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In this paper, we develop the concept of dual and approximately dual frames
in Banach spaces via semi-inner products and some properties of dual and ap-
proximate dual frames are investigated. Also, we introduce g-dual frames in
these spaces and some relationships between g-duals and approximate duals are
stated. Finally, the e-nearly g-dual frames and their relations with g-duals are
studied in Banach spaces using semi-inner products.
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1. INTRODUCTION AND PRELIMINARIES

The concept of frame was introduced by Duffin and Schaeffer [12] in
1952. After some decades, Young reintroduced frames in abstract Hilbert
spaces [30]. Daubechies, Grossmann and Meyer studied frames deeply in 80's
[8]. Feichtinger and Grochenig [16, 22] extended the concept of frames from
Hilbert spaces to Banach spaces and defined atomic decomposition and Ba-
nach frames. Frames have many nice properties which make them very useful
in sampling [13, 14], signal processing [17, 28], filter bank theory [3], and many
other fields. Recent applications of the frames in compressed sensing was given
in [4] and applications of the frames to operator theory was given in [21]. A
sequence {f;}jers in H is said to be a frame for H if there exist positive real
numbers A, B such that

AIFIP <SP < BISIP, feH.
JET
The elements A and B are called the lower and the upper frame, respectively.
Suppose that {f;};c7 is a frame of H. The operator T : H — ¢*(J) defined by
T(f) ={(f, f;)}jes is called the analysis operator. T is called the synthesis
operator. The operator S = T*T is called the frame operator of {f;};c7s.
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A very useful property of a frame {f;};cs for a Hilbert space H is that
{fj}jes has a dual frame {g;};cs , i.e. there exists a frame {g;};jes for H
such that for all f € H,

f=> (a0 fi = {f 1i)es
JjeTJ JjeTJ

It is not easily to find a dual for a frame in general. A more general
concept, namely, approximate dual is introduced by O. Christensen and R. S.
Laugesen [6], which are more available. In this paper, we intend to introduce
these concepts on Banach spaces and so some necessary concepts are introduced
as follows.

A sequence space X is called a BK-space, if it is a Banach space and the
coordinate functionals are continuous on X . If the canonical vectors forms a
Schauder basis for X4, then X, is called a CB-space and its canonical basis
is denoted by {e;}7°. If X, is reflexive and a CB-space, then Xy is called an
RC B-space. Also, the dual of X, is denoted by X.

The spaces (>, ¢, ¢, P(1 < p < o0) are BK-spaces with their natural
norms. Also the space £°° has no Schauder basis, since it is not separable and
the spaces ¢y and (1 < p < oco) have {e;}7° as their Schauder bases.

The concept of semi-inner product, which was introduced in 1961 by G.
Lumer [27] and modified by other researchers, is presented in the following
definition.

Definition 1.1. [23] Let X be a complex (real) vector space. A semi-inner
product (in short s.i.p.) on X is a function from X x X — C, denoted by [.,.],
such that for all f,g,h € X and A € C,

L [Af +g,h] = Alf, ] + [g, h] and [f, Ag] = A[f, 9],

2. [f,f] >0, for all fe X and [f, f] =0 implies f =0,

3. 11f.91* < I, fllg, g]-

However an s.i.p. space need not satisfy the following properties

(@) [f, 9] = lg, £,

(i) [f,g+h] =[f gl + [f, h].

If [.,.] is a si.p. on X then || f] :=[f, f]% is a norm on X. Conversely, if
X is a normed vector space then it has a s.i.p. that induces its norm in this
manner which is called the compatible semi-inner product [27].

Let X be a Banach space. We define a duality map &x : X — X* as
follows. Given f € X, by the Hahn-Banach theorem, there exists an f* € X*
such that ||f]| = [|£*] and f*(f) = |f]%. Set Dx(f) = f*, and Bx(Af) = Af*,
and define ®x on the rest of X in the same manner. In general, ®x is not
unique, linear or continuous. The duality map ®x induces a semi-inner product
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[.,.] if we set [f,g] = ¢"(f) [29]. We shall use this definition for ¢*, g € X.
Note that if X is a Hilbert space, then the duality map is unique [29].

