APPROXIMATELY DUAL FRAMES IN BANACH SPACES VIA SEMI-INNER PRODUCTS

VAHID REZA MORSHEDI, MOHAMMAD JANFADA*, and RAJABALI KAMYABI-GOL

Communicated by Dan Timotin

Abstract

In this paper, we develop the concept of dual and approximately dual frames in Banach spaces via semi-inner products and some properties of dual and approximate dual frames are investigated. Also, we introduce g-dual frames in these spaces and some relationships between g-duals and approximate duals are stated. Finally, the ϵ-nearly g-dual frames and their relations with g-duals are studied in Banach spaces using semi-inner products.

AMS 2010 Subject Classification: Primary 42C15; Secondary 46B15, 46C50.
Key words: X_{d}-frame; semi-inner product; duality mapping; approximately duals; pseudo-duals; g-dual.

1. INTRODUCTION AND PRELIMINARIES

The concept of frame was introduced by Duffin and Schaeffer [12] in 1952. After some decades, Young reintroduced frames in abstract Hilbert spaces [30]. Daubechies, Grossmann and Meyer studied frames deeply in 80's [8]. Feichtinger and Grochenig [16, 22] extended the concept of frames from Hilbert spaces to Banach spaces and defined atomic decomposition and Banach frames. Frames have many nice properties which make them very useful in sampling [13, 14], signal processing [17, 28], filter bank theory [3], and many other fields. Recent applications of the frames in compressed sensing was given in [4] and applications of the frames to operator theory was given in [21]. A sequence $\left\{f_{j}\right\}_{j \in \mathcal{J}}$ in \mathcal{H} is said to be a frame for \mathcal{H} if there exist positive real numbers A, B such that

$$
A\|f\|^{2} \leq \sum_{j \in \mathcal{J}}\left|\left\langle f, f_{j}\right\rangle\right|^{2} \leq B\|f\|^{2}, \quad f \in \mathcal{H}
$$

The elements A and B are called the lower and the upper frame, respectively. Suppose that $\left\{f_{j}\right\}_{j \in \mathcal{J}}$ is a frame of \mathcal{H}. The operator $T: \mathcal{H} \rightarrow \ell^{2}(\mathcal{J})$ defined by $T(f)=\left\{\left\langle f, f_{j}\right\rangle\right\}_{j \in \mathcal{J}}$ is called the analysis operator. T^{*} is called the synthesis operator. The operator $S=T^{*} T$ is called the frame operator of $\left\{f_{j}\right\}_{j \in \mathcal{J}}$.

[^0]A very useful property of a frame $\left\{f_{j}\right\}_{j \in \mathcal{J}}$ for a Hilbert space \mathcal{H} is that $\left\{f_{j}\right\}_{j \in \mathcal{J}}$ has a dual frame $\left\{g_{j}\right\}_{j \in \mathcal{J}}$, i.e. there exists a frame $\left\{g_{j}\right\}_{j \in \mathcal{J}}$ for \mathcal{H} such that for all $f \in \mathcal{H}$,

$$
f=\sum_{j \in \mathcal{J}}\left\langle f, g_{j}\right\rangle f_{j}=\sum_{j \in \mathcal{J}}\left\langle f, f_{j}\right\rangle g_{j} .
$$

It is not easily to find a dual for a frame in general. A more general concept, namely, approximate dual is introduced by O. Christensen and R. S. Laugesen [6], which are more available. In this paper, we intend to introduce these concepts on Banach spaces and so some necessary concepts are introduced as follows.

A sequence space X_{d} is called a $B K$-space, if it is a Banach space and the coordinate functionals are continuous on X_{d}. If the canonical vectors forms a Schauder basis for X_{d}, then X_{d} is called a $C B$-space and its canonical basis is denoted by $\left\{e_{j}\right\}_{1}^{\infty}$. If X_{d} is reflexive and a CB-space, then X_{d} is called an $R C B$-space. Also, the dual of X_{d} is denoted by X_{d}^{*}.

The spaces $\ell^{\infty}, c, c_{0}, \ell^{p}(1 \leq p<\infty)$ are $B K$-spaces with their natural norms. Also the space ℓ^{∞} has no Schauder basis, since it is not separable and the spaces c_{0} and $\ell^{p}(1 \leq p<\infty)$ have $\left\{e_{j}\right\}_{1}^{\infty}$ as their Schauder bases.

The concept of semi-inner product, which was introduced in 1961 by G. Lumer [27] and modified by other researchers, is presented in the following definition.

Definition 1.1. [23] Let X be a complex (real) vector space. A semi-inner product (in short s.i.p.) on X is a function from $X \times X \rightarrow \mathbb{C}$, denoted by [.,.], such that for all $f, g, h \in X$ and $\lambda \in \mathbb{C}$,

1. $[\lambda f+g, h]=\lambda[f, h]+[g, h]$ and $[f, \lambda g]=\bar{\lambda}[f, g]$,
2. $[f, f] \geq 0$, for all $f \in X$ and $[f, f]=0$ implies $f=0$,
3. $|[f, g]|^{2} \leq[f, f][g, g]$.

However an s.i.p. space need not satisfy the following properties
(i) $[f, g]=\overline{[g, f]}$,
(ii) $[f, g+h]=[f, g]+[f, h]$.

If [., .] is a s.i.p. on X then $\|f\|:=[f, f]^{\frac{1}{2}}$ is a norm on X. Conversely, if X is a normed vector space then it has a s.i.p. that induces its norm in this manner which is called the compatible semi-inner product [27].

Let X be a Banach space. We define a duality map $\Phi_{X}: X \rightarrow X^{*}$ as follows. Given $f \in X$, by the Hahn-Banach theorem, there exists an $f^{*} \in X^{*}$ such that $\|f\|=\left\|f^{*}\right\|$ and $f^{*}(f)=\|f\|^{2}$. Set $\Phi_{X}(f)=f^{*}$, and $\Phi_{X}(\lambda f)=\bar{\lambda} f^{*}$, and define Φ_{X} on the rest of X in the same manner. In general, Φ_{X} is not unique, linear or continuous. The duality map Φ_{X} induces a semi-inner product
[., .] if we set $[f, g]=g^{*}(f)[29]$. We shall use this definition for $g^{*}, g \in X$. Note that if X is a Hilbert space, then the duality map is unique [29].

Recall that a Banach space X is called strictly convex, if for any pair of vectors $f, g \neq 0$ in X, the equation $\|f+g\|_{X}=\|f\|_{X}+\|g\|_{X}$, implies that there exists a $\lambda>0$ such that $f=\lambda g$ [11]. In these spaces, the duality mapping from X to X^{*} is unique and bijective when X is reflexive [11, 15]. In other words, for each $f^{*} \in X^{*}$ there exists a unique $g \in X$ such that $f^{*}(g)=[g, f]$, for all $g \in X$. Moreover, we have $\left\|f^{*}\right\|_{X^{*}}=\|f\|_{X}$. Also, $\left[f^{*}, g^{*}\right]_{*}:=[g, f]$, $f, g \in X$, defines a compatible semi-inner product on X^{*} [23]. Note that, in this case $g^{* *}=g$, indeed for any $f \in X$

$$
\hat{g}\left(f^{*}\right)=f^{*}(g)=[g, f]=\left[f^{*}, g^{*}\right]_{*}=g^{* *}\left(f^{*}\right),
$$

where \hat{g} is the Gelfand transform of g in $X^{* *}$.
A Banach space X will be said to be uniformly convex if to each $\varepsilon, 0<$ $\varepsilon \leq 2$, there corresponds a $\delta(\varepsilon)>0$ such that the conditions $\|f\|_{X}=\|g\|_{X}=1$, $\|f-g\|_{X} \geq \varepsilon$ imply $\left\|\frac{f+g}{2}\right\|_{X} \leq 1-\delta(\varepsilon)[7]$. We recall that Hilbert spaces, L^{p} and ℓ^{p} for $1<p<\infty$ are uniformly convex and $C[0,1]$ is not uniformly convex [5, 7].

