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1. INTRODUCTION AND MAIN RESULTS

There are many results on second main theorem for holomorphic curves
from C into Pn(C) with fixed or moving targets. In 1925, Nevanlinna [8]
established the second main theorem for meromorphic functions on C. In
1933, Cartan [3] proposed the second main theorem for holomorphic curves
from C into Pn(C). In 1983, E. I. Nochka [9] proved the second main theorem
in case of hyperplanes in the u-subgeneral position in Pn(C) which extended
the Nevanlinna-Cartan second main theorem and confirmed a conjecture by
Cartan. In 1997, M. Ru [12] showed a simple proof of the second main theorem
with moving hyperplanes which was originally proved by M. Ru and W. Stoll
[14] in 1991. In 2004, M. Ru and T. Y. Wang [15] proved the second main with
ramification for a holomorphic curve intersecting a finite set of moving or fixed
hyperplanes. For the background of Nevanlinna theory, we refer to [13].

In this paper we mainly consider the case for holomorphic curves from
doubly connected domain into Pn(C). By the Doubly Connected Mapping The-
orem [1] each doubly connected domain is conformally equivalent to the annulus
A(R1, R2) = {z : R1 < |z| < R2}, 0 ≤ R1 < R2 ≤ +∞. We need only consider
two cases: R1 = 0, R2 = +∞ simultaneously and 0 < R1 < R2 < +∞. In the
latter case the homothety z 7→ z√

R1R2
reduces the given domain to the annulus
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{z : 1
R0

< |z| < R0}, where R0 =
√

R2
R1
. Thus, in the two cases every annulus

is invariant with respect to the inversion z 7→ 1
z .

In recent years, there are some results about holomorphic maps on an-
nuli A = {z ∈ C : 1

R0
< |z| < R0}, where 1 < R0 ≤ +∞. In 2005, A.

Y. Khrystiyanyn and A. A. Kondratyuk [5, 6] proved Nevanlinna theory for
meromorphic functions on A. Cao, Yi and Xu [2] proved a generalized theo-
rem on the multiple values and uniqueness of meromorphic functions in the
annulus A. In 2009, Lund and Ye [7] considered the logarithmic derivatives in
annuli. In 2012, Chen and Wu [4] investigated exceptional values of meromor-
phic functions on annuli. In 2015, H. T. Phuong and N. V. Thin [11] considered
the extension of the Nevanlinna-Cartan second main theorem for holomorphic
curves from A into Pn(C) crossing a finite set of fixed hyperplanes in general
position.

Theorem 1.1 ([11, Theorem 1.2]). Let f : A → Pn(C) be a linearly
nondegenerate holomorphic curve, and let H1, . . . ,Hq be hyperplanes in Pn(C)
in the general position. Thus, we get

(q − n− 1)Tf (r) ≤
q∑
j=1

Nn
f (r,Hj) + S(r, f).

where

S(r, f) =

{
O(log r + log Tf (r)), for R0 = +∞;

O(log 1
R0−r + log Tf (r)), for R0 < +∞.

Throughout this paper, if R0 = +∞ the inequality (in the second main
theorem) holds for r ∈ (1,+∞) outside a set ∆′r satisfying the inequality∫

∆′r

rλ−1dr < +∞;

if R0 < +∞ the inequality holds for r ∈ (1, R0) outside a set ∆′r satisfying∫
∆′r

1

(R0 − r)λ+1
dr < +∞.

Thus, it is natural to ask how about the Nochka’s version or Ru’s version
of second main theorems on annuli, according to the trend of H. T. Phuong
and N. V. Thin. [11].

Motivated by this problem, the main purpose of this paper is to adopt
the idea of Ru and his coauthors [12, 14, 15], and obtain the second theorem
for holomorphic curves on annuli into complex projective spaces intersecting
moving hyperplanes targets in subgeneral position.
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Theorem 1.2. Let f : A → Pn(C) be a holomorphic map. Let G be a
finite set of moving hyperplanes H1, . . . ,Hq which define respectively holomor-
phic maps a1, . . . , aq : A → Pn(C) with Taj(r) = o(Tf (r)). Assume that G is
in u-subgeneral position. Let RG be the small field with contains C and all
ajµ/ajν with ajν 6≡ 0. If f is linearly non-degenerate over RG. Then

q∑
j=1

mf (r,Hj) ≤ (2u− n+ 1)Tf (r) + S(r, f).

where

S(r, f) =

{
O(log r + log Tf (r)), for R0 = +∞;

O(log 1
R0−r + log Tf (r)), for R0 < +∞.