Recall that a Banach space X is called strictly convex, if for any pair of
vectors f,g # 0 in X, the equation || f + gl[x = [|f|lx + [gl/x, implies that
there exists a A > 0 such that f = Ag [11]. In these spaces, the duality mapping
from X to X* is unique and bijective when X is reflexive [11, 15]. In other
words, for each f* € X* there exists a unique g € X such that f*(g) = [g, f],
for all g € X. Moreover, we have || f*||x+ = || fllx. Also, [f* ¢*]« := lg, fl,
f,g € X, defines a compatible semi-inner product on X* [23]. Note that, in
this case ¢** = ¢, indeed for any f € X

9 ) =19 =g =191 =970,
where ¢ is the Gelfand transform of g in X**.

A Banach space X will be said to be uniformly convex if to each ¢, 0 <
e < 2, there corresponds a §(g) > 0 such that the conditions || f||x = |lg9||lx = 1,
Il f —gllx > ¢ imply H%HX < 1—0(¢) [7]. We recall that Hilbert spaces, L?
and P for 1 < p < oo are uniformly convex and C[0, 1] is not uniformly convex
5, 7].

We know that a uniformly convex Banach space is reflexive [5], but a
reflexive Banach space is not necessarily uniformly convex [9]. Also, every
uniformly convex Banach space is strictly convex [5].

In 2011, H. Zhang and J. Zhang [31] introduced frames in Banach space
X via s.i.p. that is presented in the following definition.

Definition 1.2. [31] Let X be a separable Banach space and [.,.] be a
compatible semi-inner product on X. Also let X be reflexive and strictly
convex and X4 be an CB- space. Then a sequence {f;}jes C X is called an
Xg-frame for X if for any f e X

() {[f, filtjes € Xa,

(ii) there exist positive constants A, B such that

Alfllx < KL filyjeallxs < Bllflx . fe X

If the right side of this inequality holds then we say that {f;};c7s is an
X 4-Bessel sequence for X.

Recall that an indexed set F' = {f;}jes € X is an Xy-Riesz basis for X
if span{fj}jes = X and > ;. 7 ¢;fj converges in X for all ¢ = {c¢;}je7 € Xa
and there exists 0 < A < B < oo such that

Al{eijeallx, <11 eifillx < Bl{eiljesllx, » ¢ ={¢j}jes € Xa.
JjeT

Let F' = {f;}jes be an X4-Bessel sequence. The analysis operator U :

X — X, is defined by Up(f) = {[f, fjl}jes and the adjoint Up : X —
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X* of Ur is called the synthesis operator which is given by Up({c;}jes) :=
2jeg Gl

Let X be a strictly convex separable Banach space, X4 be a uniformly
convex BK-space and F' = {f;}jes and F* := {f;}jej be X4 and X j-Bessel
sequences with analysis operators Up and Up« for X and X*, respectively. We
define the X4-frame operator Sp : X — X for {f;}jes by Srf :=Up.Upf =
> jeglfs filfj, for any f € X, that is well-defined bounded linear operator.
Sr is not bijective in general (see [31] for more details).

We need the following results of [31] in our study.

PROPOSITION 1.3. A subset F' = {fj}jes € X forms an X4-Bessel
sequence for X if and only if Zjej bjf; converges in X* for allb € X} and

1> b3 llxs < Blbllx;-
JjeT
PROPOSITION 1.4. A sequence F' = {f;}jey € X is an X4-frame for X
if and only if the operator Uy, is bounded and surjective from X to X*.

THEOREM 1.5. Suppose that F' = {f;j}jey € X and F* = {fi}jes C
X* are Xg4-Bessel sequence and X-Bessel sequence with analysis operators
Ur and Up~ for X and X*, respectively. Then the operator Sp : X — X s
bijective and bounded if and only if {f;}jes is an Xq-frame and {f;}je7 is an
Xj-frame and {fj}jeg is an R(U)-Riesz basis for X and in this case we have

F=Y 15018y, fe X
JjET
and
£r= 5 ASEY S = D ISp . A1) fe X
JjeJ JjeTJ

THEOREM 1.6. If F' = {f;j}jes € X is an Xg4-frame for X and R(Ur)
has an algebraic complement in Xy then there exists an XJ-frame
G* = {g}‘}jej C X* for X* such that

(1.1) fF=>Iffilg, fe X
JjeET
and
(1.2) ;=g NI, fe X
JET

The content of the present paper is as follows. In section 2, we intro-
duce the dual, pseudo-dual and approximate dual of an X -Bessel sequence in
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Banach space via s.i.p. and some properties and relations between of these
concepts are given. In section 3, we describe the notions of g-dual frame and
some necessary and sufficient condition for their existence are discussed. Fi-
nally, we study the concept of e-nearly g-dual frame for an X -Bessel sequence
and some results on them are obtained.

