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There are three associates of the balancing sequence namely, the cobalancing,
the Lucas-balancing and the Lucas-cobalancing sequence. Each balancing-like
sequence is associated with a Lucas-balancing-like sequence. In the present work,
we construct the cobalancing-like and the Lucas-cobalancing-like sequences. Two
factor sequences namely the Pell-like and the associated Pell-like sequences are
identified. Further, for each balancing-like sequence, triangular-like numbers are
defined and certain properties similar to those satisfied by triangular numbers
are studied.
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1. INDRODUCTION

A balancing number B is a natural number satisfying the Diophantine
equation 1+2+ · · ·+(B−1) = (B+1)+ · · ·+(B+R) for some natural number
R, known as the cobalancer of B [2]. If B is a balancing number then 8B2+1 is
a perfect square and its positive square root is called a Lucas-balancing number
[8]. The nth balancing and Lucas-balancing numbers are denoted by Bn and
Cn respectively and satisfy the binary recurrences

Bn+1 = 6Bn −Bn−1, Cn+1 = 6Cn − Cn−1

with initial values B0 = 0, B1 = 1, C0 = 1, C1 = 3.
A cobalancing number is a natural number b which satisfies 1+2 · · ·+b =

(b + 1) + · · · + (b + r) for some r, known as the cobalancer of b [4]. If b is a
cobalancing number then 8b2+8b+1 is a perfect square and its positive square
root is called a Lucas-cobalancing number [8]. The nth cobalancing and Lucas-
cobalancing numbers are denoted by bn and cn respectively and satisfy the
binary recurrences

bn+1 = 6bn − bn−1 + 2, cn+1 = 6cn − cn−1
with initial terms b0 = b1 = 0, c0 = −1, c1 = 1.
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Balancing numbers, cobalancing numbers, balancers and cobalancers are
very closely entangled with each other. For example, every balancing number
is a cobalancer and every balancer is a cobalancing number and twice the sum
of first n balancing numbers is equal to the (n+ 1)st cobalancing number [4].
These numbers are also connected in many different ways.

The Pell and associated Pell sequences are defined by means of the binary
recurrences

Pn+1 = 2Pn + Pn−1, Qn+1 = 2Qn +Qn−1
respectively with initial terms P0 = 0, P1 = 1, Q0 = 2, Q1 = 1. These two
sequences are connected by Q2

n = 2P 2
n + (−1)n, n = 1, 2, · · · . An important

observation about these sequences is that the successive convergents in the
continued fraction expansion of

√
2 are Qn/Pn, n = 1, 2, · · · . In addition,

Bn = PnQn, n = 1, 2, · · · [6].

As a generalization of the balancing sequence, Panda and Rout [7] studied
a family of binary recurrences defined by

xn+1 = Axn − xn−1 , x0 = 0, x1 = 1

and A > 2 is any natural number. Subsequently, these sequences were known
as balancing-like sequences [9] since the particular case corresponding to A =
6 coincides with the balancing sequence. Khan and Kwong [3] called these
sequences as generalized natural number sequences since natural numbers are
solutions of the binary recurrence xn+1 = 2xn − xn−1 with initial terms x0 =
0, x1 = 1. These names are also supported by some identities satisfied by
each balancing-like sequence in which it behaves like the sequence of natural
numbers.

If x is a balancing-like number corresponding to a balancing-like sequence
with fixed A > 2, then Dx2 + 1, where D = A2−4

4 , is a perfect square and its
positive square root is called a Lucas-balancing-like number [7]. The Lucas-
balancing-like sequences are linked with their balancing-like sequences similar
to the association of the Lucas-balancing sequence with the balancing sequence.
The Lucas-balancing-like sequences corresponding to even values of A have
integral terms, while those corresponding to odd values have terms which are
odd integral multiples of 1

2 .
As we have discussed, there are three associate sequences of the balanc-

ing sequence, namely, the cobalancing sequence, the Lucas-balancing sequence
and the Lucas-cobalancing sequence. Each balancing-like sequence has also
one associate sequence, its Lucas-balancing-like sequence. In this paper, we
construct two more associate sequences, namely, the cobalancing-like and the
Lucas-cobalancing-like sequences. We also construct the factor sequences of
each balancing-like sequence, and call them Pell-like and associated Pell-like
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sequences. Lastly, we define triangular-like numbers in such a way that these
numbers reduce to triangular numbers when A = 2.