Remark that by the first main theorem 2.3 [11, Theorem 1.1], we get from
the conclusion of Theorem 1.2 that

(q − 2u+ n− 1)Tf (r) ≤
q∑
j=1

Nf (r,Hj) + S(r, f),

which is obviously an extension of Theorem 1.1. It will be an interesting prob-
lem to considered the truncated second theorem by considering the truncated
counting function Nn

f (r,Hj) instead of Nf (r,Hj), similarly like the case of
holomorphic curve from C into Pn(C). Furthermore, it will be worth to use
Theorem 1.2 for the uniqueness problem for holomorphic curves sharing slowly
moving hyperplanes from annulus into Pn(C), for this we refer to [10].

The remaining of this paper is organized as follows. In the next section,
we will introduce the basic notations of Nevanlinna theory and some lemmas.
In Section 3, we first prove a result on the second main theorem for holomorphic
curves intersecting moving hyperplanes in general position, and then give the
proof of Theorem 1.2.

2. PRELIMINARIES AND LEMMAS

Let R0 > 1 be a fixed positive real number or +∞, let

A = {z ∈ C :
1

R0
< |z| < R0}

be an annulus in C. For any real number r such that 1 < r < R0, we denote

Ar = {z ∈ C :
1

r
< |z| < r}, A1,r = {z ∈ C :

1

r
< |z| ≤ 1},

A2,r = {z ∈ C : 1 < |z| < r}.
Let f = [f0 : . . . : fn] : A → Pn(C) be a holomorphic map, where f0, . . . , fn
are holomorphic functions without common zeros in A. Let f = (f0 : . . . : fn)
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be a reduced representation of f . For 1 < r < R0, the Nevanlinna-Cartan’s
characteristic function Tf (r) of f is defined by

Tf (r) =

∫ 2π

0
log ‖f(reiθ)‖dθ

2π
+

∫ 2π

0
log ‖f(r−1eiθ)‖dθ

2π
,

where
‖f(z)‖ = max{|f0(z)|, . . . , |fn(z)|}.

Note that the characteristic does not depend on the choice of the reduced
representation of f.

Let Hj , 1 ≤ j ≤ q be (fixed) moving hyperplanes in Pn(C) given by

Hj = {[x0, . . . , xn]|aj0x0 + . . .+ ajnxn = 0},

where aj0, . . . , ajn are (constant) entire functions without common zeros. Let
aj = (aj0, . . . , ajn) : A → Pn(C) be the moving vector associated with Hj

respectively.
The proximity function of f with respect to a hyperplane H in Pn(C) is

defined by

mf (r,H) =

∫ 2π

0
log

‖f(reiθ)‖‖a‖
| < a, f > (reiθ)|

dθ

2π
+

∫ 2π

0
log

‖f(r−1eiθ)‖‖a‖
| < a, f > (r−1eiθ)|

dθ

2π
,

where a = (a0, . . . , an) is the nonzero vector associate with H, and < a, f > is
the inner product. Here, we assume that < a, f >6≡ 0. Further, we denote by
n1,f (r,H) the number of zeros of < a, f > in A1,r, counting multiplicities, and
by n2,f (r,H) the number of zeros of < a, f > in A2,r, counting multiplicities.
We set

N1,f (r,H) =

∫ 1

r−1

n1,f (t,H)

t
dt,

N2,f (r,H) =

∫ r

1

n2,f (t,H)

t
dt.

The counting function of f with respect to H is defined as

Nf (r,H) = N1,f (r,H) +N2,f (r,H).

Definition 2.1. [12] The fixed hyperplanes H1, . . . ,Hq are said to be
in general position if for any injective map µ : {0, 1, . . . , n} → {1, . . . , q},
aµ(0), . . . , aµ(n) are linearly independent. The moving hyperplanes H1, . . . ,Hq

are said to be in general position if H1(z), . . . ,Hq(z) are in general position for
some (hence for almost all) z ∈ A.