We know that a uniformly convex Banach space is reflexive [5], but a reflexive Banach space is not necessarily uniformly convex [9]. Also, every uniformly convex Banach space is strictly convex [5].

In 2011, H. Zhang and J. Zhang [31] introduced frames in Banach space X via s.i.p. that is presented in the following definition.

Definition 1.2. [31] Let X be a separable Banach space and [.,.] be a compatible semi-inner product on X. Also let X be reflexive and strictly convex and X_{d} be an CB- space. Then a sequence $\left\{f_{j}\right\}_{j \in \mathcal{J}} \subseteq X$ is called an X_{d}-frame for X if for any $f \in X$
(i) $\left\{\left[f, f_{j}\right]\right\}_{j \in \mathcal{J}} \in X_{d}$,
(ii) there exist positive constants A, B such that

$$
A\|f\|_{X} \leq\left\|\left\{\left[f, f_{j}\right]\right\}_{j \in \mathcal{J}}\right\|_{X_{d}} \leq B\|f\|_{X}, \quad f \in X
$$

If the right side of this inequality holds then we say that $\left\{f_{j}\right\}_{j \in \mathcal{J}}$ is an X_{d}-Bessel sequence for X .

Recall that an indexed set $F=\left\{f_{j}\right\}_{j \in \mathcal{J}} \subseteq X$ is an X_{d}-Riesz basis for X if $\overline{\operatorname{span}}\left\{f_{j}\right\}_{j \in \mathcal{J}}=X$ and $\sum_{j \in \mathcal{J}} c_{j} f_{j}$ converges in X for all $c=\left\{c_{j}\right\}_{j \in \mathcal{J}} \in X_{d}$ and there exists $0<A \leq B<\infty$ such that

$$
A\left\|\left\{c_{j}\right\}_{j \in \mathcal{J}}\right\|_{X_{d}} \leq\left\|\sum_{j \in \mathcal{J}} c_{j} f_{j}\right\|_{X} \leq B\left\|\left\{c_{j}\right\}_{j \in \mathcal{J}}\right\|_{X_{d}}, \quad c=\left\{c_{j}\right\}_{j \in \mathcal{J}} \in X_{d}
$$

Let $F=\left\{f_{j}\right\}_{j \in \mathcal{J}}$ be an X_{d}-Bessel sequence. The analysis operator U_{F} : $X \rightarrow X_{d}$ is defined by $U_{F}(f):=\left\{\left[f, f_{j}\right]\right\}_{j \in \mathcal{J}}$ and the adjoint $U_{F}^{*}: X_{d}^{*} \rightarrow$
X^{*} of U_{F} is called the synthesis operator which is given by $U_{F}^{*}\left(\left\{c_{j}\right\}_{j \in \mathcal{J}}\right):=$ $\sum_{j \in \mathcal{J}} c_{j} f_{j}^{*}$.

Let X be a strictly convex separable Banach space, X_{d} be a uniformly convex $B K$-space and $F=\left\{f_{j}\right\}_{j \in \mathcal{J}}$ and $F^{*}:=\left\{f_{j}^{*}\right\}_{j \in \mathcal{J}}$ be X_{d} and X_{d}^{*}-Bessel sequences with analysis operators U_{F} and $U_{F^{*}}$ for X and X^{*}, respectively. We define the X_{d}-frame operator $S_{F}: X \rightarrow X$ for $\left\{f_{j}\right\}_{j \in \mathcal{J}}$ by $S_{F} f:=U_{F^{*}}^{*} U_{F} f=$ $\sum_{j \in \mathcal{J}}\left[f, f_{j}\right] f_{j}$, for any $f \in X$, that is well-defined bounded linear operator. S_{F} is not bijective in general (see [31] for more details).

We need the following results of [31] in our study.
Proposition 1.3. A subset $F=\left\{f_{j}\right\}_{j \in \mathcal{J}} \subseteq X$ forms an X_{d}-Bessel sequence for X if and only if $\sum_{j \in \mathcal{J}} b_{j} f_{j}^{*}$ converges in X^{*} for all $b \in X_{d}^{*}$ and

$$
\left\|\sum_{j \in \mathcal{J}} b_{j} f_{j}^{*}\right\|_{X^{*}} \leq B\|b\|_{X_{d}^{*}}
$$

Proposition 1.4. A sequence $F=\left\{f_{j}\right\}_{j \in \mathcal{J}} \subseteq X$ is an X_{d}-frame for X if and only if the operator U_{F}^{*} is bounded and surjective from X_{d}^{*} to X^{*}.

Theorem 1.5. Suppose that $F=\left\{f_{j}\right\}_{j \in \mathcal{J}} \subseteq X$ and $F^{*}=\left\{f_{j}^{*}\right\}_{j \in \mathcal{J}} \subseteq$ X^{*} are X_{d}-Bessel sequence and X_{d}^{*}-Bessel sequence with analysis operators U_{F} and $U_{F^{*}}$ for X and X^{*}, respectively. Then the operator $S_{F}: X \rightarrow X$ is bijective and bounded if and only if $\left\{f_{j}\right\}_{j \in \mathcal{J}}$ is an X_{d}-frame and $\left\{f_{j}^{*}\right\}_{j \in \mathcal{J}}$ is an X_{d}^{*}-frame and $\left\{f_{j}\right\}_{j \in \mathcal{J}}$ is an $R(U)$-Riesz basis for X and in this case we have

$$
f=\sum_{j \in \mathcal{J}}\left[f, f_{j}\right] S_{F}^{-1} f_{j}, \quad f \in X
$$

and

$$
f^{*}=\sum_{j \in \mathcal{J}}\left[f_{j}, f\right]\left(S_{F}^{-1}\right)^{*} f_{j}^{*}=\sum_{j \in \mathcal{J}}\left[S_{F}^{-1} f_{j}, f\right] f_{j}^{*}, \quad f \in X
$$

Theorem 1.6. If $F=\left\{f_{j}\right\}_{j \in \mathcal{J}} \subseteq X$ is an X_{d}-frame for X and $R\left(U_{F}\right)$ has an algebraic complement in X_{d} then there exists an X_{d}^{*}-frame $G^{*}=\left\{g_{j}^{*}\right\}_{j \in \mathcal{J}} \subseteq X^{*}$ for X^{*} such that

$$
\begin{equation*}
f=\sum_{j \in \mathcal{J}}\left[f, f_{j}\right] g_{j}, \quad f \in X \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
f^{*}=\sum_{j \in \mathcal{J}}\left[g_{j}, f\right] f_{j}^{*}, \quad f \in X . \tag{1.2}
\end{equation*}
$$

The content of the present paper is as follows. In section 2, we introduce the dual, pseudo-dual and approximate dual of an X_{d}-Bessel sequence in

Banach space via s.i.p. and some properties and relations between of these concepts are given. In section 3, we describe the notions of g-dual frame and some necessary and sufficient condition for their existence are discussed. Finally, we study the concept of ϵ-nearly g-dual frame for an X_{d}-Bessel sequence and some results on them are obtained.

Throughout this paper, we assume that X is an uniformly convex separable Banach space, X_{d} is an uniformly convex $B K$-space, \mathcal{J} a countable index set and I_{X} is the identity operator on X. For two Banach spaces X and Y, we denote by $B(X, Y)$ the collection of all bounded linear operators between X and Y. Also, we write $B(X)$ instead of $B(X, X)$.