2. AUXILIARY RESULTS

To achieve the aforesaid goals, we need some identities involving balanc-
ing, cobalancing, Lucas-balancing, Lucas-cobalancing, balancing-like, Lucas-
balancing-like, Pell and associated Pell sequences. Many identities of this sec-
tion will be needed in the subsequent sections for the constructions of new
number sequences associated with the balancing-like sequences.

In the following identities the balancing and associated sequences are ex-
pressed in terms of the Pell and associated Pell sequences. Proofs are available
in [6].

B−n = −Bn, C−n = Cn

Bn = PnQn

P2n = 2Bn

b2n = P2nQ2n−1, b2n+1 = P2nQ2n+1

The following pair of identities can be proved easily using the Binet forms
of the balancing, cobalancing, Lucas-balancing, Lucas-cobalancing, Pell and
associated Pell sequences.

Cn = Q2n =
Bn+1 −Bn−1

2
= bn + bn+1 + 1

cn = Q2n−1 =
bn+1 − bn−1

2
= Bn +Bn−1

The identity
Bn−rBn+r = B2

n −B2
r

[5] confirms that the balancing sequence behaves like natural numbers. In
particular for r = 1, we have

Bn−1Bn+1 = B2
n − 1.

The balancing-like numbers also satisfy the above two identities. The cobal-
ancing numbers satisfy

bn−1bn+1 = (bn − 1)2 − 1

[4] which somehow resemble the last identity. The cobalancing numbers are
also related to the balancing numbers as

bn =
−(2Bn + 1) +

√
8B2

n + 1

2
=
Cn − (2Bn + 1)

2
, n = 1, 2, · · ·

[2, 4] and are also connected by the sum formula

bn = 2(B0 +B1 +B2 + · · ·+Bn−1), n = 1, 2, · · ·
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We have already seen in the last section that the balancing-like sequences
are defined recursively as

xn+1 = Axn − xn−1, x0 = 0, x1 = 1.

Using this recurrence, we can find their Binet form as

xn =
αn − βn√
A2 − 4

, n = 1, 2, · · ·

where α = A+
√
A2−4
2 and β = A−

√
A2−4
2 . Using the relationship y2n = Dx2n + 1

where D = A2−4
4 , we can have the Binet form for the Lucas-balancing-like

sequences as

yn =
αn + βn

2
, n = 1, 2, · · ·

A point of caution in this connection is that all terms of the sequence {yn}∞n=1

corresponding to an odd value of A are not integral; rather, each term of this
sequence whose index is a multiple of 3 is integral and rest terms are odd
integral multiples of 1

2 . Using these Binet forms, we can obtain the one-step
shift formulas of balancing-like and Lucas-balancing-like sequences as

xn±1 =
A

2
xn ± yn =

A

2
xn ±

√
Dx2n + 1

and

yn±1 =
A

2
yn ±Dxn =

A

2
yn ±

√
y2n − 1

D
, n = 1, 2, · · ·

Taking the help of the identities and ideas of this section, we are now
in a position to construct the cobalancing-like and the Lucas-cobalancing-like
sequences corresponding to every balancing-like sequence.

