CLASS NUMBER ONE CRITERIA FOR QUADRATIC FIELDS

VÍCTOR JULIO RAMÍREZ VIÑAS

Communicated by Alexandru Zaharescu

In this study we obtain a criterion for the class number of the quadratic number fields to be one. We also apply this criterion to give an elementary proof of the fact that rings $\mathbb{Z}[\frac{-1+\sqrt{-d}}{2}]$ are unique factorization domains for d = 3, 7, 11, 19, 43, 67, 163. We also prove that the rings $\mathbb{Z}[\frac{-1+\sqrt{D}}{2}]$ are unique factorization domains for D = 5, 13, 21, 29, 53, 77.

AMS 2010 Subject Classification: 11N32, 11R29, 13A05.

Key words: unique factorization domain, primes, prime producing polynomial.

1. INTRODUCTION

It has been known for a long time that there exists a close connection between prime producing polynomials and the class number one problem for quadratic fields. Lehmer [2] observed in 1936 that if $x^2 + x + q$ is prime for x = 0, 1, ..., q-2, then the class number of the field $\mathbb{Q}(\sqrt{1-4q})$ must necessarily be one. In 1980 Kutsuna [1] proved the following for real quadratic fields: If $-n^2 + n + q$ is prime for all positive $n < \sqrt{q} - 1$, then the class number of the field $\mathbb{Q}(\sqrt{1+4q})$ must necessarily be one. For this matter, we suggest reading the book of Mollin [3].

The aim of this paper is to prove the following:

THEOREM. Let q be an integer. If $|x^2 + x + q|$ is 1 or prime for $x = 0, 1, ..., \lfloor \sqrt{|q|/3} \rfloor$, then $\mathbb{Z}[\frac{-1+\sqrt{1-4q}}{2}]$ is a unique factorization domain.

We also apply this criterion to give an elementary proof of the fact that rings $\mathbb{Z}[\frac{-1+\sqrt{-d}}{2}]$ are unique factorization domains for d = 3, 7, 11, 19, 43, 67, 163. We also prove that the rings $\mathbb{Z}[\frac{-1+\sqrt{D}}{2}]$ are unique factorization domains for D = 5, 13, 21, 29, 53, 77.

2. PRELIMINARIES

We shall denote, as usual, the field of complex numbers by \mathbb{C} , the ring of rational integers by \mathbb{Z} . In what follows $\alpha \in \mathbb{C}$ is a root of the irreducible polynomial $x^2 + x + q \in \mathbb{Z}[x]$.

MATH. REPORTS 22(72) (2020), 3-4, 293-296

LEMMA 1. Let p be a prime. Then p is prime in $\mathbb{Z}[\alpha]$ if and only if $x^2 + x + q$ is irreducible in $\mathbb{Z}_p[x]$.

Proof. See [4, Lemma 2.3, page 141]. \Box

LEMMA 2. If $\mathbb{Z}[\alpha]$ is not a unique factorization domain, then there is a prime number p which is not prime in $\mathbb{Z}[\alpha]$ such that whenever $\omega \in \mathbb{Z}[\alpha]$ is such that

(1) $p \mid N(\omega), \quad then \quad p^2 \le |N(\omega)|,$

where N stands for the norm map.

Proof. See [4, Lemma 2.2, page 140]. \Box

3. MAIN THEOREM

THEOREM 1. If $|x^2 + x + q|$ is 1 or prime for $x = 0, 1, ..., \lfloor \sqrt{|q|/3} \rfloor$, then $\mathbb{Z}[\alpha]$ is a unique factorization domain.

Proof. Suppose that $\mathbb{Z}[\alpha]$ is not a unique factorization domain. Then by Lemma 2, there is a prime number p which is not prime in $\mathbb{Z}[\alpha]$ such that

(2) $\omega \in \mathbb{Z}[\alpha]$ and $p \mid N(\omega)$ implies that $p^2 \leq |N(\omega)|$.

Since p is not prime in $\mathbb{Z}[\alpha]$, by Lemma 1, we get that there exists $a \in \mathbb{Z}$ such that

(3) $0 \le a \le (p-1)/2$ and $a^2 + a + q \equiv 0 \pmod{p}$,

and since

$$N(a - \alpha) = a^2 + a + q,$$

we get that $p \mid N(a - \alpha)$. Combining (2) and (3), we get
 $4p^2 \le 4|N(a - \alpha)| = |(2a + 1)^2 + 4q - 1| \le (2a + 1)^2 + 4|q| + 1 \le p^2 + 4|q| + 1,$
giving

$$(4) 3p^2 \le 4|q| + 1$$

From (3) and (4), we get that $a \leq \sqrt{\frac{|q|}{3}}$, so by our assumption $|a^2 + a + q|$ is prime. Thus,

(5)
$$p = |a^2 + a + q|.$$

Combining (2) and (5) we get $p^2 \leq p$, which is impossible. Thus, $\mathbb{Z}[\alpha]$ must be a unique factorization domain. \Box

4. APPLICATIONS OF THEOREM 1

As an immediate corollary we also get

THEOREM 2 (Lehmer [2]). If $x^2 + x + q$ is prime for x = 0, 1, ..., q - 2, then $\mathbb{Z}[\alpha]$ is a unique factorization domain.