Throughout this paper, we assume that X is an uniformly convex separa-
ble Banach space, Xy is an uniformly convex BK-space, J a countable index
set and [Ix is the identity operator on X. For two Banach spaces X and Y,
we denote by B(X,Y") the collection of all bounded linear operators between
X and Y. Also, we write B(X) instead of B(X, X).

2. DUAL AND APPROXIMATELY DUAL VIA S.I.P

Theorem 2 leads us to introduce the dual of an X -Bessel sequence as
follows.

Definition 2.1. Let F = {f;};cs C X be an X -Bessel sequence for X.
An X7-Bessel sequence G* = {g]}jes C X" is called a dual of I if

F=Y e, fe X
JjeJ
If G* is a dual of F' then we can write f* = Zjej[g],f] , for all
f € X. Note that, the relation f = 3, 7[f, g;]f; , is not true, in general.
This is established in the following example.

Example. Consider the space X := £3(Ny) with the semi-inner product

[a, b] == (bl ajbjlbl-
JjeT

Let X4 be an arbitrary BK-space. For any f € X, we have f* = H{‘% Let

={f1,fo} ={(1,1),(4,1)} € X. The facts that spanF™* = span{f{, f5} =

an{ (1)2 Eég)l%)} = (3 (Ng2) and 3panF = ¢3(Ny), imply that F and F* are X,

and Xj-frame for X and X*, respectively. Now consider

1 1 1

_ (2)5 16(2)3, (65)3 (65)3

Then G* is a dual of F' and we can write f = > .. 7[f, fjlg; , for all

fe X.But f=3;[f g;]f;i doesnot hold for all f € X, for example, if
we take f = (0,2) € X then

1

W=

Sl = 14+ 165 A2 01 £ (0,2)

jeJ
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Remark 2.2. f Up : X — Xg4, Up(f) = {[f, f;]}jes is the analysis operator of
Xq-Bessel sequence {f;}jes € X for X with the adjoint operator U}, : X —
X, Up({eities) = Yjeg cif] and Ug- + X* — X3, Ug+(9%) = {lg;,9]}ieq
is the analysis operator of X j-Bessel sequence {g}k }ieg € X* for X* with the
adjoint operator Ug. : Xg = X, Ug«({d;}jeq) = 32 jc 7 djgj, then the relation
(1.1), (1.2) can be written as follows

f:Ué*UF(f), fe X, ie. IX:Ugv*UF

and hence
[f=UpUc(f"), fe€ X, ie Ix»=UpUg.

Recall that A € B(X) is called an adjoint abelian operator if there exists
a duality map ®x : X — X* such that A*®xy = ®x A (equivalently, (Ax)* =
A*z*, for all z € X or [Az,y] = [z, Ay], for all z,y € X). It is well-known that
if A is bijective and adjoint abelian then A~! is also adjoint abelian (see [29]).

For example, if X is a Hilbert space, then the adjoint abelian operators
are precisely the self-adjoint ones [29], and every adjoint abelian operator on
C(K), (K compact) or LP(1 < p < oo, p # 2) is a multiple of an isometry whose
square is the identity [18]. As another example of adjoint abelian operator, if
X is the /P sum of a one dimensional and a two dimensional space, then

1 0 0
0 0 =4
0 — 0

is adjoint abelian on that space [19].

The following lemma shows that adjoint abelian operators preserve X -
Bessel sequences. For the ordinary frames, it has been shown that if {f;};es
is a frame for Hilbert space # and T' € B(H) then {T'f;};c7 is a frame for H
if and only if T is surjective. In the Banach setting we may have the following
lemma.