Let G = {Hj |1 ≤ j ≤ q} be a finite set of moving hyperplanes in general
position. Define, for z ∈ A,

Γ(G)(z) = min{
‖aµ(0)(z) ∧ . . . ∧ aµ(n)(z)‖
‖aµ(0)(z)‖ . . . ‖aµ(n)(z)‖

|µ : Z[0, n]→ {1, . . . , q}, is injective}.
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By the general position assumption,

S = {z ∈ A|Γ(G)(z) = 0}

is a closed set of isolated points.

Definition 2.2. [12] The moving hyperplanes H1, . . . ,Hq are said to be in
u-subgeneral position if for every 1 ≤ i0 < . . . < iu ≤ q, the linear span of
ai0(z), . . . , aiu(z) is Cn+1 for some (hence for almost all) z.

A holomorphic map f = [f0, . . . , fn] : A → Pn(C) is said to be linearly
non-degenerate over RG if f0, . . . , fn are linearly independent over RG .

Lemma 2.3 ( [11, Theorem 1.1]). Let H be a hyperplane in Pn(C) and
let f = [f0 : . . . : fn] : A → Pn(C) be a holomorphic curve whose image is not
contain in H. Then, for any 1 < r < R0, we have

Tf (r) = mf (r,H) +Nf (r,H) +O(1).

Lemma 2.4 ([11, Theorem 1.2]). Let f = [f0 : . . . : fn] : A → Pn(C) be
a linearly nondegenerate holomorphic curve and let H1, . . . ,Hq be hyperplanes
in Pn(C) in the general position. Then,∫ 2π

0
max
K

∑
j∈K

log
‖f(reiθ)‖‖aj‖
| < aj , f > |(reiθ)

dθ

2π

+

∫ 2π

0
max
K

∑
j∈K

log
‖f(r−1eiθ)‖‖aj‖
| < aj , f > |(r−1eiθ)

dθ

2π

≤ (n+ 1)Tf (r)−NW (r, 0) + S(r, f),

where

S(r, f) =

{
O(log r + log Tf (r)), for R0 = +∞;

O(log 1
R0−r + log Tf (r)), for R0 < +∞.

Here, the maximum is taken over all subsets K of {1, . . . , q} such that aj , j ∈ K
are linearly independent.

Lemma 2.5 ([16]). Given G, a set of moving hyperplanes H1, . . . ,Hq in u-
subgeneral position with q ≥ 2u−n+1, there exists a function ω : {1, . . . , q} →
R(0, 1] called the Nochka weight and a real number θ ≥ 1 called the Nochka
constant satisfying the following properties:

(i) If j ∈ {1, . . . , q}, then 0 < ω(j)θ ≤ 1.

(ii) q − 2u+ n− 1 = θ(
∑q

j=1 ω(j)− n− 1).
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(iii) If ∅ 6= B ⊂ {1, . . . , q} with ]B ≤ u+ 1, then∑
j∈P

ω(j) ≤ dimL(B).

(iv) 1 ≤ (u+ 1)/(n+ 1) ≤ θ ≤ (2u− n+ 1)/(n+ 1).

(v) Let {E1, . . . , Eq} be a family of functions Ej : C−S → R[1,+∞). Given
any A ⊂ {1, . . . , q} with 0 < ]A ≤ u+ 1. Take a z ∈ C−S. Then there is
a subset B(z) of A such that ]B(z) = dimL(z,A) = d(A) and such that
{aj(z)|j ∈ B(z)} is a base of L(z,A), and such that∏

j∈A
E
ω(j)
j ≤

∏
j∈B

Ej ,

where L(z,A) is the linear subspaces of Cn+1 spanned by {aj(z)|j ∈ A}
and d(A) is the dimension of linear span of A.

According to Product to The Sum Estimate [14, Theorem 6.2] and using
a almost the same proof as the proof of [12, Lemma 3.2], we have the following
result.