2. DUAL AND APPROXIMATELY DUAL VIA S.I.P

Theorem 2 leads us to introduce the dual of an X_{d}-Bessel sequence as follows.

Definition 2.1. Let $F=\left\{f_{j}\right\}_{j \in \mathcal{J}} \subseteq X$ be an X_{d}-Bessel sequence for X. An X_{d}^{*}-Bessel sequence $G^{*}=\left\{g_{j}^{*}\right\}_{j \in \mathcal{J}} \subseteq X^{*}$ is called a dual of F if

$$
f=\sum_{j \in \mathcal{J}}\left[f, f_{j}\right] g_{j}, \quad f \in X
$$

If G^{*} is a dual of F then we can write $f^{*}=\sum_{j \in \mathcal{J}}\left[g_{j}, f\right] f_{j}^{*}$, for all $f \in X$. Note that, the relation $f=\sum_{j \in \mathcal{J}}\left[f, g_{j}\right] f_{j}$, is not true, in general. This is established in the following example.
Example. Consider the space $X:=\ell^{3}\left(\mathbb{N}_{2}\right)$ with the semi-inner product

$$
[a, b]:=\|b\|_{X}^{-1} \sum_{j \in \mathcal{J}} a_{j} \overline{b_{j}}\left|b_{j}\right|
$$

Let X_{d} be an arbitrary $B K$-space. For any $f \in X$, we have $f^{*}=\frac{\bar{f}|f|}{\|f\|_{X}}$. Let $F=\left\{f_{1}, f_{2}\right\}=\{(1,1),(4,1)\} \subseteq X$. The facts that $\overline{\operatorname{span}} F^{*}=\overline{\operatorname{span}}\left\{f_{1}^{*}, f_{2}^{*}\right\}=$ $\overline{\operatorname{span}}\left\{\frac{(1,1)}{(2)^{\frac{1}{3}}}, \frac{(16,1)}{(65)^{\frac{1}{3}}}\right\}=\ell^{\frac{3}{2}}\left(\mathbb{N}_{2}\right)$ and $\overline{\operatorname{span}} F=\ell^{3}\left(\mathbb{N}_{2}\right)$, imply that F and F^{*} are X_{d} and X_{d}^{*}-frame for X and X^{*}, respectively. Now consider

$$
G=\left\{\left(-\frac{(2)^{\frac{1}{3}}}{15}, \frac{16(2)^{\frac{1}{3}}}{15}\right),\left(\frac{(65)^{\frac{1}{3}}}{15},-\frac{(65)^{\frac{1}{3}}}{15}\right)\right\}
$$

Then G^{*} is a dual of F and we can write $f=\sum_{j \in \mathcal{J}}\left[f, f_{j}\right] g_{j}$, for all $f \in X$. But $f=\sum_{j \in \mathcal{J}}\left[f, g_{j}\right] f_{j}$ does not hold for all $f \in X$, for example, if we take $f=(0,2) \in X$ then

$$
\sum_{j \in \mathcal{J}}\left[f, g_{j}\right] f_{j}=\left(-1+(16)^{3}\right)^{\frac{-1}{3}}\left(\frac{32(2)^{\frac{1}{3}}}{15}\right)(1,1) \neq(0,2) .
$$

Remark 2.2. If $U_{F}: X \rightarrow X_{d}, U_{F}(f)=\left\{\left[f, f_{j}\right]\right\}_{j \in \mathcal{J}}$ is the analysis operator of X_{d}-Bessel sequence $\left\{f_{j}\right\}_{j \in \mathcal{J}} \subseteq X$ for X with the adjoint operator $U_{F}^{*}: X_{d}^{*} \rightarrow$ $X^{*}, U_{F}^{*}\left(\left\{c_{j}\right\}_{j \in \mathcal{J}}\right)=\sum_{j \in \mathcal{J}} c_{j} f_{j}^{*}$ and $U_{G^{*}}: X^{*} \rightarrow X_{d}^{*}, U_{G^{*}}\left(g^{*}\right):=\left\{\left[g_{j}, g\right]\right\}_{j \in \mathcal{J}}$ is the analysis operator of X_{d}^{*}-Bessel sequence $\left\{g_{j}^{*}\right\}_{j \in \mathcal{J}} \subseteq X^{*}$ for X^{*} with the adjoint operator $U_{G^{*}}^{*}: X_{d} \rightarrow X, U_{G^{*}}^{*}\left(\left\{d_{j}\right\}_{j \in \mathcal{J}}\right)=\sum_{j \in \mathcal{J}} d_{j} g_{j}$, then the relation (1.1), (1.2) can be written as follows

$$
f=U_{G^{*}}^{*} U_{F}(f), \quad f \in X, \text { i.e. } I_{X}=U_{G^{*}}^{*} U_{F}
$$

and hence

$$
f^{*}=U_{F}^{*} U_{G^{*}}\left(f^{*}\right), \quad f \in X, \text { i.e. } I_{X^{*}}=U_{F}^{*} U_{G^{*}} .
$$

Recall that $A \in B(X)$ is called an adjoint abelian operator if there exists a duality map $\Phi_{X}: X \rightarrow X^{*}$, such that $A^{*} \Phi_{X}=\Phi_{X} A$ (equivalently, $(A x)^{*}=$ $A^{*} x^{*}$, for all $x \in X$ or $[A x, y]=[x, A y]$, for all $\left.x, y \in X\right)$. It is well-known that if A is bijective and adjoint abelian then A^{-1} is also adjoint abelian (see [29]).

For example, if X is a Hilbert space, then the adjoint abelian operators are precisely the self-adjoint ones [29], and every adjoint abelian operator on $C(K),(K$ compact $)$ or $L^{p}(1<p<\infty, p \neq 2)$ is a multiple of an isometry whose square is the identity [18]. As another example of adjoint abelian operator, if X is the ℓ^{p} sum of a one dimensional and a two dimensional space, then

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & i \\
0 & -i & 0
\end{array}\right]
$$

is adjoint abelian on that space [19].
The following lemma shows that adjoint abelian operators preserve $X_{d^{-}}$ Bessel sequences. For the ordinary frames, it has been shown that if $\left\{f_{j}\right\}_{j \in \mathcal{J}}$ is a frame for Hilbert space \mathcal{H} and $T \in B(\mathcal{H})$ then $\left\{T f_{j}\right\}_{j \in \mathcal{J}}$ is a frame for \mathcal{H} if and only if T is surjective. In the Banach setting we may have the following lemma.

Lemma 2.3. Suppose that $F=\left\{f_{j}\right\}_{j \in \mathcal{J}} \subseteq X$ is an X_{d}-Bessel sequence for X with the bound B and $T \in B(X)$ is an adjoint abelian operator then
(i) $T F=\left\{T f_{j}\right\}_{j \in \mathcal{J}} \subseteq X$ is an X_{d}-Bessel sequence for X with the bound $\|T\| B$.
(ii) Let F be an X_{d}-frame for X and $T \in B(X)$ is an adjoint abelian operator then $T^{*} \in B\left(X^{*}\right)$ is surjective if and only if $T F$ is an X_{d}-frame for X.

