ − U∗FUG∗‖X∗ < 1.

(ii) pseudo-dual Xd-frames if U∗G∗UF or U∗FUG∗ is bijection on X and X∗,
respectively.

Note that, if F = {fj}j∈J and G∗ = {g∗j }j∈J are approximately dual
Xd-frames then trivially F and G∗ are pseudo-dual Xd-frames.

Now, let F and G∗ be approximately dual Xd-frames. In this case, under
some condition on G = {gj}j∈J we may construct a dual of F . In fact, since
‖IX −U∗G∗UF ‖X < 1 then U∗G∗UF is invertible and for any f ∈ X we have f =
(U∗G∗UF )−1(U∗G∗UF )f = (U∗G∗UF )−1

∑
j∈J [f, fj ]gj =

∑
j∈J [f, fj ](U

∗
G∗UF )−1gj .

Put H = {hj}j∈J = {(U∗G∗UF )−1gj}j∈J and let H∗ = {h∗j}j∈J ⊆ X∗ be
an X∗d -Bessel sequence for X∗ and U∗H and U∗H∗ are synthesis operators of H
and H∗, respectively, then we can write f = U∗H∗UF f, f ∈ X, and this means
that H∗ is a dual of F .

Proposition 2.5. Let F = {fj}j∈J and G∗ = {g∗j }j∈J be Xd and X∗d -
Bessel sequences for X and X∗, respectively, then

(i) If G∗ is a dual frame for F , then F and G∗ are approximately Xd-dual
frames.

(ii) If F and G∗ are approximately dual Xd-frames, then F and G∗ are
pseudo-dual Xd-frames.
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(iii) If F and G∗ are pseudo-dual Xd-frames and T ∈ B(X) is bijection
such that T ∗ is an adjoint abelian operator, then F and T ∗G∗ = {T ∗g∗j }j∈J
are pseudo-dual Xd-frames.

(iv) If F and G∗ are pseudo-dual Xd-frames and (U∗G∗UF )−1 is an adjoint
abelian operator, then H∗ = {((U∗G∗UF )−1gj)

∗}j∈J is a dual of F .

Proof. The proofs of (i) and (ii) are trivial by definitions.

For the proof of (iii), by Lemma 1, T ∗G∗ is an X∗d -Bessel sequence, thus
the synthesis operator for T ∗G∗ is U∗T ∗G∗ = TU∗G∗ , since

U∗T ∗G∗({cj}j∈J ) =
∑
j∈J

cj(T
∗g∗j )∗ =

∑
j∈J

cjTgj = T
∑
j∈J

cjgj = TU∗G∗({cj}j∈J ).

The assumptions that F and G∗ are pseudo-dual frames and T is bijection
imply that U∗T ∗G∗UF = TU∗G∗UF is bijection and then F and T ∗G∗ are pseudo-
dual Xd-frames.

For (iv), note that, if F andG∗ are pseudo-dualXd-frames then (U∗G∗UF )−1

exists and is bounded and hence H∗ is an X∗d -Bessel sequence. In this case we
have:∑
j∈J

[f, fj ](U
∗
G∗UF )−1gj = ((U∗G∗UF )−1

∑
j∈J

[f, fj ]gj = ((U∗G∗UF )−1(U∗G∗UF )f = f.

Therefore, F and H∗ are dual frames.

Under some conditions on the Xd-frame operator SF , we may construct
a dual of the Xd-frame F = {fj}j∈J as follows.

Proposition 2.6. Let SF := U∗F ∗UF : X → X be a bijective, bounded
and adjoint abelian operator, then {(S−1

F fj)
∗}j∈J is a dual of {fj}j∈J .

Proof. Suppose that SF is bijective, bounded and adjoint abelian opera-
tor, then by Theorem 1, {fj}j∈J ⊆ X and {f∗j }j∈J ⊆ X∗ are Xd-frame and

X∗d -frame for X and X∗, respectively, and thus {(S−1
F fj)

∗}j∈J is an X∗d -Bessel
sequence since S−1

F is adjoint abelian operator and hence

f =
∑
j∈J

[f, fj ]S
−1
F fj , f ∈ X,

i.e. {(S−1
F fj)

∗}j∈J is a dual frame of {fj}j∈J .

Theorem 2.7. Suppose that F = {fj}j∈J ⊆ X and G∗ = {g∗j }j∈J ⊆
X∗ are approximately dual Xd-frames then the following holds,

(i) If U∗G∗UF is an adjoint abelian operator then the dual frame H∗ =
{((U∗G∗UF )−1gj)

∗}j∈J of F can be written as follows
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((U∗G∗UF )−1gj)
∗ = g∗j + (

∑
j∈J

(IX∗ − (U∗G∗UF )∗))ng∗j .