LEMMA 2.3. Suppose that F' = {f;}jes € X is an X4-Bessel sequence
for X with the bound B and T € B(X) is an adjoint abelian operator then

(i) TF ={T f;}jeq S X is an Xq-Bessel sequence for X with the bound
|78,

(ii) Let F' be an Xg4-frame for X and T € B(X) is an adjoint abelian
operator then T* € B(X™) is surjective if and only if TF is an Xg4-frame for
X.

Proof. (i) For any {c;} € X, by Proposition 1, one can see that

1D e (T s = 1T - eifillxs < ITHD eiflxe

jeTJ jeT jeTJ
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< B|T*[lI{ei}x; = BIT{eiHx;-

(ii) First, suppose that 7' € B(X) is an adjoint abelian operator such
that T € B(X™) is surjective. Let F' be an Xg-frame for X, then U} is
bounded and surjective. On the other hand, the synthesis operator of T'F is
Urp : X; — X* which is of the following form

Urp({citica) = Y ¢ (TH) =Y ¢T7f; =T ¢;f; = T*Ui({c;}jeq)-
JjeT JjeT JjeJ
Now, since T*U}. is bounded and surjective hence, by Proposition 2, T'F’
is an Xy -frame for X. For the inverse, let TF be an Xg-frame for X then
Ufp = T*Ur is bounded and surjective and thus T is surjective. []

Now, the notions pseudo-dual and approximate dual of an X -Bessel se-
quence for X are introduced and their relations and properties are established.

Definition 2.4. Let F' = {f;};es € X be an X;-Bessel sequence for X
and G* = {g}‘.‘}jej C X* be an Xj-Bessel sequence for X* then F' and G* are
said to be

(i) approximately dual X4-frames if

1Ix — Ut Urllx < Lor |[Ix« — UpUg+|x- < 1.

(ii) pseudo-dual X4-frames if U%. U or UpUg- is bijection on X and X*,
respectively.

Note that, if F' = {f;}jes and G* = {g}}jes are approximately dual
Xg-frames then trivially F' and G* are pseudo-dual Xg-frames.

Now, let F' and G* be approximately dual X4-frames. In this case, under
some condition on G = {g;};es we may construct a dual of F. In fact, since
| Ix —U&Ur|x <1 then U Ur is invertible and for any f € X we have f =
(U Up) M UEUr) [ = (U&UR) ™' Y 5e71F, Filg5 = 3 je sl F1(UEUR) g5

Put H = {h;}jes = {({U&-Ur) " 'g;}jes and let H* = {h%}je7 C X* be
an Xj-Bessel sequence for X* and Uj; and Uj;. are synthesis operators of H
and H*, respectively, then we can write f = U.Urf, f € X, and this means
that H* is a dual of F.

PROPOSITION 2.5. Let F' = {fj}jes and G* = {g;}jes be Xq and Xj-
Bessel sequences for X and X*, respectively, then

(i) If G* is a dual frame for F, then F and G* are approximately X 4-dual
frames.

(ii)) If F' and G* are approzimately dual Xg4-frames, then F and G* are
pseudo-dual X g-frames.
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(iii) If F' and G* are pseudo-dual Xq-frames and T € B(X) is bijection
such that T* is an adjoint abelian operator, then F and T*G* = {T*g;}jej
are pseudo-dual X 4-frames.

(iv) If F and G* are pseudo-dual X4-frames and (U}.Up)~! is an adjoint
abelian operator, then H* = {(U%.Ur)1g;)*}jes is a dual of F.

Proof. The proofs of (i) and (ii) are trivial by definitions.
For the proof of (iii), by Lemma 1, T*G* is an X j-Bessel sequence, thus
the synthesis operator for T*G* is U g« = TUg, since

Up-g-({ei}ies) = D ei(T"g)) = Y ¢jTa; =T Y cj9; = TUS ({e}je)-
JjeJ JjeJ JjeT

The assumptions that F' and G* are pseudo-dual frames and T is bijection

imply that Ur. .Ur = TU;. U is bijection and then F' and T*G* are pseudo-

dual X -frames.