Lemma 2.6. Let f = [f0 : . . . : fn] : A → Pn(C) be a holomorphic map
and let G be a finite set of hyperplanes H1, . . . ,Hq. Assume that G is in the
general position. Then for every z ∈ A − S with < f(z), a(z) >6= 0 for all
a ∈ G, there exist i(z, 0), . . . , i(z, n) among 1, · · · , q such that∏

a∈G
(
‖f(z)‖‖a(z)‖
| < a(z), f(z) > |

) ≤ (
2(n+ 1)

Γ(G)(z)
)q−n−1

n∏
l=0

(
‖f(z)‖‖ai(z,l)(z)‖
| < ai(z,l)(z), f(z) > |

).

3. PROOF OF THEOREM 1.2

To prove Theorem 1.2, we propose the annulus version of second main
theorem for moving targets in general position as follows.

Theorem 3.1. Let f = [f0 : . . . : fn] : A→ Pn(C) be a holomorphic map.
Let G be a finite set of moving hyperplanes H1, . . . ,Hq defining respectively
holomorphic map a1, . . . , aq : A → Pn(C) with Taj(r) = o(Tf (r)). Assume that
G is in general position. Let RG be the small field with contains C and all
ajµ/ajν with ajν 6≡ 0. If f is linearly non-degenerate over RG. Then

q∑
j=1

mf (r,Hj) ≤ (n+ 1)Tf (r) + S(r, f),



7 Second main theorem for holomorphic curves on annuli 267

where

S(r, f) =

{
O(log r + log Tf (r)), for R0 = +∞;

O(log 1
R0−r + log Tf (r)), for R0 < +∞.

Proof. We only prove the case R0 = +∞. It is similar to prove the case
R0 < +∞. Using the idea of Ru, we give a similar proof as the second main
theorem with moving targets [12]. First, we show that for every ε > 0 the
inequality

∫ 2π

0
max
K

∑
l∈K

log
‖f(reiθ)‖‖aµ(l)(re

iθ)‖
| < aµ(l), f > (reiθ)|

dθ

2π
≤ (n+ 1 + ε)

∫ 2π

0
log ‖f(reiθ)‖dθ

2π

+ O(log r + log Tf (r))

holds for any z ∈ A2,R0 , |z| = r. Here, maxK is taken over all subsets K ∈
{1, . . . , q} such that aj(z) for j ∈ K are linearly independent for some z ∈ A.

Without loss of generality, we can assume that q ≥ n + 1, and ]K =
n + 1. Let T be the set of all maps µ : {0, 1, . . . , n} → {1, . . . , q} such that
aµ(0)(z), . . . , aµ(n)(z) are linearly independent for some (thus for almost all)
z ∈ A.

For each 1 ≤ j ≤ q, chose an index ĵ with 0 ≤ ĵ ≤ n and aj,ĵ 6≡ 0, and
define

ζj,l(z) = aj,l(z)/aj,ĵ(z), j = 1, . . . , q, l = 0, . . . , n.

Let L(s) be the vector space generate over C by

{ζn1,0

1,0 . . . ζ
nq,0
1,0 . . . ζ

n1,n

1,n . . . ζ
nq,n
q,n |nj,l ∈ N,

q∑
j=1

n∑
l=0

nj,l = s},

we have L(s) ⊂ L(s+ 1). Let {b1, . . . , b`(s+1)} be a basis of L(s+ 1) such that
{b1, . . . , b`(s)} is a basis of L(s), where `(s) = dimL(s).

Let F : A→ P(n+1)`(s+1)(C) be the holomorphic map defined by

F (z) = [g(z)b1(z)f0(z) : . . . : g(z)b`(s+1)(z)f0(z) :

g(z)b1(z)f1(z) : . . . : g(z)b`(s+1)(z)fn(z)],
(1)

where g(z) is a holomorphic function on A such that g(z)b1(z), . . . , g(z)b`(s+1)(z)
are all holomorphic on A and Tg(r) = o(Tf (r)).

Since f is linearly non-degenerate over RG , F is linearly non-degenerate.
For each µ ∈ T , let hj , 1 ≤ j ≤ q be the meromorphic function on A defined by

(2) hj(z) = ζj,0 +

n∑
l=0

ζj,l(z)
fl(z)

f0(z)
(j = 1, . . . , q).
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Noticing that bjζk,l ∈ L(s+ 1) for 1 ≤ j ≤ `(s), 1 ≤ k ≤ q and 0 ≤ l ≤ n,
so it can be written as a linear combination of br, 1 ≤ r ≤ `(s+ 1).