3. CONSTRUCTION OF COBALANCING-LIKE SEQUENCES

We have already mentioned in the last section that the cobalancing se-
quence can be obtained from the balancing sequence in two ways,

bn =
−(2Bn + 1) +

√
8B2

n + 1

2
, n = 1, 2, · · ·

and
bn = 2(B0 +B1 +B2 + · · ·+Bn−1), n = 1, 2, · · ·

These identities suggest defining the cobalancing-like sequences {zn}∞n=1 corre-
sponding to the balancing-like sequences {xn}∞n=1 by

zn =
−(2xn + 1) +

√
Dx2n + 1

2
, n = 1, 2, · · ·
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or

zn = 2(x0 + x1 + x2 + · · ·+ xn−1), n = 1, 2, · · · .
If we use the former definition then its terms may be negative and/or fractional
in some cases. For example, if A = 3 then x1 = 1, x2 = 3, x3 = 8 and
consequently z1 = −3

4 , z2 = −7
4 , z3 = −4. Hence, we choose the later definition.

The terms of the cobalancing-like sequence corresponding to A = 3 are then
z1 = 0, z2 = 2, z3 = 8, z4 = 24, z5 = 66, z6 = 176 and so on, one can easily
verify that

zn+1 = 3zn − zn−1 + 2

and

zn−1zn+1 = (zn − 1)2 − 1.

These two identities resemble the corresponding identities of the cobalancing
sequence. A natural question is: “Do these identities hold good for arbitrary
values of A?” The following theorem answers this question in affirmative.

Theorem 3.1. Let A > 2 be an fixed but arbitrary integer and {xn}∞n=1 be
a binary recurrence sequence defined by xn+1 = Axn − xn−1 with initial values
x0 = 0, x1 = 1. Let {zn}∞n=1 be a sequence derived from {xn}∞n=1 by setting
z0 = 0 and zn = 2(x0 + x1 + x2 + · · · + xn−1), n = 1, 2, · · · Then {zn}∞n=1

satisfies zn+1 = Azn − zn−1 + 2 and zn−1zn+1 = (zn − 1)2 − 1.

Proof. If zn = 2(x0 + x1 + x2 + · · ·+ xn−1), then

Azn − zn−1 + 2 = 2A(x0 + x1 + x2 + · · ·+ xn−1)

− 2(x0 + x1 + x2 + · · ·+ xn−2) + 2

= 2{(Ax1 − x0) + (Ax2 − x1) + · · ·+ (Axn−1 − xn−2)}+ 2

= 2(x2 + x3 + · · ·+ xn) + 2 = zn+1 − 2 + 2 = zn+1

from which the first part of the theorem follows. To prove the second part, we
observe that

A =
zn+1 + zn−1 − 2

zn
=
zn + zn−2 − 2

zn−1
from which it follows that

zn+1zn−1 − z2n + 2zn = znzn−2 − z2n−1 + 2zn−1

and hence

zn+1zn−1 − z2n + 2zn = z2z0 − z21 + 2z1 = 0.

Consequently

zn+1zn−1 = z2n − 2zn

from which the second part follows.
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4. CONSTRUCTION OF LUCAS-COBALANCING-LIKE
SEQUENCES

The Lucas-cobalancing sequence {cn}∞n=1 is associated with balancing se-
quence {Bn}∞n=1 by the relation

cn = Bn−1 +Bn, n = 1, 2, · · · .
This motivates us to define the Lucas-cobalancing-like sequence {wn}∞n=1 as-
sociated with balancing-like sequence {xn}∞n=1 as

wn = xn−1 + xn, n = 1, 2, · · · .
It is easy to see that the sequence {wn}∞n=1 satisfies the binary recurrence

wn+1 = Awn − wn−1

with initial values w0 = −1, w1 = 1 which is consistent with the fact that
the recurrence relation of the Lucas-cobalancing-like sequence is identical with
that of the balancing-like sequence [8].

For each n ∈ Z+, 8b2n +8bn +1 is a perfect square and by definition, c2n =
8b2n + 8bn + 1. In the following theorem, we establish similar relationship in
the cobalancing-like and and Lucas-cobalancing-like sequences corresponding
to any given value of A.

Theorem 4.1. If A > 2 is an arbitrary integer and {zn}∞n=1 and {wn}∞n=1

are the cobalancing-like and Lucas-cobalancing-like sequences corresponding to
the balancing-like sequence {xn}∞n=1, then w2

n = Dz2n + (A+ 2)zn + 1 for each
n ∈ Z+.