Proof. (i) For any $\left\{c_{j}\right\} \in X_{d}^{*}$, by Proposition 1, one can see that

$$
\left\|\sum_{j \in \mathcal{J}} c_{j}\left(T f_{j}\right)^{*}\right\|_{X^{*}}=\left\|T^{*} \sum_{j \in \mathcal{J}} c_{j} f_{j}^{*}\right\|_{X^{*}} \leq\left\|T^{*}\right\|\left\|\sum_{j \in \mathcal{J}} c_{j} f_{j}^{*}\right\|_{X^{*}}
$$

$$
\leq B\left\|T^{*}\right\|\left\|\left\{c_{j}\right\}\right\|_{X_{d}^{*}}=B\|T\|\left\|\left\{c_{j}\right\}\right\|_{X_{d}^{*}} .
$$

(ii) First, suppose that $T \in B(X)$ is an adjoint abelian operator such that $T^{*} \in B\left(X^{*}\right)$ is surjective. Let F be an X_{d}-frame for X, then U_{F}^{*} is bounded and surjective. On the other hand, the synthesis operator of $T F$ is $U_{T F}^{*}: X_{d}^{*} \rightarrow X^{*}$ which is of the following form

$$
U_{T F}^{*}\left(\left\{c_{j}\right\}_{j \in \mathcal{J}}\right)=\sum_{j \in \mathcal{J}} c_{j}\left(T f_{j}\right)^{*}=\sum_{j \in \mathcal{J}} c_{j} T^{*} f_{j}^{*}=T^{*} \sum_{j \in \mathcal{J}} c_{j} f_{j}^{*}=T^{*} U_{F}^{*}\left(\left\{c_{j}\right\}_{j \in \mathcal{J}}\right)
$$

Now, since $T^{*} U_{F}^{*}$ is bounded and surjective hence, by Proposition 2, TF is an X_{d}-frame for X. For the inverse, let $T F$ be an X_{d}-frame for X then $U_{T F}^{*}=T^{*} U_{F}^{*}$ is bounded and surjective and thus T^{*} is surjective.

Now, the notions pseudo-dual and approximate dual of an X_{d}-Bessel sequence for X are introduced and their relations and properties are established.

Definition 2.4. Let $F=\left\{f_{j}\right\}_{j \in \mathcal{J}} \subseteq X$ be an X_{d}-Bessel sequence for X and $G^{*}=\left\{g_{j}^{*}\right\}_{j \in \mathcal{J}} \subseteq X^{*}$ be an X_{d}^{*}-Bessel sequence for X^{*} then F and G^{*} are said to be
(i) approximately dual X_{d}-frames if

$$
\left\|I_{X}-U_{G^{*}}^{*} U_{F}\right\|_{X}<1 \text { or }\left\|I_{X^{*}}-U_{F}^{*} U_{G^{*}}\right\|_{X^{*}}<1
$$

(ii) pseudo-dual X_{d}-frames if $U_{G^{*}}^{*} U_{F}$ or $U_{F}^{*} U_{G^{*}}$ is bijection on X and X^{*}, respectively.

Note that, if $F=\left\{f_{j}\right\}_{j \in \mathcal{J}}$ and $G^{*}=\left\{g_{j}^{*}\right\}_{j \in \mathcal{J}}$ are approximately dual X_{d}-frames then trivially F and G^{*} are pseudo-dual X_{d}-frames.

Now, let F and G^{*} be approximately dual X_{d}-frames. In this case, under some condition on $G=\left\{g_{j}\right\}_{j \in \mathcal{J}}$ we may construct a dual of F. In fact, since $\left\|I_{X}-U_{G^{*}}^{*} U_{F}\right\|_{X}<1$ then $U_{G^{*}}^{*} U_{F}$ is invertible and for any $f \in X$ we have $f=$ $\left(U_{G^{*}}^{*} U_{F}\right)^{-1}\left(U_{G^{*}}^{*} U_{F}\right) f=\left(U_{G^{*}}^{*} U_{F}\right)^{-1} \sum_{j \in \mathcal{J}}\left[f, f_{j}\right] g_{j}=\sum_{j \in \mathcal{J}}\left[f, f_{j}\right]\left(U_{G^{*}}^{*} U_{F}\right)^{-1} g_{j}$.

Put $H=\left\{h_{j}\right\}_{j \in \mathcal{J}}=\left\{\left(U_{G^{*}}^{*} U_{F}\right)^{-1} g_{j}\right\}_{j \in \mathcal{J}}$ and let $H^{*}=\left\{h_{j}^{*}\right\}_{j \in \mathcal{J}} \subseteq X^{*}$ be an X_{d}^{*}-Bessel sequence for X^{*} and U_{H}^{*} and $U_{H^{*}}^{*}$ are synthesis operators of H and H^{*}, respectively, then we can write $f=U_{H^{*}}^{*} U_{F} f, f \in X$, and this means that H^{*} is a dual of F.

Proposition 2.5. Let $F=\left\{f_{j}\right\}_{j \in \mathcal{J}}$ and $G^{*}=\left\{g_{j}^{*}\right\}_{j \in \mathcal{J}}$ be X_{d} and X_{d}^{*} Bessel sequences for X and X^{*}, respectively, then
(i) If G^{*} is a dual frame for F, then F and G^{*} are approximately X_{d}-dual frames.
(ii) If F and G^{*} are approximately dual X_{d}-frames, then F and G^{*} are pseudo-dual X_{d}-frames.
(iii) If F and G^{*} are pseudo-dual X_{d}-frames and $T \in B(X)$ is bijection such that T^{*} is an adjoint abelian operator, then F and $T^{*} G^{*}=\left\{T^{*} g_{j}^{*}\right\}_{j \in \mathcal{J}}$ are pseudo-dual X_{d}-frames.
(iv) If F and G^{*} are pseudo-dual X_{d}-frames and $\left(U_{G^{*}}^{*} U_{F}\right)^{-1}$ is an adjoint abelian operator, then $H^{*}=\left\{\left(\left(U_{G^{*}}^{*} U_{F}\right)^{-1} g_{j}\right)^{*}\right\}_{j \in \mathcal{J}}$ is a dual of F.

Proof. The proofs of (i) and (ii) are trivial by definitions.
For the proof of (iii), by Lemma $1, T^{*} G^{*}$ is an X_{d}^{*}-Bessel sequence, thus the synthesis operator for $T^{*} G^{*}$ is $U_{T^{*} G^{*}}^{*}=T U_{G^{*}}^{*}$, since

$$
U_{T^{*} G^{*}}^{*}\left(\left\{c_{j}\right\}_{j \in \mathcal{J}}\right)=\sum_{j \in \mathcal{J}} c_{j}\left(T^{*} g_{j}^{*}\right)^{*}=\sum_{j \in \mathcal{J}} c_{j} T g_{j}=T \sum_{j \in \mathcal{J}} c_{j} g_{j}=T U_{G^{*}}^{*}\left(\left\{c_{j}\right\}_{j \in \mathcal{J}}\right)
$$

The assumptions that F and G^{*} are pseudo-dual frames and T is bijection imply that $U_{T^{*} G^{*}}^{*} U_{F}=T U_{G^{*}}^{*} U_{F}$ is bijection and then F and $T^{*} G^{*}$ are pseudodual X_{d}-frames.

For (iv), note that, if F and G^{*} are pseudo-dual $X_{d^{-}}$-frames then $\left(U_{G^{*}}^{*} U_{F}\right)^{-1}$ exists and is bounded and hence H^{*} is an X_{d}^{*}-Bessel sequence. In this case we have:
$\sum_{j \in \mathcal{J}}\left[f, f_{j}\right]\left(U_{G^{*}}^{*} U_{F}\right)^{-1} g_{j}=\left(\left(U_{G^{*}}^{*} U_{F}\right)^{-1} \sum_{j \in \mathcal{J}}\left[f, f_{j}\right] g_{j}=\left(\left(U_{G^{*}}^{*} U_{F}\right)^{-1}\left(U_{G^{*}}^{*} U_{F}\right) f=f\right.\right.$.
Therefore, F and H^{*} are dual frames.
Under some conditions on the X_{d}-frame operator S_{F}, we may construct a dual of the X_{d}-frame $F=\left\{f_{j}\right\}_{j \in \mathcal{J}}$ as follows.