Thus the functions bjhµ(l), 1 ≤ j ≤ `(s), 0 ≤ l ≤ n, can be written as a
linear combination of br, 1 ≤ r ≤ `(s+ 1), and bα(fβ/f0), 1 ≤ α ≤ `(s+ 1), 0 ≤
β ≤ n. In other words, there is an (n+ 1)`(s)× ((n+ 1)`(s+ 1)) matrix C(µ)
such that

(3)



blhµ(0)
...

b`(s)hµ(0)
...

blhµ(n)
...

b`(s)hµ(n)


= C(µ)



b1
...

b`(s+1)

b1(f1/f0)
...

b`(s+1)(f1/f0)
...

b1(fn/f0)
...

b`(s+1)(fn/f0)



.

For l = 0, . . . , n and j = 1, . . . , `(s), let Ĥl,j(µ) be the (fixed) hyperplane
in P(n+1)`(s+1)(C) defined by he corresponding row in C(µ), i.e. if we denote
cij(µ) the elements of C(µ), then

Ĥl,j(µ) = {[y1,0 : . . . : y`(s+1),0 : y1,1 : . . . : y`(s+1),1 : . . . :

y1,n : . . . : y`(s+1),n] ∈ P (C(n+1)`(s+1))|
cl`(s)+j,1(µ)y1,0 + . . .+ cl`(s)+j,(n+1)`(s+1)(µ)y`(s+1),n = 0}.(4)

Let âl,j(µ) be the vector with Ĥl,j(µ). Since aµ(0)(z), . . . , aµ(n)(z) are
linearly independent for some z and f0(z), . . . , fn(z) are linearly independent
over RG , hµ(0), . . . , hµ(n) are linearly independent over RG . Thus, by the choice
of b1, . . . , b`(s), the set {bjhµ(l), j = 1, . . . , `(s); l = 0, . . . , n} is linearly in-

dependent over C. Hence, Ĥl,j(µ), l = 0, . . . , n, j = 1, . . . , `(s) are linearly
independent for each µ ∈ T .

Applying Lemma 2.4 for F , with the hyperplanes {Ĥl,j(µ)|l = 0, . . . , n, j =
1, . . . , `(s)}, we obtain∫ 2π

0
max
µ∈T

n∑
l=0

`(s)∑
j=1

log
‖F (reiθ)‖‖âl,j(µ)‖
| < âl,j(µ), F > (reiθ)|

dθ

2π

≤ ((n+ 1)`(s+ 1))

∫ 2π

0
log ‖F (reiθ)‖dθ

2π
+O(log r + log TF (r)).

(5)
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Now, we compare Tf (r) and TF (r). In fact, for each z ∈ A, not in the set
of the poles of b1, . . . , b`(s+1), by (1), we have,

‖F (z)‖ = max(|g(z)b1(z)f0(z)|, . . . ,
|g(z)b`(s+1)(z)f0(z)|, . . . , |g(z)b`(s+1)(z)fn(z)|)

= |g(z)|max(|f0(z)|, . . . , |fn(z)|) · max
1≤α≤`(s+1)

(|bα(z)|) +O(1)

= ‖f(z)‖|g(z)| · max
1≤α≤`(s+1)

(|bα(z)|) +O(1).

(6)

This gives that for any z ∈ A2,R0 , |z| = r,∫ 2π

0
log ‖F (reiθ)‖dθ

2π
=

∫ 2π

0
log[‖f(reiθ)‖ · max

1≤α≤`(s+1)
(|bα(reiθ)|) · |g(reiθ)|]dθ

2π

=

∫ 2π

0
log ‖f(reiθ)‖dθ

2π
+ o(Tf (r)).

Similar discussion as above, we conclude that for any z ∈ A1,R0 , |z| = 1
r ,∫ 2π

0
log ‖F (r−1eiθ)‖dθ

2π
=

∫ 2π

0
log ‖f(r−1eiθ)‖dθ

2π
+ o(Tf (r)).

Therefore, we obtain
TF (r) = Tf (r) + o(Tf (r)).