Proof. By definition, for each n ∈ Z+, w2
n = (xn−1 + xn)2. We set tn =

Dz2n + (A+ 2)zn + 1. Observe that

w2
n+1 − w2

n = (xn + xn+1)
2 − (xn−1 + xn)2

= x2n+1 − x2n−1 + 2xn(xn+1 − xn−1)
= (xn+1 + xn−1 + 2xn)(xn+1 − xn−1)
= (A+ 2)xn(xn+1 − xn−1).

(1)

In view of the definition of the cobalancing-like sequence, 2xn = zn+1−zn
for each n ∈ Z+. Letting M = A/2, we get

xn+1 − xn−1 = Axn − 2xn−1 = 2Mxn − 2xn−1

= M(zn+1 − zn)− (zn − zn−1)
= M(zn+1 + zn)− (Azn − zn−1 + 2)− zn + 2

= M(zn+1 + zn)− (zn+1 + zn) + 2

= (M − 1)(zn+1 + zn) + 2.

(2)
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Further,

tn+1 − tn = D(z2n+1 − z2n) + (A+ 2)(zn+1 − zn)

= (M2 − 1)(z2n+1 − z2n) + 2(M + 1)(zn+1 − zn)

= (A+ 2)xn [ (M − 1)(zn+1 + zn) + 2 ].

(3)

From equations (1), (2) and (3), w2
n+1 − w2

n = tn+1 − tn follows. Since,
w1 = t1 = 1, it follows that w2

n = tn for each n ∈ Z+ and this completes the
proof.

Note that if xn = Bn, n ∈ Z+, then A = 6 and hence M = 3, D =
M2 − 1 = 8, zn = bn, n ∈ Z+ and the identity w2

n = Dz2n + (A + 2)zn + 1
reduces to c2n = 8b2n+8bn+1, the well-known relationship between cobalancing
and Lucas-cobalancing numbers [4].

The cobalancing numbers enjoy the shift formulas

bn+1 = 3bn +
√

8b2n + 8bn + 1 + 1

and

bn−1 = 3bn −
√

8b2n + 8bn + 1 + 1,

n = 1, 2, · · · [4]. A natural question is “Can there be similar shift formulas for
the cobalancing-like sequences?” The following theorem answers this question
in affirmative.

Theorem 4.2. Let A > 2 be an fixed but arbitrary integer, M = A/2 and
{zn}∞n=1 be the cobalancing-like sequence corresponding to the balancing-like
sequence {xn}∞n=1. Then for n ∈ Z+

(a) zn+1 = Mzn +
√
Dz2n + (A+ 2)zn + 1 + 1

(b) zn−1 = Mzn −
√
Dz2n + (A+ 2)zn + 1 + 1.

Proof. We will prove (a) only. The proof of (b) is similar. Observe
that

√
Dz2n + (A+ 2)zn + 1 = wn. We set sn = Mzn + wn + 1. In view of

z2 = s1 = 2, we need only to show that zn+2 − zn+1 = sn+1 − sn for n ∈ Z+.
From the definition of the sequence {zn}∞n=1, it follows that

(4) zn+2 − zn+1 = 2xn+1

and

(5) sn+1−sn = M(zn+1− zn) + (wn+1−wn) = 2Mxn +xn+1−xn−1 = 2xn+1

Comparing (4) and (5), one can get the desired result.



284 G. K. Panda, S. S. Pradhan 8

The balancing-like sequences are generalizations of the balancing sequence
and these sequences are termed as natural sequences since the case A = 2 de-
fines the natural numbers via a binary recurrence. What we are going to estab-
lish in the following theorem makes the balancing-like sequence corresponding
to A = 3 special.

Theorem 4.3. The balancing-like sequence {xn}∞n=1 corresponding to A =
3 coincides with the sequence of even indexed Fibonacci numbers. Furthermore,
the corresponding Lucas-balancing-like sequence is the sequence of odd indexed
Lucas numbers.