(ii) Let N ∈ N be given, consider the corresponding partial sum,

γ
(N)
j = gj +

N∑
n=1

(IX − U∗G∗UF )ngj

=

N∑
n=0

(IX − U∗G∗UF )ngj

and let Γ∗ = {(γ(N)
j )∗}j∈J be a X∗d -Bessel sequence then Γ∗ is an approximate

dual of F . Denoting its associated synthesis operator by U∗Γ∗ we have

‖IX − U∗Γ∗UF ‖X ≤ ‖IX − U∗G∗UF ‖N+1
X → 0 , whenN →∞.

Proof. (i) Since f = (U∗G∗UF )−1(U∗G∗UF )f = (U∗G∗UF )−1
∑

j∈J [f, fj ]gj =∑
j∈J [f, fj ](U

∗
G∗UF )−1gj , f ∈ X then H∗ is a dual of F and we have

((U∗G∗UF )−1)∗ = (IX∗ − (IX∗ − (U∗G∗UF )∗))−1

=
∞∑
n=0

(IX∗ − (U∗G∗UF )∗)n.

Now, by the fact that U∗G∗UF is an adjoint abelian operator we get

((U∗G∗UF )−1gj)
∗ = ((U∗G∗UF )∗)−1g∗j

= g∗j + (
∑
j∈J

(IX∗ − (U∗G∗UF )∗)ng∗j .

(ii) Note that

U∗Γ∗UF f =
∑
j∈J

[f, fj ]γ
(N)
j

=
∑
j∈J

[f, fj ](
N∑

n=0

(IX − U∗G∗UF )ngj)

=
N∑

n=0

(IX − U∗G∗UF )n
∑
j∈J

[f, fj ]gj

=

N∑
n=0

(IX − U∗G∗UF )nU∗G∗UF f

=
N∑

n=0

(IX − U∗G∗UF )n(IX − (IX − U∗G∗UF ))f
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=

N∑
n=0

(IX − U∗G∗UF )nf − (IX − U∗G∗UF )n+1f

= f − (IX − U∗G∗UF )N+1f

and hence

‖IX − U∗Γ∗UF ‖X = ‖(IX − U∗G∗UF )N+1‖X ≤ ‖IX − U∗G∗UF ‖N+1
X < 1.

In the next proposition, we prove a stability result for having an approx-
imate dual.

Proposition 2.8. Suppose that F = {fj}j∈J is an Xd-Bessel sequence
in X and H = {hj}j∈J is an Xd-Bessel sequence for which

‖{[f, hj ]}j∈J − {[f, fj ]}j∈J ‖Xd
≤ R‖f‖X , f ∈ X

for some R > 0. Consider a dual Xd-frame G∗ = {g∗j }j∈J of H with the
synthesis operator UG∗ and assume that G∗ has upper frame bound C. If CR <
1, then F and G∗ are approximately dual Xd-frames, with

‖IX − U∗G∗UF ‖X < 1.

Proof. From the fact that G∗ = {g∗j }j∈J is a dual for H = {hj}j∈J hence
U∗G∗UH = IX and therefore

‖IX−U∗G∗UF ‖X = ‖U∗G∗UH−U∗G∗UF ‖ = ‖U∗G∗(UH−UF )‖ ≤ ‖UG∗‖‖UH−
UF ‖ ≤ CR < 1.

3. G-DUAL AND APPROXIMATELY G-DUAL

The concept of g-dual frames introduced for ordinary frame in [10]. In
this section, we are going to express this notion for an Xd- Bessel sequence in
Banach space via s.i.p. Also, we present some relations between g-dual and
approximate dual. Finally, we define the concept of ε-nearly g-dual frame for
an Xd- Bessel sequence.

Definition 3.1. Let F = {fj}j∈J ⊂ Xd be an Xd- Bessel sequence for X.
An X∗d - Bessel sequence G∗ = {g∗j }j∈J ⊂ X∗d is called a generalized dual Xd-
frame (or g-dual Xd-frame) for F for X∗ if there exists an invertible operator
A ∈ B(X) such that

f =
∑
j∈J

[Af, fj ]gj , f ∈ X.
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Example. Let X := `3(N2) be endowed with its standard s.i.p and F =
{f1, f2} = {(1, 1), (1, 4)} ⊆ X. Also, assume that A is defined by A(a, b) =
(2b, a). Then for

G = {(−(2)
1
3

15
,
8(2)

1
3

15
), (

(65)
1
3

15
,−(65)

1
3

30
)}

one can see that G∗ is a g-dual of F with respect to the operator A.

Clearly, if A = IX , then G∗ is a dual Xd-frame for F . Also, by Theorem
1, when SF is bijective and bounded, we have

f =
∑
j∈J

[f, fj ]S
−1
F fj =

∑
j∈J

[S−1
F f, fj ]fj , f ∈ X.