Next, we compare∫ 2π

0
log

‖F (reiθ)‖‖âl,j(µ)‖
| < âl,j(µ), F > (reiθ)|

and ∫ 2π

0
log
‖f(reiθ)‖‖aµ(l)(re

iθ)‖
| < aµ(l), f > (reiθ)|

dθ

2π
,

for each µ ∈ T . By (2), (3), (4) and (6), for 0 ≤ l ≤ n,∫ 2π

0
log

‖F (reiθ)‖‖âl,j(µ)‖
| < âl,j(µ), F > (reiθ)|

dθ

2π

=

∫ 2π

0
log ‖f(reiθ)‖dθ

2π
+

∫ 2π

0
log( max

1≤α≤`(s+1)
|bα(reiθ)|)dθ

2π

−
∫ 2π

0
log |bj(reiθ)hµ(l)(reiθ)f0(reiθ)|dθ

2π
+O(1)

=

∫ 2π

0
log
‖f(reiθ)‖‖aµ(l)(re

iθ)‖
| < aµ(l), f > (reiθ)|

dθ

2π
−
∫ 2π

0
log

|bj(reiθ)|
max1≤α≤`(s+1) |bα(reiθ)|

dθ

2π

−
∫ 2π

0
log

max0≤t≤n |aµ(l),t(re
iθ)|

|aµ(l),µ̂(l)(reiθ)|
dθ

2π
+O(1)
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=

∫ 2π

0
log
‖f(reiθ)‖‖aµ(l)(re

iθ)‖
| < aµ(l), f > (reiθ)|

dθ

2π
+ o(Tf (r)).

Thus, combining this with (5), we have

`(s)

∫ 2π

0
max
µ∈T

n∑
l=0

log
‖f(reiθ)‖‖aµ(l)(re

iθ)‖
| < aµ(l), f > (reiθ)|

dθ

2π

=

∫ 2π

0
max
µ∈T

n∑
l=0

`(s)∑
j=1

log
‖F (reiθ)‖‖âl,j(µ)‖
| < âl,j(µ), F > (reiθ)|

dθ

2π
+O(Tf (r))

≤ ((n+ 1)`(s+ 1))

∫ 2π

0
log ‖F (reiθ)‖dθ

2π
+O(log r + log TF (r))

≤ ((n+ 1)`(s+ 1))

∫ 2π

0
log ‖f(reiθ)‖dθ

2π
+O(log r + log Tf (r)).

Hence, ∫ 2π

0
max
µ∈T

∑
l∈K

log
‖f(reiθ)‖‖aµ(l)(re

iθ)‖
| < aµ(l), f > (reiθ)|

dθ

2π

≤ ((n+ 1)
`(s+ 1)

`(s)
)

∫ 2π

0
log ||f(reiθ)||dθ

2π
+O(log r + log Tf (r)).

We have 0 ≤ `(s) ≤
(
q(n+ 1) + s− 1

s

)
for each s and therefore

lim inf
s→∞

`(s+ 1)

`(s)
= 1.

So, for every ε > 0 and for any z ∈ A2,R0 , |z| = r,

∫ 2π

0
max
K

∑
l∈K

log
‖f(reiθ)‖‖aµ(l)(re

iθ)‖
| < aµ(l), f > (reiθ)|

dθ

2π

≤ (n+ 1 + ε)

∫ 2π

0
log ‖f(reiθ)‖dθ

2π
+O(log r + log Tf (r)).

(7)

Similarly, we conclude that for for any z ∈ A1,R0 , |z| = 1
r ,∫ 2π

0
max
K

∑
l∈K

log
‖f(r−1eiθ)‖‖aµ(l)(r

−1eiθ)‖
| < aµ(l), f > (r−1eiθ)|

dθ

2π

≤ (n+ 1 + ε)

∫ 2π

0
log ‖f(r−1eiθ)‖dθ

2π
+O(log r + log Tf (r)).

(8)
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Combining (7) and (8), we have∫ 2π

0
max
K

∑
l∈K

log
‖f(reiθ)‖‖aµ(l)(re

iθ)‖
| < aµ(l), f > (reiθ)|

dθ

2π

+

∫ 2π

0
max
K

∑
l∈K

log
‖f(r−1eiθ)‖‖aµ(l)(r

−1eiθ)‖
| < aµ(l), f > (r−1eiθ)|

dθ

2π

≤ (n+ 1)Tf (r) +O(log r + log Tf (r)).