For (iv), note that, if F and G* are pseudo-dual X4-frames then (U Ur) ™!
exists and is bounded and hence H* is an Xj-Bessel sequence. In this case we
have:

D U FUEUR) g = (UEUr) ™t Y If, filgs = (U-Ur) ™ (UG-Up)f = f.
JjeJ JjeJ

Therefore, F' and H* are dual frames. [

Under some conditions on the Xy-frame operator Sp, we may construct
a dual of the X4-frame F' = {f;};cs as follows.

PROPOSITION 2.6. Let Sp := Up.Up : X — X be a bijective, bounded
and adjoint abelian operator, then {(Sz'f;)*}jes is a dual of {fi}jer-

Proof. Suppose that S is bijective, bounded and adjoint abelian opera-
tor, then by Theorem 1, {f;};e7 € X and {f]}jes € X are Xy-frame and

Xi-frame for X and X*, respectively, and thus {(Sp'f;)*}jes is an X;-Bessel
sequence since S;l is adjoint abelian operator and hence

F=Y 11188 5, fe X,
JjET
ie. {(Sp'fj) }jes is a dual frame of {fj}jes. O

THEOREM 2.7. Suppose that F' = {f;}jes € X and G* = {gj}jes C
X* are approximately dual X4-frames then the following holds,

(i) If UL.UF is an adjoint abelian operator then the dual frame H* =
{(ULUR)"tg;)*}jeq of F can be written as follows
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(UG-Ur)~tg5)" = g5 + (Y (x+ — (UE-Ur)")"g;-

JjeJ
(ii) Let N € N be given, consider the corresponding partial sum,
N
N *

n=1

N
= Z(IX - UE*UF)”gj

n=0

and let T* = {(’}/§N))*}jej be a Xj-Bessel sequence then I'* is an approzimate

dual of F'. Denoting its associated synthesis operator by Uf. we have

IIx — UpUrpllx < ||Ix — UUp||X ™ =0, when N — oo.

Proof. (i) Since f = (Ug-Up) " (UgUr) f = (U&-Ur) ™' X ie 71, filgs =

>jeslfs fi](UUR)~tg;, f € X then H* is a dual of F and we have
(Ue=Ur)™)" = (Ix+ — (Ix- = (UgUr)")) ™!

o0

= > (Ix- = (U&-Ur)")™

n=0
Now, by the fact that Uf.Ur is an adjoint abelian operator we get

(U&UR)'g))* = (U&Up)*)'g;
= g+ _(Ix- — (U&Ur)")"g;.

JjET
(ii) Note that
JjeT
N
Jjeg n=0
N
= > (Ix = U&UR)™ > _If flgs
n=0 jeg
N
= Y (Ux ~ UgUp)"Ug-Urf
n=0
N

= 3 (Ux — U Up)"(Ix — (Ix — Uz Up)) f
n=0
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N
Z (Ix —U&Up)"f — (Ix — UgUp)" T f
n=>0

— f (IX U* UF)N+1f

and hence

HIX UI‘*UFHX = H(IX UG UF>N+1HX < HIX UG*UFHN+1 <1.

O]

In the next proposition, we prove a stability result for having an approx-
imate dual.

PROPOSITION 2.8. Suppose that F' = {f;}jes is an X4-Bessel sequence
in X and H = {h;}jes is an Xq4-Bessel sequence for which

I{Lfs hiltjer — LS, filtjeallxs < Rlfllx, fe X

for some R > 0. Consider a dual X4-frame G* = {gj}jes of H with the
synthesis operator Ug~ and assume that G* has upper frame bound C. If CR <
1, then F' and G* are approximately dual X4-frames, with

IHx —UsUp||x < 1.

Proof. From the fact that G* = {g} }je7 is a dual for H = {h;}jes hence
Ut.Ug = Ix and therefore

|x —Ug-Urllx = |U-Un—UgUrll = UG- (Ua=Up)I| < e 11U —
Ur|< CR<1. O

3. G-DUAL AND APPROXIMATELY G-DUAL

The concept of g-dual frames introduced for ordinary frame in [10]. In
this section, we are going to express this notion for an X ;- Bessel sequence in
Banach space via s.i.p. Also, we present some relations between g-dual and
approximate dual. Finally, we define the concept of e-nearly g-dual frame for
an X4- Bessel sequence.