Proof. First of all we will show that the sequence of even indexed Fi-
bonacci numbers satisfy a recurrence relation identical with that of the Balancing-
like sequence corresponding to A = 3. Setting Gn = F2n, n = 1, 2, · · · and in
view the relationship Fk+1 = Fk+Fk−1, we have 3Gn−Gn−1 = 3F2n−F2n−2 =
2F2n + F2n−1 = F2n + F2n+1 = F2n+2 = Gn+1. Further, G0 = F0 = 0 and
G1 = F2 = 1. Thus, the sequence {Gn} coincides with the balancing-like se-
quence corresponding to A = 3. Hence, xn = F2n.

We next show that the Lucas-balancing-like sequence corresponding to
A = 3 coincides with the sequence of odd indexed Lucas numbers. Since
xn = F2n and Fk−1 + Fk+1 = Lk, it follows that

wn = xn + xn−1 = F2n + F2n−2 = L2n−1, n = 1, 2, · · ·

This completes the proof.

5. FACTORIZATION OF THE BALANCING-LIKE SEQUENCES

It is well-known that each balancing number except 1 is composite and
is product of a Pell number and an associated Pell number. The same thing
happens for cobalancing numbers also. Panda and Ray [6] proved that for each
n ∈ Z+

Bn = PnQn, b2n = PnQ2n−1, b2n−1 = Pn−1Q2n−1.
The identity F2n = FnLn confirms that the balancing-like sequence corre-
sponding to A = 3 admits a factorization like the balancing sequence. Further,
one can check that the terms of each balancing-like sequence, except the first
and second, are composite. A natural question is: Is there a factorization of
every balancing-like sequence similar to the balancing sequence? In this sec-
tion, we answer this question in mostly affirmative. For each balancing-like
sequence {xn}∞n=1, we construct two sequences {pn}∞n=1 and {qn}∞n=1 such that
xn = pnqn, n = 1, 2, · · · . We call the sequence {pn}∞n=1, a Pell-like sequence
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while we call {qn}∞n=1, the corresponding associated Pell-like sequence. The
identities P2n = 2Bn, P2n−1 = Bn − Bn−1, Q2n = (Bn+1 − Bn−1)/2 and
Q2n−1 = Bn +Bn−1 prompt us to define

p2n = 2xn, p2n−1 = xn − xn−1,

q2n =
(xn+1 − xn−1)

2
, q2n−1 = xn + xn−1, n ∈ Z+.

Then

p2nq2n = xn(xn+1 − xn−1)
and using the identity x2 + x4 + · · · + x2n = xnxn+1 [5], one can see that the
right hand side of the above identity is equal to x2n. Further,

p2n−1q2n−1 = (xn − xn−1)(xn + xn−1) = x2n − x2n−1
and using the identity x1 + x3 + · · · + x2n−1 = x2n [5], the right side of the
identity becomes x2n−1. Hence, xn = pnqn for all n ∈ Z+.

After factorizing the balancing-like sequences in terms of corresponding
Pell-like and associated Pell-like sequences, it is interesting to see what recur-
rence relations these factor sequences are obeying. The following theorem is
important in this regard.

Theorem 5.1. The Pell-like sequences {pn}∞n=1 satisfy the recurrence re-
lations

pn+1 =

{
2pn + pn−1 if n is odd

(M − 1)pn + pn−1 if n is even

with initial terms p0 = 0, p1 = 1, p2 = 2, p3 = A − 1. Further, the associated
Pell-like sequences {qn}∞n=1 satisfy

qn+1 =

{
(M − 1)qn + qn−1 if n is odd

2qn + qn−1 if n is even

with initial terms q0 = q1 = 1, q2 = M, q3 = A+ 1 where M = A/2.