(9)

By Lemma 2.6, we have

q∑
j=1

mf (r,Hj) =

q∑
j=1

∫ 2π

0
log
‖f(reiθ)‖‖aj(reiθ)‖
| < aj , f > (reiθ)|

dθ

2π
+

q∑
j=1

∫ 2π

0
log
‖f(r−1eiθ)‖‖aj(r−1eiθ)‖
| < aj , f > (r−1eiθ)|

dθ

2π

=

∫ 2π

0
log

q∏
j=1

‖f(reiθ)‖‖aj(reiθ)‖
| < aj , f > (reiθ)|

dθ

2π

+

∫ 2π

0
log

q∏
j=1

‖f(r−1eiθ)‖‖aj(r−1eiθ)‖
| < aj , f > (r−1eiθ)|

dθ

2π
,

and thus,

q∑
j=1

mf (r,Hj) ≤
∫ 2π

0
log max

µ∈T

n∏
l=0

‖f(reiθ)‖‖aµ(l)(re
iθ)‖

| < aµ(l), f > (reiθ)|
dθ

2π

+

∫ 2π

0
log max

µ∈T

n∏
l=0

‖f(r−1eiθ)‖‖aµ(l)(r
−1eiθ)‖

| < aµ(l), f > (r−1eiθ)|
dθ

2π
+ o(Tf (r))

=

∫ 2π

0
max
µ∈T

log

n∏
l=0

‖f(reiθ)‖‖aµ(l)(re
iθ)‖

| < aµ(l), f > (reiθ)|
dθ

2π

+

∫ 2π

0
max
µ∈T

log

n∏
l=0

‖f(r−1eiθ)‖‖aµ(l)(r
−1eiθ)‖

| < aµ(l), f > (r−1eiθ)|
dθ

2π
+ o(Tf (r)).

This yields

q∑
j=1

mf (r,Hj) ≤
∫ 2π

0
max
K

∑
l∈K

log
‖f(reiθ)‖‖aµ(l)(re

iθ)‖
| < aµ(l), f > (reiθ)|

dθ

2π

+

∫ 2π

0
max
K

∑
l∈K

log
‖f(r−1eiθ)‖‖aµ(l)(r

−1eiθ)‖
| < aµ(l), f > (r−1eiθ)|

dθ

2π
+O(1).
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So, combining this with (9), we get
q∑
j=1

mf (r,Hj) ≤ (n+ 1)Tf (r) + S(r, f).

Hence, Theorem 3.1 is proved.

Proof of Theorem 1.2. We mainly modify the method from [12]. We as-
sume that q > 2u − n + 1. Let G = {Hj |1 ≤ j ≤ q} be a finite set of moving
hyperplanes in u-subgeneral position. Define, for z ∈ A,

Γ(G)(z) = min{
‖aµ(0)(z) ∧ . . . ∧ aµ(n)(z)‖
‖aµ(0)(z)‖ . . . ‖aµ(n)(z)‖

|µ : Z[0, n]→ {1, . . . , q} is injective}.

By the u-subgeneral position assumption,

S = {z ∈ A|Γ(G)(z) = 0}

is a closed set of isolated points. Fix a z0 ∈ A − S and let ω(j), 1 ≤ j ≤ q be
the Nochka weights associated with the hyperplanes Hj(z0).

Since H1, . . . ,Hq are in u-subgeneral position, there is an embedding
Pn(C) ↪→ Pu(C) and hyperplanes H ′1, . . . ,H

′
q in Pu(C) such that H ′j ∩Pn(C) =

Hj for all j and such that H ′1, . . . ,H
′
q are in general position.

So by Lemma 2.6, for every z ∈ A−S, there exists i(z,0), . . . , i(z,u) among
1, . . . , q such that
(10)∏
a∈G

(
‖f(z)‖‖a(z)‖
| < a(z), f(z) > |

)ω(j) ≤ (
2(u+ 1)

Γ(G)(z)
)q−u−1

u∏
l=0

(
‖f(z)‖‖ai(z,l)(z)‖
| < ai(z,l)(z), f(z) > |

)ω(i(z,l)).