Proposition 2.6. Let $S_{F}:=U_{F^{*}}^{*} U_{F}: X \rightarrow X$ be a bijective, bounded and adjoint abelian operator, then $\left\{\left(S_{F}^{-1} f_{j}\right)^{*}\right\}_{j \in \mathcal{J}}$ is a dual of $\left\{f_{j}\right\}_{j \in \mathcal{J}}$.

Proof. Suppose that S_{F} is bijective, bounded and adjoint abelian operator, then by Theorem $1,\left\{f_{j}\right\}_{j \in \mathcal{J}} \subseteq X$ and $\left\{f_{j}^{*}\right\}_{j \in \mathcal{J}} \subseteq X^{*}$ are X_{d}-frame and X_{d}^{*}-frame for X and X^{*}, respectively, and thus $\left\{\left(S_{F}^{-1} f_{j}\right)^{*}\right\}_{j \in \mathcal{J}}$ is an X_{d}^{*}-Bessel sequence since S_{F}^{-1} is adjoint abelian operator and hence

$$
f=\sum_{j \in \mathcal{J}}\left[f, f_{j}\right] S_{F}^{-1} f_{j}, \quad f \in X
$$

i.e. $\left\{\left(S_{F}^{-1} f_{j}\right)^{*}\right\}_{j \in \mathcal{J}}$ is a dual frame of $\left\{f_{j}\right\}_{j \in \mathcal{J}}$.

Theorem 2.7. Suppose that $F=\left\{f_{j}\right\}_{j \in \mathcal{J}} \subseteq X$ and $G^{*}=\left\{g_{j}^{*}\right\}_{j \in \mathcal{J}} \subseteq$ X^{*} are approximately dual X_{d}-frames then the following holds,
(i) If $U_{G^{*}}^{*} U_{F}$ is an adjoint abelian operator then the dual frame $H^{*}=$ $\left\{\left(\left(U_{G^{*}}^{*} U_{F}\right)^{-1} g_{j}\right)^{*}\right\}_{j \in \mathcal{J}}$ of F can be written as follows

$$
\left(\left(U_{G^{*}}^{*} U_{F}\right)^{-1} g_{j}\right)^{*}=g_{j}^{*}+\left(\sum_{j \in \mathcal{J}}\left(I_{X^{*}}-\left(U_{G^{*}}^{*} U_{F}\right)^{*}\right)\right)^{n} g_{j}^{*}
$$

(ii) Let $N \in \mathbb{N}$ be given, consider the corresponding partial sum,

$$
\begin{aligned}
\gamma_{j}^{(N)} & =g_{j}+\sum_{n=1}^{N}\left(I_{X}-U_{G^{*}}^{*} U_{F}\right)^{n} g_{j} \\
& =\sum_{n=0}^{N}\left(I_{X}-U_{G^{*}}^{*} U_{F}\right)^{n} g_{j}
\end{aligned}
$$

and let $\Gamma^{*}=\left\{\left(\gamma_{j}^{(N)}\right)^{*}\right\}_{j \in \mathcal{J}}$ be a X_{d}^{*}-Bessel sequence then Γ^{*} is an approximate dual of F. Denoting its associated synthesis operator by $U_{\Gamma^{*}}^{*}$ we have

$$
\left\|I_{X}-U_{\Gamma^{*}}^{*} U_{F}\right\|_{X} \leq\left\|I_{X}-U_{G^{*}}^{*} U_{F}\right\|_{X}^{N+1} \rightarrow 0, \quad \text { when } N \rightarrow \infty
$$

Proof. (i) Since $f=\left(U_{G^{*}}^{*} U_{F}\right)^{-1}\left(U_{G^{*}}^{*} U_{F}\right) f=\left(U_{G^{*}}^{*} U_{F}\right)^{-1} \sum_{j \in \mathcal{J}}\left[f, f_{j}\right] g_{j}=$ $\sum_{j \in \mathcal{J}}\left[f, f_{j}\right]\left(U_{G^{*}}^{*} U_{F}\right)^{-1} g_{j}, f \in X$ then H^{*} is a dual of F and we have

$$
\begin{aligned}
\left(\left(U_{G^{*}}^{*} U_{F}\right)^{-1}\right)^{*} & =\left(I_{X^{*}}-\left(I_{X^{*}}-\left(U_{G^{*}}^{*} U_{F}\right)^{*}\right)\right)^{-1} \\
& =\sum_{n=0}^{\infty}\left(I_{X^{*}}-\left(U_{G^{*}}^{*} U_{F}\right)^{*}\right)^{n}
\end{aligned}
$$

Now, by the fact that $U_{G^{*}}^{*} U_{F}$ is an adjoint abelian operator we get

$$
\begin{aligned}
\left(\left(U_{G^{*}}^{*} U_{F}\right)^{-1} g_{j}\right)^{*} & =\left(\left(U_{G^{*}}^{*} U_{F}\right)^{*}\right)^{-1} g_{j}^{*} \\
& =g_{j}^{*}+\left(\sum_{j \in \mathcal{J}}\left(I_{X^{*}}-\left(U_{G^{*}}^{*} U_{F}\right)^{*}\right)^{n} g_{j}^{*}\right.
\end{aligned}
$$

(ii) Note that

$$
\begin{aligned}
U_{\Gamma^{*}}^{*} U_{F} f & =\sum_{j \in \mathcal{J}}\left[f, f_{j}\right] \gamma_{j}^{(N)} \\
& =\sum_{j \in \mathcal{J}}\left[f, f_{j}\right]\left(\sum_{n=0}^{N}\left(I_{X}-U_{G^{*}}^{*} U_{F}\right)^{n} g_{j}\right) \\
& =\sum_{n=0}^{N}\left(I_{X}-U_{G^{*}}^{*} U_{F}\right)^{n} \sum_{j \in \mathcal{J}}\left[f, f_{j}\right] g_{j} \\
& =\sum_{n=0}^{N}\left(I_{X}-U_{G^{*}}^{*} U_{F}\right)^{n} U_{G^{*}}^{*} U_{F} f \\
& =\sum_{n=0}^{N}\left(I_{X}-U_{G^{*}}^{*} U_{F}\right)^{n}\left(I_{X}-\left(I_{X}-U_{G^{*}}^{*} U_{F}\right)\right) f
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{n=0}^{N}\left(I_{X}-U_{G^{*}}^{*} U_{F}\right)^{n} f-\left(I_{X}-U_{G^{*}}^{*} U_{F}\right)^{n+1} f \\
& =f-\left(I_{X}-U_{G^{*}}^{*} U_{F}\right)^{N+1} f
\end{aligned}
$$

and hence

$$
\left\|I_{X}-U_{\Gamma^{*}}^{*} U_{F}\right\|_{X}=\left\|\left(I_{X}-U_{G^{*}}^{*} U_{F}\right)^{N+1}\right\|_{X} \leq\left\|I_{X}-U_{G^{*}}^{*} U_{F}\right\|_{X}^{N+1}<1 .
$$

In the next proposition, we prove a stability result for having an approximate dual.