Proof. The identities

2p2k−1 + p2k−2 = 2(xk − xk−1) + 2xk−1 = 2xk = p2k

and

(M − 1)p2k + p2k−1 = 2(M − 1)xk + xk − xk−1 = xk+1 − xk = p2k+1

establish the recurrence relation of the Pell-like sequences as stated in the
theorem. Further, recurrence relations of the associated Pell-like sequences
follow from



286 G. K. Panda, S. S. Pradhan 10

(M − 1)q2k−1 + q2k−2 = (M − 1)(xk + xk−1) +
xk − xk−2

2

=
(Axk − xk−1) + (Axk−1 − xk−2)− (xk + xk−1)

2

=
(xk+1 + xk)− (xk + xk−1)

2
=
xk+1 − xk−1

2
= q2k

and

2q2k + q2k−1 = (xk+1 − xk−1) + (xk + xk−1) = (xk+1 + xk) = q2k+1.

With the help of the factor sequences {pn}∞n=1 and {qn}∞n=1 corresponding
to a given A > 2, we can factorize the corresponding cobalancing-like sequence.
In view of the identities x1 + x3 + · · ·+ x2n−1 = x2n and x2 + x4 + · · ·+ x2n =
xnxn+1, it follows that

p2kq2k−1 = 2xk(xk−1 + xk)

= 2[(x2 + x4 + · · ·+ x2k−2) + (x1 + x3 + · · ·+ x2k−1)]

= 2(x1 + x2 + · · ·+ x2k−1) = z2k

and

p2kq2k+1 = 2xk(xk + xk+1)

= 2[(x1 + x3 + · · ·+ x2k−1) + (x2 + x4 + · · ·+ x2k)]

= 2(x1 + x2 + · · ·+ x2k) = z2k+1.

Thus, the cobalancing-like numbers have the factorizations

zn =

{
pnqn−1 if n is even

pn−1qn if n is odd.

It is important to note that the factorization xn = F2n = FnLn of the
balancing-like sequence corresponding to A = 3 is not same as that stated prior
to Theorem 5.1. The numeric values of the Pell-like and associated Pell-like se-
quences corresponding to A = 3 are 1, 2, 2, 6, . . . and 1, 32 , 4,

7
2 , . . . respectively.

The factor sequences of a balancing-like sequence corresponding to an even A
are integral while if A is odd then the terms of the corresponding associated
Pell-like sequence are odd positive integer multiple of 1

2 .

For each value of A, each factor sequence is defined by means a com-
posite recurrence relations. However, the recurrence relations of these factor
sequences are identical (except the initial terms) whenever M − 1 = 2, that
is A = 6, which, in turn, corresponds to the balancing sequence. This shows
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the importance of the balancing sequence among the balancing-like sequences
excepting the case A = 3, which corresponds to the even indexed Fibonacci
numbers.

6. TRIANGULAR-LIKE NUMBERS ASSOCIATED WITH
BALANCING-LIKE SEQUENCES

As we have already seen, the balancing-like sequences, in some way, are
generalizations of the natural number sequence. In this connection, Panda [5]
proved some properties of balancing numbers. The natural numbers contain a
subclass known as triangular numbers. In combinatorics, these numbers appear
in choosing two objects out of n objects. If the Pascals triangle is arranged in
an infinite square, these numbers appear in the third row. The nth triangular
number is defined as Tn = n(n+1)

2 . There are three important properties of
triangular numbers.

1. The sum of two consecutive triangular numbers is a perfect square.

2. If T is a triangular number then 8T + 1 is a perfect square.

3. If T is a triangular number then 9T + 1 is also a triangular number.

We define the nth triangular-like number τn corresponding the balancing
like sequence {xn}∞n=1 defined by the recurrence xn+1 = Axn−xn−1 with initial
values x0 = 0, x1 = 1 as

τn =
xnxn+1

x2
=
xnxn+1

A
.

With this definition, for n > 1 we have

τn−1 + τn =
xn(xn−1 + xn+1)

A
=
xnAxn
A

= x2n

which is consistent with the first property of triangular numbers mentioned
above. A property similar to the second one is given in the following theorem.