Therefore, any frame is a g-dual Xd-frame for itself. Also, if UF and UG∗

are synthesis operators of F and G∗, respectively, then the equality f =∑
j∈J [Af, fj ]gj means that f = U∗G∗UFAf and we can write IX = U∗G∗UFA

i.e. A−1 = U∗G∗UF and thus

A−1f =
∑
j∈J

[f, fj ]gj , f ∈ X.

Remark 3.2. Note that, if G∗ is a g-dual of F with respect to A, then F ∗ is
not necessarily the dual of G with respect to A. For example, assume that
X := `3(N2) with the semi-inner product as in Example 1, and Xd-frame

F = {f1, f2} = {(1, 1), (1, 4)} ⊆ X. Consider G∗ ⊆ `
3
2 (N2) by G = {g1, g2} =

{(16(2)
1
3

5 ,− (2)
1
3

5 ), (− (65)
1
3

5 , (65)
1
3

5 )}. One can see that G∗ is a g-dual of F with
corresponding operator Af = 1

3f , but we can not write f =
∑

j∈J [Af, gj ]fj
for all f . Indeed, for f = (0, 1) ∈ `3(N2) we have∑

j∈J
[Af, gj ]fj = − 1

15
((2)12 − 1)(2)

1
3 (1, 1) 6= (0, 1).

The relation between g-dual and approximate dual is stated in the fol-
lowing proposition.

Proposition 3.3. Suppose that F and G∗ are Xd and X∗d -Bessel se-
quences for X and X∗, respectively. Then F and G∗ are approximately dual
Xd-frames if and only if G∗ is a g-dual of F with respect to some A ∈ B(X)
with ‖IX −A−1‖X < 1.

Proof. Firstly, assume that F and G∗ are approximately dual Xd-frames.
Then U∗G∗UF is invertible and putting A−1 = U∗G∗UF . One can write

f = (U∗G∗UF )(U∗G∗UF )−1f =
∑
j∈J

[(U∗G∗UF )−1f, fj ]gj , f ∈ X
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i.e. G∗ is a g-dual of F with respect to the operator A. The proof of the inverse
is trivial.

Remark 3.4. (i) Recall that, if X,Y and Z are Banach spaces then we say T ∈
B(X,Y ) majorizes Q ∈ B(X,Z) if there exists λ > 0 such that ‖Qf‖ ≤ λ‖Tf‖
for all f ∈ X (for more details see [2]).

(ii) As we know, if A ∈ B(X) and sp(A) ∩ (−∞, 0) = ∅ then A has a

unique square root which is denoted by A
1
2 (see [20, 26]).

Now, we state a sufficient and necessary condition for two Xd and X∗d -
Bessel sequences for X and X∗, respectively, such that they are g-dual frames.
In Hilbert spaces, there is a similar expression for classical frame that is stated
in [13].

Theorem 3.5. Let F and G∗ be Xd and X∗d -Bessel sequences for X and

X∗, respectively, sp(SF ) ∩ (−∞, 0) = ∅, S
1
2
F is an adjoint abelian operator

and {[f, fj ]}j∈J = {[fj , f ]}∗j∈J . Then G∗ is a g-dual of F with respect to an
invertible operator A ∈ B(X) if and only if U∗G∗UF is invertible and there exists

an operator Q ∈ B(X) such that U∗G∗UF = QS
1
2
F .

Proof. First, if G∗ is a g-dual of F with respect to an invertible operator
A ∈ B(X), then f =

∑
j∈J [Af, fj ]gj = U∗G∗UFAf , f ∈ X.

Also, note that

[SFAf,Af ] = ‖{[Af, fj ]}j∈J ‖2Xd
.

indeed

[SFAf,Af ] = [U∗F ∗UFAf,Af ]

= (Af)∗(U∗F ∗UFAf)

= UF ∗(Af)∗(UFAf)

= [UFAf, (UF ∗(Af)∗)∗]

= [{[Af, fj ]}j∈J , {[fj , Af ]}∗j∈J ]

= [{[Af, fj ]}j∈J , {[Af, fj ]}j∈J ]

= ‖{[Af, fj ]}j∈J ‖2Xd
.