Proposition 2.8. Suppose that $F=\left\{f_{j}\right\}_{j \in \mathcal{J}}$ is an X_{d}-Bessel sequence in X and $H=\left\{h_{j}\right\}_{j \in \mathcal{J}}$ is an X_{d}-Bessel sequence for which

$$
\left\|\left\{\left[f, h_{j}\right]\right\}_{j \in \mathcal{J}}-\left\{\left[f, f_{j}\right]\right\}_{j \in \mathcal{J}}\right\|_{X_{d}} \leq R\|f\|_{X}, \quad f \in X
$$

for some $R>0$. Consider a dual X_{d}-frame $G^{*}=\left\{g_{j}^{*}\right\}_{j \in \mathcal{J}}$ of H with the synthesis operator $U_{G^{*}}$ and assume that G^{*} has upper frame bound C. If $C R<$ 1 , then F and G^{*} are approximately dual X_{d}-frames, with

$$
\left\|I_{X}-U_{G^{*}}^{*} U_{F}\right\|_{X}<1
$$

Proof. From the fact that $G^{*}=\left\{g_{j}^{*}\right\}_{j \in \mathcal{J}}$ is a dual for $H=\left\{h_{j}\right\}_{j \in \mathcal{J}}$ hence $U_{G^{*}}^{*} U_{H}=I_{X}$ and therefore

$$
\left\|I_{X}-U_{G^{*}}^{*} U_{F}\right\|_{X}=\left\|U_{G^{*}}^{*} U_{H}-U_{G^{*}}^{*} U_{F}\right\|=\left\|U_{G^{*}}^{*}\left(U_{H}-U_{F}\right)\right\| \leq\left\|U_{G^{*}}\right\| \| U_{H}-
$$ $U_{F} \| \leq C R<1$.

3. G-DUAL AND APPROXIMATELY G-DUAL

The concept of g-dual frames introduced for ordinary frame in [10]. In this section, we are going to express this notion for an $X_{d^{-}}$Bessel sequence in Banach space via s.i.p. Also, we present some relations between g-dual and approximate dual. Finally, we define the concept of ϵ-nearly g-dual frame for an $X_{d^{-}}$Bessel sequence.

Definition 3.1. Let $F=\left\{f_{j}\right\}_{j \in \mathcal{J}} \subset X_{d}$ be an X_{d} - Bessel sequence for X. An X_{d}^{*} - Bessel sequence $G^{*}=\left\{g_{j}^{*}\right\}_{j \in \mathcal{J}} \subset X_{d}^{*}$ is called a generalized dual $X_{d^{-}}$ frame (or g-dual X_{d}-frame) for F for X^{*} if there exists an invertible operator $A \in B(X)$ such that

$$
f=\sum_{j \in \mathcal{J}}\left[A f, f_{j}\right] g_{j}, \quad f \in X
$$

Example. Let $X:=\ell^{3}\left(\mathbb{N}_{2}\right)$ be endowed with its standard s.i.p and $F=$ $\left\{f_{1}, f_{2}\right\}=\{(1,1),(1,4)\} \subseteq X$. Also, assume that A is defined by $A(a, b)=$ $(2 b, a)$. Then for

$$
G=\left\{\left(-\frac{(2)^{\frac{1}{3}}}{15}, \frac{8(2)^{\frac{1}{3}}}{15}\right),\left(\frac{(65)^{\frac{1}{3}}}{15},-\frac{(65)^{\frac{1}{3}}}{30}\right)\right\}
$$

one can see that G^{*} is a g-dual of F with respect to the operator A.
Clearly, if $A=I_{X}$, then G^{*} is a dual X_{d}-frame for F. Also, by Theorem 1, when S_{F} is bijective and bounded, we have

$$
f=\sum_{j \in \mathcal{J}}\left[f, f_{j}\right] S_{F}^{-1} f_{j}=\sum_{j \in \mathcal{J}}\left[S_{F}^{-1} f, f_{j}\right] f_{j}, \quad f \in X
$$

Therefore, any frame is a g-dual X_{d}-frame for itself. Also, if U_{F} and $U_{G^{*}}$ are synthesis operators of F and G^{*}, respectively, then the equality $f=$ $\sum_{j \in \mathcal{J}}\left[A f, f_{j}\right] g_{j}$ means that $f=U_{G^{*}}^{*} U_{F} A f$ and we can write $I_{X}=U_{G^{*}}^{*} U_{F} A$ i.e. $A^{-1}=U_{G^{*}}^{*} U_{F}$ and thus

$$
A^{-1} f=\sum_{j \in \mathcal{J}}\left[f, f_{j}\right] g_{j}, f \in X
$$

Remark 3.2. Note that, if G^{*} is a g-dual of F with respect to A, then F^{*} is not necessarily the dual of G with respect to A. For example, assume that $X:=\ell^{3}\left(\mathbb{N}_{2}\right)$ with the semi-inner product as in Example 1, and X_{d}-frame $F=\left\{f_{1}, f_{2}\right\}=\{(1,1),(1,4)\} \subseteq X$. Consider $G^{*} \subseteq \ell^{\frac{3}{2}}\left(\mathbb{N}_{2}\right)$ by $G=\left\{g_{1}, g_{2}\right\}=$ $\left\{\left(\frac{16(2)^{\frac{1}{3}}}{5},-\frac{(2)^{\frac{1}{3}}}{5}\right),\left(-\frac{(65)^{\frac{1}{3}}}{5}, \frac{(65)^{\frac{1}{3}}}{5}\right)\right\}$. One can see that G^{*} is a g-dual of F with corresponding operator $A f=\frac{1}{3} f$, but we can not write $f=\sum_{j \in \mathcal{J}}\left[A f, g_{j}\right] f_{j}$ for all f. Indeed, for $f=(0,1) \in \ell^{3}\left(\mathbb{N}_{2}\right)$ we have

$$
\sum_{j \in \mathcal{J}}\left[A f, g_{j}\right] f_{j}=-\frac{1}{15}\left((2)^{12}-1\right)(2)^{\frac{1}{3}}(1,1) \neq(0,1)
$$

The relation between g-dual and approximate dual is stated in the following proposition.

Proposition 3.3. Suppose that F and G^{*} are X_{d} and X_{d}^{*}-Bessel sequences for X and X^{*}, respectively. Then F and G^{*} are approximately dual X_{d}-frames if and only if G^{*} is a g-dual of F with respect to some $A \in B(X)$ with $\left\|I_{X}-A^{-1}\right\|_{X}<1$.

Proof. Firstly, assume that F and G^{*} are approximately dual X_{d}-frames. Then $U_{G^{*}}^{*} U_{F}$ is invertible and putting $A^{-1}=U_{G^{*}}^{*} U_{F}$. One can write

$$
f=\left(U_{G^{*}}^{*} U_{F}\right)\left(U_{G^{*}}^{*} U_{F}\right)^{-1} f=\sum_{j \in \mathcal{J}}\left[\left(U_{G^{*}}^{*} U_{F}\right)^{-1} f, f_{j}\right] g_{j}, \quad f \in X
$$

i.e. G^{*} is a g-dual of F with respect to the operator A. The proof of the inverse is trivial.

Remark 3.4. (i) Recall that, if X, Y and Z are Banach spaces then we say $T \in$ $B(X, Y)$ majorizes $Q \in B(X, Z)$ if there exists $\lambda>0$ such that $\|Q f\| \leq \lambda\|T f\|$ for all $f \in X$ (for more details see [2]).
(ii) As we know, if $A \in B(X)$ and $s p(A) \cap(-\infty, 0)=\emptyset$ then A has a unique square root which is denoted by $A^{\frac{1}{2}}$ (see $[20,26]$).

Now, we state a sufficient and necessary condition for two X_{d} and $X_{d^{-}}^{*}$ Bessel sequences for X and X^{*}, respectively, such that they are g-dual frames. In Hilbert spaces, there is a similar expression for classical frame that is stated in [13].