Definition 3.1. Let F' = {f;}jes C X4 be an X4- Bessel sequence for X.
An X- Bessel sequence G* = {g}‘-‘}je g C X is called a generalized dual X,-

frame (or g-dual X4-frame) for F' for X* if there exists an invertible operator
A € B(X) such that

F=Y At flg;, fe X

jeJ
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Ezample. Let X := ¢3(Ny) be endowed with its standard s.i.p and F =
{f1, f2} = {(1,1),(1,4)} € X. Also, assume that A is defined by A(a,b) =
(2b,a). Then for
1 1 1 1
(2)s 8(2)5, (65)5 (65)3
G=1{(- _
(5 5 O30 !

one can see that G* is a g-dual of F' with respect to the operator A.

Clearly, if A = Ix, then G* is a dual X -frame for F'. Also, by Theorem
1, when Sp is bijective and bounded, we have

F=Y U185 i =Y ISe f. filfi . fe X
JjeT JjeT
Therefore, any frame is a g-dual Xy-frame for itself. Also, if Up and Ug+«
are synthesis operators of F' and G*, respectively, then the equality f =
> jeglAf, filg; means that f = Ug.UpAf and we can write Iy = Ug.UrA
je. A7l = UtUp and thus

ATV =" filgs fE X
JjeT
Remark 3.2. Note that, if G* is a g-dual of F' with respect to A, then F™* is
not necessarily the dual of G with respect to A. For example, assume that
X := (3(Ny) with the semi-inner product as in Example 1, and Xy4-frame
F= {]fl,fg} = {(1,1), (1 4)} C X. Consider G* C E%(NQ) by G = {g1,92} =

{(%, —@), (—(6‘? 65)3 )} One can see that G* is a g-dual of F' with
corresponding operator A f =3 Lf, but we can not write f = 3. jeslAf.g5]f;
for all f. Indeed, for f = (0,1) € 3(Ny) we have

1
SCIAL g1 =~ ()2~ 1)(2)
JjeJ
The relation between g-dual and approximate dual is stated in the fol-
lowing proposition.

Wl

(1,1) # (0, 1).

PROPOSITION 3.3. Suppose that F' and G* are Xy and X-Bessel se-
quences for X and X*, respectively. Then F and G* are approximately dual
Xg-frames if and only if G* is a g-dual of F with respect to some A € B(X)
with |Ix — A™Y|x < 1.

Proof. Firstly, assume that F' and G* are approximately dual X -frames.
Then Uf.Ur is invertible and putting A~ 1 = U{.Up. One can write

f=U&UR)U&UR) " f =Y [(U&UR) ' f, filgi, feX
JjeJ
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i.e. G* is a g-dual of F' with respect to the operator A. The proof of the inverse
is trivial. [

Remark 3.4. (i) Recall that, if X, Y and Z are Banach spaces then we say T' €
B(X,Y) majorizes Q € B(X, Z) if there exists A > 0 such that || Qf| < A|Tf]|
for all f € X (for more details see [2]).

(i) As we know, if A € B(X) and sp(A) N (—c0,0) = @ then A has a
unique square root which is denoted by Az (see [20, 26]).

Now, we state a sufficient and necessary condition for two Xy and X-
Bessel sequences for X and X*, respectively, such that they are g-dual frames.
In Hilbert spaces, there is a similar expression for classical frame that is stated
in [13].

THEOREM 3.5. Let F' and G* be Xy and Xj-Bessel sequences for X and

1
X*, respectively, sp(Sp) N (—00,0) = 0, S is an adjoint abelian operator

and {[f, fijl}jeq = {[fj,f]};ej. Then G* is a g-dual of F with respect to an
invertible operator A € B(X) if and only if U%.UF is invertible and there exists

1
an operator @Q € B(X) such that UL.Ur = QSE.

Proof. First, if G* is a g-dual of F' with respect to an invertible operator
A € B(X), then f = Zjej[Af, filg; = UL URAf, feX.