Let A = {i(z,0), . . . , i(z,u)}, then d(A) = n+ 1. Define,

λH(f(z)) = log
‖f(z)‖‖a(z)‖
| < a(z), f(z) > |

.

Applying Lemma 2.5 with El = e
λHi(z,l) (f(z))

, 0 ≤ l ≤ u, there is a subset
B(z) of A such that ]B(z) = dimL(z,A) = d(A) = n + 1 and such that
{aj(z)|j ∈ B(z)} is a base of Cn+1. Moreover,

u∏
l=0

(
‖f(z)‖‖ai(z,l)(z)‖
| < ai(z,l)(z), f(z) > |

)ω(i(z,l)) ≤
∏

j∈B(z)

(
‖f(z)‖‖aj(z)‖
| < aj(z), f(z) > |

)

≤ max
γ∈Γ

n∏
t=0

(
‖f(z)‖‖aγ(t)(z)‖
| < aγ(t)(z), f(z) > |

)

where Γ is the set of all maps γ : {0, . . . , n} → {1, . . . , q} such that aγ(0)(z), . . . ,
aγ(n)(z) are linearly independent for some (hence for almost all) z ∈ A.
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For any z ∈ A2,R0 , |z| = r, combining this with (10) gives us∫ 2π

0

q∑
j=1

ω(j) log
‖f(reiθ)‖‖aj(reiθ)‖
| < aj , f > (reiθ)|

dθ

2π

≤
∫ 2π

0
max
γ∈Γ

n∑
l=0

log
‖f(reiθ)‖‖aγ(l)(re

iθ)‖
| < aγ(l), f > (reiθ)|

dθ

2π
+ o(Tf (r)).

Applying Theorem 3.1 yields that for every ε > 0∫ 2π

0
max
γ∈Γ

n∑
l=0

log
‖f(reiθ)‖‖aγ(l)(re

iθ)‖
| < aγ(l), f > (reiθ)|

dθ

2π

≤ (n+ 1 + ε)

∫ 2π

0
log ‖f(reiθ)‖dθ

2π
+ S(r, f).

Then ∫ 2π

0

q∑
j=1

ω(j) log
‖f(reiθ)‖‖aj(reiθ)‖
| < aj , f > (reiθ)|

dθ

2π

≤ (n+ 1 + ε)

∫ 2π

0
log ‖f(reiθ)‖dθ

2π
+ S(r, f).

Combining this with Lemma 2.5, we have

q∑
j=1

∫ 2π

0
log
‖f(reiθ)‖‖aj(reiθ)‖
| < aj , f > (reiθ)|

dθ

2π

=

q∑
j=1

(1− θω(j))

∫ 2π

0
log
‖f(reiθ)‖‖aj(reiθ)‖
| < aj , f > (reiθ)|

dθ

2π

+

q∑
j=1

θω(j)

∫ 2π

0
log
‖f(reiθ)‖‖aj(reiθ)‖
| < aj , f > (reiθ)|

dθ

2π

≤
q∑
j=1

(1− θω(j))

∫ 2π

0
log ‖f(reiθ)‖dθ

2π

+θ(n+ 1 + ε)

∫ 2π

0
log ‖f(reiθ)‖dθ

2π
+ S(r, f)

= {q − θ(
q∑
j=1

ω(j)− n− 1) + ε}
∫ 2π

0
log ‖f(reiθ)‖dθ

2π
+ S(r, f)

= (2u− n+ 1 + ε)

∫ 2π

0
log ‖f(reiθ)‖dθ

2π
+ S(r, f).
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Similarly, we conclude that for any z ∈ A1,R0 , |z| = 1
r ,

q∑
j=1

∫ 2π

0
log
‖f(r−1eiθ)‖‖aj(r−1eiθ)‖
| < aj , f > (r−1eiθ)|

dθ

2π

≤ (2u− n+ 1 + ε)

∫ 2π

0
log ‖f(r−1eiθ)‖dθ

2π
+ S(r, f).

Hence,
q∑
j=1

mf (r,Hj) ≤ (2u− n+ 1)Tf (r) + S(r, f).

Therefore, Theorem 1.2 is proved.
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