Theorem 3.5. Let F and G^{*} be X_{d} and X_{d}^{*}-Bessel sequences for X and X^{*}, respectively, $\operatorname{sp}\left(S_{F}\right) \cap(-\infty, 0)=\emptyset, S_{F}^{\frac{1}{2}}$ is an adjoint abelian operator and $\left\{\left[f, f_{j}\right]\right\}_{j \in \mathcal{J}}=\left\{\left[f_{j}, f\right]\right\}_{j \in \mathcal{J}}^{*}$. Then G^{*} is a g-dual of F with respect to an invertible operator $A \in B(X)$ if and only if $U_{G^{*}}^{*} U_{F}$ is invertible and there exists an operator $Q \in B(X)$ such that $U_{G^{*}}^{*} U_{F}=Q S_{F}^{\frac{1}{2}}$.

Proof. First, if G^{*} is a g-dual of F with respect to an invertible operator $A \in B(X)$, then $f=\sum_{j \in \mathcal{J}}\left[A f, f_{j}\right] g_{j}=U_{G^{*}}^{*} U_{F} A f, \quad f \in X$.

Also, note that

$$
\left[S_{F} A f, A f\right]=\left\|\left\{\left[A f, f_{j}\right]\right\}_{j \in \mathcal{J}}\right\|_{X_{d}}^{2}
$$

indeed

$$
\begin{aligned}
{\left[S_{F} A f, A f\right] } & =\left[U_{F^{*}}^{*} U_{F} A f, A f\right] \\
& =(A f)^{*}\left(U_{F^{*}}^{*} U_{F} A f\right) \\
& =U_{F^{*}}(A f)^{*}\left(U_{F} A f\right) \\
& =\left[U_{F} A f,\left(U_{F^{*}}(A f)^{*}\right)^{*}\right] \\
& =\left[\left\{\left[A f, f_{j}\right]\right\}_{j \in \mathcal{J}},\left\{\left[f_{j}, A f\right]\right\}_{j \in \mathcal{J}}^{*}\right] \\
& =\left[\left\{\left[A f, f_{j}\right]\right\}_{j \in \mathcal{J}},\left\{\left[A f, f_{j}\right]\right\}_{j \in \mathcal{J}}\right] \\
& =\left\|\left\{\left[A f, f_{j}\right]\right\}_{j \in \mathcal{J}}\right\|_{X_{d}}^{2} .
\end{aligned}
$$

Now G^{*} is an X_{d}^{*}-Bessel sequence so for some $D \geq 0$

$$
\begin{aligned}
\left\|U_{G^{*}}^{*} U_{F} A f\right\|_{X} & =\sup _{\left\|g^{*}\right\|=1, g \in X} g^{*}\left(U_{G^{*}}^{*} U_{F} A f\right) \\
& =\sup _{\|g\|=1}\left[U_{G^{*}}^{*} U_{F} A f, g\right] \\
& =\sup _{\|g\|=1}\left[\sum_{j \in \mathcal{J}}\left[A f, f_{j}\right] g_{j}, g\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\sup _{\|g\|=1} \sum_{j \in \mathcal{J}}\left[A f, f_{j}\right]\left[g_{j}, g\right] \\
& \leq \sup _{\|g\|=1}\left\|\left\{\left[A f, f_{j}\right]\right\}_{j \in \mathcal{J}}\right\|_{X_{d}}\left\|\left\{\left[g_{j}, g\right]\right\}_{j \in \mathcal{J}}\right\|_{X_{d}^{*}} \\
& \leq \sup _{\|g\|=1}\left\|\left\{\left[A f, f_{j}\right]\right\}_{j \in \mathcal{J}}\right\|_{X_{d}} D\|g\|_{X} \\
& =D\left\|\left\{\left[A f, f_{j}\right]\right\}_{j \in \mathcal{J}}\right\|_{X_{d}} \\
& =D\left[S_{F} A f, A f\right]^{\frac{1}{2}} \\
& =D\left[S_{F}^{\frac{1}{2}} S_{F}^{\frac{1}{2}} A f, A f\right]^{\frac{1}{2}} \\
& =D\left[S_{F}^{\frac{1}{2}} A f, S_{F}^{\frac{1}{2}} A f\right]^{\frac{1}{2}} \\
& =D\left\|S_{F}^{\frac{1}{2}} A f\right\|_{X}
\end{aligned}
$$

i.e.

$$
\left\|U_{G^{*}}^{*} U_{F} A f\right\|_{X} \leq D\left\|S_{F}^{\frac{1}{2}} A f\right\|_{X}
$$

and thus $S_{F}^{\frac{1}{2}} A$ majorizes $U_{G^{*}}^{*} U_{F} A$. By Proposition $3[2]$, there exists the operator $Q \in B(X)$ such that $U_{G^{*}}^{*} U_{F} A=Q S_{F}^{\frac{1}{2}} A$ and by invertibility of A, we have $U_{G^{*}}^{*} U_{F}=Q S_{F}^{\frac{1}{2}}$. The opposite implication holds by definition.

By adding a condition to assumptions of Theorem 4, we obtained the following result.

Corollary 3.6. Let F and G^{*} be X_{d} and X_{d}^{*}-Bessel sequences for X and X^{*}, respectively, $s p\left(S_{F}\right) \cap(-\infty, 0)=\emptyset, S_{F}^{\frac{1}{2}}$ is an adjoint abelian operators and $\left\{\left[f, f_{j}\right]\right\}_{j \in \mathcal{J}}^{*}=\left\{\left[f_{j}, f\right]\right\}_{j \in \mathcal{J}}$. Then F and G^{*} are approximately dual X_{d}-frames if and only if there exists an operator $Q \in B(X)$ such that $U_{G^{*}}^{*} U_{F}=Q S_{F}^{\frac{1}{2}}$ and $\left\|I_{X}-Q S_{F}^{\frac{1}{2}}\right\|_{X}<1$.

Finally, we state the concept of an ϵ-nearly g-dual frame in Banach space (see [24]).

Definition 3.7. Suppose that X is a Banach space and let $F=\left\{f_{j}\right\}_{j \in \mathcal{J}} \subset$ X be an X_{d}-Bessel sequence for X, also let $0<\epsilon<1$. An X_{d}^{*}-Bessel sequence $G^{*}=\left\{g_{j}^{*}\right\}_{j \in \mathcal{J}} \subset X^{*}$ is called an ϵ-nearly g-dual frame for F if there exists an invertible operator $A \in B(X)$ such that

$$
\left\|f-\sum_{j \in \mathcal{J}}\left[A f, f_{j}\right] g_{j}\right\|_{X}<\epsilon\|f\|_{X}, \quad f \in X
$$

Clearly by definition, all g-dual frames and ordinary dual frames of any X_{d}-frame are ϵ-nearly g-dual frame. Also, if $G^{*}=\left\{g_{j}^{*}\right\}_{j \in \mathcal{J}}$ is an ϵ-nearly g-dual frame of $F=\left\{f_{j}\right\}_{j \in \mathcal{J}}$ then it is not necessary that F^{*} is an ϵ-nearly g-dual frame of G.

Proposition 3.8. Let $F=\left\{f_{j}\right\}_{j \in \mathcal{J}} \subset X$ and $G^{*}=\left\{g_{j}^{*}\right\}_{j \in \mathcal{J}} \subset X^{*}$ be X_{d} and X_{d}^{*}-Bessel sequence for X and X^{*}, respectively. Then G^{*} is an ϵ-nearly g-dual frame of F if and only if G^{*} is a g-dual frame of F.