Also, note that

[SpAf, Afl = I{IAS filkiea I,
indeed
[SrAf,Af] = [Up-UrAf, Af]
(Af) (Up-UrAf)
Up+(Af) (UrAf)
[UrAf, (Ur<(Af)")"]
HIAS, fil}jeq, {lfi Afl}ies]
[IAS, filtjeq {IAS, fil}jeq]
= {[AL, fil}iea |k,

Now G* is an Xj}-Bessel sequence so for some D > 0

U UpAfllx =  sup  g*(UL-UrAf)
llg*lI=1,9eX
= sup [UsUFrAf, 4]
llgll=1
= sup [Y_[Af, filgi 9]

loll=1 e
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= sup Z[Afa fillgs» gl

loll=1 i

< Hshlpl||{[Af7fj]}jGJHXdH{[gjv9]}jej||X;
Jl=

< HSI|J|lp1H{[Aﬁfj]}jeJHXdDHgHX
gl=

— DH{[Af,fj]}jlenyd
= D[SpAf, Af]2

— D[SESEAf, Af]}
— D[SZAf,S2Af)}
— D|S2Af|x

ie.

[U-UrAFllx < DIS}AF|1x
and thus SéA majorizes Uf.UpA. By Proposition 3 [2], there exists the oper-
ator Q € B(X) such that U%.UpA = QSI%,A and by invertibility of A, we have
UtUp = QS? The opposite implication holds by definition. [

By adding a condition to assumptions of Theorem 4, we obtained the
following result.

COROLLARY 3.6. Let F' and G* be X4 and X j-Bessel sequences for X and

1
X*, respectively, sp(Sp)N(—00,0) =0, SE is an adjoint abelian operators and
{1f, fj]};fej ={[fj, fl}jes. Then F and G* are approximately dual Xq-frames

1
if and only if there exists an operator Q € B(X) such that UL.Up = QS and
1
1x = QSEllx <1.
Finally, we state the concept of an e-nearly g-dual frame in Banach space
(see [24]).

Definition 3.7. Suppose that X is a Banach space and let F' = {f;};jes C
X be an Xg4-Bessel sequence for X, also let 0 < e < 1. An Xj-Bessel sequence
G* = {gj}jes C X" is called an e-nearly g-dual frame for F' if there exists an
invertible operator A € B(X) such that

If =D [Af Filgilx <ellfllx, fe X.

JjeJ
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Clearly by definition, all g-dual frames and ordinary dual frames of any
Xg-frame are e-nearly g-dual frame. Also, if G* = {g} };e 7 is an e-nearly g-dual
frame of F' = {f;};cs then it is not necessary that F* is an e-nearly g-dual
frame of G.

PrROPOSITION 3.8. Let F' = {fj}jej CX and G* = {g;‘}jej C X* be Xy
and Xj-Bessel sequence for X and X*, respectively. Then G* is an e-nearly
g-dual frame of F' if and only if G* is a g-dual frame of F'.

Proof. The necessary part is obvious. For the converse, let G* be an e-
nearly g-dual frame of F. Thus we have |Ix — ULUpA|x < € < 1, hence
Uf.UpA is an invertible operator and we can write

f=(UUrA)Ug-UpA) 7 f = > [A(UE-UFA) ', filg; . feX.
jeTJ
So, G* is a g-dual frame of F. [

THEOREM 3.9. Let F' = {f;}jeqs C X be a X4-Bessel sequence for X,
G* ={gj}tjeg C X" and H* = {h}};es C X* be X-Bessel sequences for X*.
If G* is a g-dual frame of F with respect to an invertible operator A, then H*
s a g-dual frame of F' with respect to A if and only if

Rang(Ug+ — Ug+) C Ker(Up).

Proof. First, if H* is a g-dual of F', then there exists an invertible operator
A € B(X) such that

f=) Af filh; = Up-UrAf, fe X.
JjeT
Hence A~! = Up-Ufp, since by assumption, we have A7l = Us.Up, thus
Uj»Up = Uf U, and therefore Rang(Ug+ — Un~) C Ker(U}).

For the inverse, assume that Rang(Ug~ — Up+) C Ker(Uj) holds, then
Ug.Up = UiUp and thus we have Al = Ug.Up = Ui Up, now we can
write

f=ATAf =URUpAf =D [Afhilf;, feX.
JjeJ
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