Theorem 6.1. If τn is the nth triangular-like number corresponding to the
balancing-like sequence {xn}∞n=1 defined by the recurrence xn+1 = Axn − xn−1
with initial values x0 = 0, x1 = 1, then (A2 + 2A)τn + 1 and (A2 − 2A)τn + 1
are perfect squares.

Proof. Using the identity xn−1xn+1 = x2n − 1 [5], we get

(A2 + 2A)τn + 1 = (A+ 2)xnxn+1 + 1

= (xn+1 + xn−1)xn+1 + 2xnxn+1 + 1
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= x2n+1 + x2n − 1 + 2xnxn+1 + 1 = (xn+1 + xn)2.

In a similar manner

(A2 − 2A)τn + 1 = (xn+1 − xn)2

follows.

It is also well-known that if 8T + 1 is a perfect square for some natural
number T then T is a triangular number. However, if (A2 + 2A)τn + 1 is a
perfect square for some natural number τ , then τ need not be a triangular-like
number. Similarly, if (A2−2A)s+1 is a perfect square for some natural number
s, then s need not be a triangular-like number. The following examples clarify
the last two statements.

If τ is a triangular-like number corresponding to A = 3, then 15τ + 1 and
3τ + 1 are perfect squares. However, 15.13 + 1 = 142 and 15.17 + 1 = 142,
but neither 13 nor 17 are triangular-like numbers. Further, 3.5 + 1 = 42, but
5 is not a triangular-like number. Indeed, if τ is any triangular-like number
corresponding to A = 3 and if τ ′ = 16τ+1, then it is easy to check that 15τ ′+1
is a perfect square, but τ ′ is not a triangular-like number.

The following theorem, which is the converse of Theorem 6.1, provides
conditions, the fulfillment of which makes a natural number a triangular-like
number.

Theorem 6.2. If A and τ are natural numbers such that (A2 +2A)τn +1
and (A2 − 2A)τn + 1 are perfect squares then τ is a triangular-like number
corresponding to the balancing-like sequence {xn}∞n=1 defined by the recurrence
xn+1 = Axn − xn−1 with initial values x0 = 0, x1 = 1.

Proof. Let us assume that

(6) (A2 − 2A)τ + 1 = g2

and

(7) (A2 + 2A)τ + 1 = h2

We distinguish two cases:
Case I: A is even. Let A = 2K. In this case, equations (6) and (7) reduce to

(8) 8TK−1τ + 1 = g2

and

(9) 8TKτ + 1 = h2.
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It follows from equations (8) and (9) that

g2 − 1

h2 − 1
=
TK−1
TK

=
K − 1

K + 1

which reduces to
(K + 1)g2 − (K − 1)h2 = 2

and the substitution G = (K + 1)g converts the last equation to

(10) G2 − (K2 − 1)h2 = 2(K + 1)

which is a generalized Pells equation. The fundamental solution of

G2 − (K2 − 1)h2 = 1

is u+ v
√
K2 − 1 = K +

√
K2 − 1 and in view of [1], the fundamental solutions

of (10) corresponds to

0 ≤ h ≤ 1, 0 ≤ |g| ≤ K + 1.

Since y = 0 is not a feasible solution, in view of equation (7), there is just
one fundamental solution of (10) namely, G+ h

√
K2 − 1 = K + 1 +

√
K2 − 1.

Hence, the general solution of (10) is given by

Gn + hn
√
K2 − 1 =

(
K + 1 +

√
K2 − 1

)(
K +

√
K2 − 1

)n−1
, n = 1, 2, · · ·

Thus,

hn =

(
K+1+

√
K2−1

)(
K+
√
K2−1

)n−1−(K+1−
√
K2−1

)(
K−
√
K2−1

)n−1
2
√
K2− 1

=

(
K+
√
K2−1

)n−(K−√K2−1
)n

2
√
K2−1

+

(
K+
√
K2−1

)n−1−(K−√K2−1
)n−1

2
√
K2−1

and in view of the Binet form of the balancing-like sequences, it follows that
hn = xn + xn−1. Substituting this value of hn for h in (7), we obtain