Proof. The necessary part is obvious. For the converse, let G^{*} be an ϵ nearly g-dual frame of F. Thus we have $\left\|I_{X}-U_{G^{*}}^{*} U_{F} A\right\|_{X}<\epsilon<1$, hence $U_{G^{*}}^{*} U_{F} A$ is an invertible operator and we can write

$$
f=\left(U_{G^{*}}^{*} U_{F} A\right)\left(U_{G^{*}}^{*} U_{F} A\right)^{-1} f=\sum_{j \in \mathcal{J}}\left[A\left(U_{G^{*}}^{*} U_{F} A\right)^{-1} f, f_{j}\right] g_{j}, \quad f \in X .
$$

So, G^{*} is a g-dual frame of F.
Theorem 3.9. Let $F=\left\{f_{j}\right\}_{j \in \mathcal{J}} \subset X$ be a X_{d}-Bessel sequence for X, $G^{*}=\left\{g_{j}^{*}\right\}_{j \in \mathcal{J}} \subset X^{*}$ and $H^{*}=\left\{h_{j}^{*}\right\}_{j \in \mathcal{J}} \subset X^{*}$ be X_{d}^{*}-Bessel sequences for X^{*}. If G^{*} is a g-dual frame of F with respect to an invertible operator A, then H^{*} is a g-dual frame of F with respect to A if and only if

$$
\operatorname{Rang}\left(U_{G^{*}}-U_{H^{*}}\right) \subset \operatorname{Ker}\left(U_{F}^{*}\right)
$$

Proof. First, if H^{*} is a g-dual of F, then there exists an invertible operator $A \in B(X)$ such that

$$
f=\sum_{j \in \mathcal{J}}\left[A f, f_{j}\right] h_{j}=U_{H^{*}}^{*} U_{F} A f, \quad f \in X
$$

Hence $A^{-1}=U_{H^{*}}^{*} U_{F}$, since by assumption, we have $A^{-1}=U_{G^{*}}^{*} U_{F}$, thus $U_{H^{*}}^{*} U_{F}=U_{G^{*}}^{*} U_{F}$, and therefore $\operatorname{Rang}\left(U_{G^{*}}-U_{H^{*}}\right) \subset \operatorname{Ker}\left(U_{F}^{*}\right)$.

For the inverse, assume that $\operatorname{Rang}\left(U_{G^{*}}-U_{H^{*}}\right) \subset \operatorname{Ker}\left(U_{F}^{*}\right)$ holds, then $U_{H^{*}}^{*} U_{F}=U_{G^{*}}^{*} U_{F}$ and thus we have $A^{-1}=U_{H^{*}}^{*} U_{F}=U_{G^{*}}^{*} U_{F}$, now we can write

$$
f=A^{-1} A f=U_{H^{*}}^{*} U_{F} A f=\sum_{j \in \mathcal{J}}\left[A f, h_{j}\right] f_{j}, \quad f \in X
$$

REFERENCES

[1] J. Banas and M. Mursaleen, Sequence Spaces and Measures of Noncompactness with Applications to Differential and Integral Equations. Springer, New Delhi, 2014.
[2] B. A. Barnes, Majorization, range inclusion, and factorization for bounded linear operators. Proc. Amer. Math. Soc. 133 (2004), 1, 155-162.
[3] H. Bolcskei, F. Hlawatsch, and H. G. Feichtinger, Frame-theoretic analyssis of over- sampled filter banks. IEEE Trans. Signal Process. 46 (1998), 3256-3268.
[4] E.J. Candes, Y.C. Eldar, D. Needall, and P. Randall, Compressed sensing with coherent and redundant dictionaries. Appl. Comput. Harmon. Anal. 31 (2011), 59-73.
[5] N. L. Carothers, A Short Course on Banach Space Theory. London Mathematical Society Student Texts 64, Cambridge University Press, New York, 2005.
[6] O. Christensen and R. S. Laugesen, Approximate dual frames in Hilbert spaces and applications to Gabor frames. Sampling Theory in Signal and Image Processing, 9 (2011), 77-90.
[7] J. A. Clarkson, Uniformly convex spaces. Trans. Amer. Math. Soc. 40 (1936), 396-414.
[8] I. Daubechies, A. Grossmann, and Y. Meyer, Painless non-orthogonal expansions. J. Math. Physics, 27 (1986), 1271-1283.
[9] M. M. Day, Reflexive Banach spaces not isomorphic to uniformly convex spaces. Bull. Amer. Math. Soc. 47 (1941), 4, 313-317.
[10] M. A. Dehghan and M. A. Hasankhani Fard, G-dual frames in Hilbert spaces. U.P.B. Sci. Bull., Series A 75 (2013), 1, 129-140.
[11] S. S. Dragomir, Semi-inner Products and Applications. Nova Science Publishers, Inc., Hauppauge, NY, 2004.
[12] R. J. Duffin and A.C. Schaeffer, A class of nonharmonic Fourier series. Trans. Amer. Math. Soc. 72 (1952), 341-366.
[13] Y. C. Eldar, Sampling with arbitrary sampling and reconstruction spaces and oblique dual frame vectors. J. Fourier. Anal. Appl. 9 (2003), 1, 77-96.
[14] Y. C. Eldar and T. Werther, General framework for consistent sampling in Hilbert spaces. Int. J. Wavelets Multi. Inf. Process. 3 (2005), 3, 347-359.
[15] G. D. Faulkner, Representation of linear functionals in a Banach space. Rocky Mountain J. Math. 7 (1977), 789-792.
[16] H. G. Feichtinger and K. Gröchenig, A unified approach to atomic decompositions via integrable group representations. In: Proc. Conf. Function Spaces and Applications, Lecture Notes in Math. 1302, Berlin-Heidelberg-New York, Springer (1988), 52-73.
[17] P. J. S. G. Ferreira, Mathematics for multimedia signal processing II: Discrete finite frames and signal reconstruction. In: Byrnes, J.S. (ed.) Signal processing for multimedia, IOS Press, Amsterdam (1999), 35-54.
[18] R. J. Fleming and J. E. Jamison, Adjoint abelian operators on L^{p} and $C(K)$. Trans. Amer. Math. Soc. 217 (1976), 87-98.
[19] R. J. Fleming and J. E. Jamison, Hermitian and adjoint abelian operators on certain Banach spaces. Pacific J. Math., 52 (1974), 67-84.
[20] L. T. Gardner, Square root in Banach algebra. Proc. Amer. Math. Soc. 17 (1966), 132134.
[21] L. Găvruţa, Atomic decompositions for operators in reproducing kernel Hilbert spaces. Math.Reports $\mathbf{1 7}(67)$ (2015), 3, 303-314.
[22] K. Gröchenig, Describing functions: Atomic decompositions versus frames. Monatsh. Math. 112 (1991), 1, 1-42.
[23] J. R. Giles, Classes of semi-inner product spaces. Trans. Amer. Math. Soc., 116 (1967), 436-446.
[24] M. A. Hasankhani Fard, Epsilon-nearly g-dual frames. Proc. of the $46^{t h}$ Ann. Iranian Math. Conference, Yazd University (2015), 143-145.
[25] H. Javanshiri, Some properties of approximately dual frames in Hilbert spaces. Results in Math., 70 (2015), 3-4, 475-485.
[26] R. V. Kadison and J. R. Ringrose, Fundamentals of the Theory of Operator Algebras. Vol. III, Special Topics. Elementary Theory-An Exercise Approach. Birkhäuser Boston Inc., Boston, MA, 1991.
[27] G. Lumer, Semi-inner-product spaces. Trans. Amer. Math. Soc. 100 (1961), 29-43.
[28] M. Pawlak and U. Stadtmuller, Recovering band-limited signals under noise. IEEE Trans. Info. Theory, 42 (1994), 1425-1438.
[29] J. G. Stampfli, Adjoint abelian operators on Banach space. Canad. J. Math. 21 (1969), 505-512.
[30] R. Young, An Introduction to Nonharmonic Fourier Series. Academic Press, New York, 1980.
[31] H. Zhang and J. Zhang, Frames, Riesz basis, and sampling expansions in Banach spaces via semi-inner products. Appl. Comput. Harmon. Anal. 31 (2011), 1, 1-25.

[^0]: *Corresponding author