Now G∗ is an X∗d -Bessel sequence so for some D ≥ 0

‖U∗G∗UFAf‖X = sup
‖g∗‖=1,g∈X

g∗(U∗G∗UFAf)

= sup
‖g‖=1

[U∗G∗UFAf, g]

= sup
‖g‖=1

[
∑
j∈J

[Af, fj ]gj , g]
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= sup
‖g‖=1

∑
j∈J

[Af, fj ][gj , g]

≤ sup
‖g‖=1

‖{[Af, fj ]}j∈J ‖Xd
‖{[gj , g]}j∈J ‖X∗

d

≤ sup
‖g‖=1

‖{[Af, fj ]}j∈J ‖Xd
D‖g‖X

= D‖{[Af, fj ]}j∈J ‖Xd

= D[SFAf,Af ]
1
2

= D[S
1
2
FS

1
2
FAf,Af ]

1
2

= D[S
1
2
FAf, S

1
2
FAf ]

1
2

= D‖S
1
2
FAf‖X

i.e.

‖U∗G∗UFAf‖X ≤ D‖S
1
2
FAf‖X

and thus S
1
2
FA majorizes U∗G∗UFA. By Proposition 3 [2], there exists the oper-

ator Q ∈ B(X) such that U∗G∗UFA = QS
1
2
FA and by invertibility of A, we have

U∗G∗UF = QS
1
2
F . The opposite implication holds by definition.

By adding a condition to assumptions of Theorem 4, we obtained the
following result.

Corollary 3.6. Let F and G∗ be Xd and X∗d -Bessel sequences for X and

X∗, respectively, sp(SF )∩ (−∞, 0) = ∅, S
1
2
F is an adjoint abelian operators and

{[f, fj ]}∗j∈J = {[fj , f ]}j∈J . Then F and G∗ are approximately dual Xd-frames

if and only if there exists an operator Q ∈ B(X) such that U∗G∗UF = QS
1
2
F and

‖IX −QS
1
2
F ‖X < 1.

Finally, we state the concept of an ε-nearly g-dual frame in Banach space
(see [24]).

Definition 3.7. Suppose that X is a Banach space and let F = {fj}j∈J ⊂
X be an Xd-Bessel sequence for X, also let 0 < ε < 1. An X∗d -Bessel sequence
G∗ = {g∗j }j∈J ⊂ X∗ is called an ε-nearly g-dual frame for F if there exists an
invertible operator A ∈ B(X) such that

‖f −
∑
j∈J

[Af, fj ]gj‖X < ε‖f‖X , f ∈ X.
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Clearly by definition, all g-dual frames and ordinary dual frames of any
Xd-frame are ε-nearly g-dual frame. Also, if G∗ = {g∗j }j∈J is an ε-nearly g-dual
frame of F = {fj}j∈J then it is not necessary that F ∗ is an ε-nearly g-dual
frame of G.

Proposition 3.8. Let F = {fj}j∈J ⊂ X and G∗ = {g∗j }j∈J ⊂ X∗ be Xd

and X∗d -Bessel sequence for X and X∗, respectively. Then G∗ is an ε-nearly
g-dual frame of F if and only if G∗ is a g-dual frame of F .

Proof. The necessary part is obvious. For the converse, let G∗ be an ε-
nearly g-dual frame of F . Thus we have ‖IX − U∗G∗UFA‖X < ε < 1, hence
U∗G∗UFA is an invertible operator and we can write

f = (U∗G∗UFA)(U∗G∗UFA)−1f =
∑
j∈J

[A(U∗G∗UFA)−1f, fj ]gj , f ∈ X.

So, G∗ is a g-dual frame of F .

Theorem 3.9. Let F = {fj}j∈J ⊂ X be a Xd-Bessel sequence for X,
G∗ = {g∗j }j∈J ⊂ X∗ and H∗ = {h∗j}j∈J ⊂ X∗ be X∗d -Bessel sequences for X∗.
If G∗ is a g-dual frame of F with respect to an invertible operator A, then H∗

is a g-dual frame of F with respect to A if and only if

Rang(UG∗ − UH∗) ⊂ Ker(U∗F ).

Proof. First, ifH∗ is a g-dual of F , then there exists an invertible operator
A ∈ B(X) such that

f =
∑
j∈J

[Af, fj ]hj = U∗H∗UFAf , f ∈ X.

Hence A−1 = U∗H∗UF , since by assumption, we have A−1 = U∗G∗UF , thus
U∗H∗UF = U∗G∗UF , and therefore Rang(UG∗ − UH∗) ⊂ Ker(U∗F ).

For the inverse, assume that Rang(UG∗ − UH∗) ⊂ Ker(U∗F ) holds, then
U∗H∗UF = U∗G∗UF and thus we have A−1 = U∗H∗UF = U∗G∗UF , now we can
write

f = A−1Af = U∗H∗UFAf =
∑
j∈J

[Af, hj ]fj , f ∈ X.
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[21] L. Găvruţa, Atomic decompositions for operators in reproducing kernel Hilbert spaces.
Math.Reports 17(67) (2015), 3, 303–314.



260 V. R. Morshedi, M. Janfada, and R. Kamyabi Gol 16
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