τ =
(xn + xn−1)

2 − 1

8TK
=

(xn + xn−1)
2 − 1

A(A+ 2)

=
xn−1xn+1 + x2n−1 + 2xnxn−1

A(A+ 2)

=
xn−1(xn+1 + xn−1 + 2xn)

A(A+ 2)

=
xn−1xn
A

= τn−1, n = 1, 2, · · ·

which shows that the possible values of τ are nothing but triangular-like num-
bers of the balancing-like sequence defined by means of the binary recurrence
xn+1 = Axn − xn−1 with initial values x0 = 0, x1 = 1.
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If A is odd then from (6) and (7) we can obtain

x2 − 1

y2 − 1
=
A− 2

A+ 2

and proceeding as in the previous case leads to the generalized Pells equation

(11) G2 − (A2 − 4)h2 = 4(A+ 2)

where G = (A+ 2)g. One fundamental solution of (11) is A+ 2 +
√
A2 − 4 and

one can easily verify that its conjugate A+ 2−
√
A2 − 4 is in a different class

associated with the fundamental solution A3+A2−3A−2+(A2+A−1)
√
A2 − 4.

Further, the fundamental solution of

G2 − (A2 − 4)h2 = (A+ 2)

is A2+A−2
2 + A+1

2

√
A2 − 4 and hence A2 + A− 2 + (A+ 1)

√
A2 − 4 is another

fundamental solution of (11). Once again, it is easy to see that this solution
does not belong to the classes of solutions generated by the earlier two solutions.
For some values of A, we may have another fundamental solution corresponding
to G = 2

√
A+ 2, h = 0 which is infeasible for the present case since h2 ≥ 1.

Using bounds for fundamental solutions [1], one can verify that there is no
more fundamental solutions associated with (11). It is important to note that

A2 +A− 2 + (A+ 1)
√
A2 − 4 =

(
A+ 2 +

√
A2 − 4

)
α,

A3 +A2 − 3A− 2 + (A2 +A− 1)
√
A2 − 4 =

(
A+ 2 +

√
A2 − 4

)
α2

where

α3 =
A3 − 3A

2
+
A2 − 1

2

√
A2 − 4

is the fundamental solution of

G2 − (A2 − 4)h2 = 1.

Hence, the general solution of (11) is given by

Gn + hn
√
A2 − 4 =

(
A+ 2 +

√
A2 − 4

)
αn−1, n = 1, 2, · · ·

Thus,

hn =

(
A+ 2 +

√
A2 − 4

)
αn−1 −

(
A+ 2−

√
A2 − 4

)
βn−1

2
√
A2 − 4

=
(α+ 1)αn−1 − (β + 1)βn−1√

A2 − 4

=
αn − βn√
A2 − 4

+
αn−1 − βn−1√

A2 − 4
= xn + xn−1.

The remaining part of the proof is similar to that of the case when A is even.
This completes the proof.



15 Associate sequences of a balancing-like sequence 291

7. AN OPEN PROBLEM ASSOCIATED WITH
TRIANGULAR-LIKE NUMBERS

It is well-known that if T is a triangular number then 8T + 1 is a perfect
square and 9T + 1 is also a triangular number since 8(9T + 1) + 1 is a perfect
square. If τ is a triangular-like number corresponding to the balancing-like
sequence {xn}∞n=1 defined by xn+1 = Axn − xn−1 with initial values x0 =
0, x1 = 1, and τ ′ = (A− 1)2τ + 1 then it is easy to check that (A2− 2A)τ ′+ 1
is a perfect square, while if τ ′ = (A+ 1)2τ+1, then (A2+2A)τ ′+1 is a perfect
square. However, for each A > 2, an important problem is to find a fixed
natural number L such that τ ′ = Lτ + 1 is a triangular-like number, that is,
both (A2 − 2A)τ ′ + 1 and (A2 + 2A)τ ′ + 1 are perfect squares. We leave it as
an open problem for the readers.
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