THEOREM 3 (Kutsuna [1]). If $-x^2 + x + q$ is prime for every integer x with $1 \le x \le \sqrt{q} - 1$, then $\mathbb{Z}[\alpha]$ is a unique factorization domain.

Proof. It is easy to verify that

$$-x^{2} + x + q = -(x - 1)^{2} - (x - 1) + q.$$

Thus, by Theorem 1, we get that $\mathbb{Z}[\alpha]$ is a unique factorization domain. \Box

THEOREM 4. Let $d \in \{3, 7, 11, 19, 43, 67, 163\}$. Then the ring $\mathbb{Z}[\frac{-1+\sqrt{-d}}{2}]$ is a unique factorization domain.

Proof. Put $f(x) = |x^2 + x + q|, \ \delta = \sqrt{|q|/3}$ and $\alpha = \frac{-1 + \sqrt{1-4q}}{2}$

If q = 1, 2, then $\delta < 1$ and f(0) is 1 or prime. By Theorem 1, we get that $\mathbb{Z}\left[\frac{-1+\sqrt{-3}}{2}\right]$ and $\mathbb{Z}\left[\frac{-1+\sqrt{-7}}{2}\right]$ are unique factorization domains.

If q = 3, 5, 11, then $\delta < 2$. Furthermore, we get that f(0) and f(1) are prime numbers. By Theorem 1, we get that $\mathbb{Z}\left[\frac{-1+\sqrt{-11}}{2}\right]$, $\mathbb{Z}\left[\frac{-1+\sqrt{-19}}{2}\right]$ and $\mathbb{Z}\left[\frac{-1+\sqrt{-43}}{2}\right]$ are unique factorization domains.

If q = 17, then $\delta < 3$. Furthermore, we get that f(0), f(1) and f(2) are prime numbers. By Theorem 1, we get that $\mathbb{Z}\left[\frac{-1+\sqrt{-67}}{2}\right]$ is a unique factorization domain.

If q = 41, then $\delta < 4$. Furthermore, we get that f(0), f(1), f(2) and f(3) are prime numbers. By Theorem 1, we get that $\mathbb{Z}\left[\frac{-1+\sqrt{-163}}{2}\right]$ is a unique factorization domain. \Box

It is now well-known (see [5]) that there exactly nine complex quadratic fields with class number one. They are $\mathbb{Q}(\sqrt{-d})$ for $d \in \{1, 2, 3, 7, 11, 19, 43, 67, 163\}$. Combining this with theorem 1 we get the remarkable:

THEOREM 5. Let q be a positive integer, let $f_q(x) = x^2 + x + q$. Then, the following assertions are equivalent:

- 1. q = 1, 2, 3, 5, 11, 17, 41.
- 2. $f_q(x)$ is 1 or prime for $x = 0, 1, ..., \lfloor \sqrt{q/3} \rfloor$.

3. $\mathbb{Z}[\frac{-1+\sqrt{1-4q}}{2}]$ is a unique factorization domain.

Proof. The implication $1) \Rightarrow 2$) has been already verified in the proof of Theorem 4. The implication $2) \Rightarrow 3$) is an immediate consequence of Theorem 1. The proof of $3) \Rightarrow 1$) follows from the complete determination of all imaginary quadratic fields with class number 1. \Box

THEOREM 6. Let $d \in \{5, 13, 21, 29, 53, 77\}$. Then the ring $\mathbb{Z}[\frac{-1+\sqrt{d}}{2}]$ is a unique factorization domain.

Proof. Put $f(x) = |x^2 + x + q|$, $\delta = \sqrt{|q|/3}$ and $\alpha = \frac{-1 + \sqrt{1 - 4q}}{2}$. If q = -1, -3, -5, -7, then $\delta < 2$. Furthermore, we get that f(0) and f(1) are 1 or prime numbers. By Theorem 1, we get that $\mathbb{Z}\left[\frac{-1 + \sqrt{5}}{2}\right]$, $\mathbb{Z}\left[\frac{-1 + \sqrt{13}}{2}\right]$, $\mathbb{Z}\left[\frac{-1 + \sqrt{13}}{2}\right]$ and $\mathbb{Z}\left[\frac{-1 + \sqrt{29}}{2}\right]$ are unique factorization domains. If q = -13, -19, then $\delta < 3$. Furthermore, we get that f(0), f(1) and f(2) are prime numbers. By Theorem 1, we get that $\mathbb{Z}\left[\frac{-1 + \sqrt{53}}{2}\right]$ and $\mathbb{Z}\left[\frac{-1 + \sqrt{77}}{2}\right]$ are unique factorization domains.

Acknowledgments. The author wishes to thank the referees for so carefully checking the manuscript.

REFERENCES

- M. Kutsuna, On a criterion for the class number of a quadratic number field to be one, Nagoya Math. J. 79 (1980), 123–129.
- [2] D.H. Lehmer, On the function $x^2 + x + A$, Sphinx, 6 (1936), 212–214.
- [3] R. A. Mollin, Quadratics, CRC Press, Boca Raton, 1996.
- [4] V. J. Ramírez, A new proof of the Unique Factorization of $\mathbb{Z}\left[\frac{1+\sqrt{-d}}{2}\right]$ for d = 3, 7, 11, 19, 43, 67, 163, Rev. Colombiana Mat. (2) **50** (2016), 139–143.
- [5] H. M. Stark. A complete determination of the complex quadratic fields of class number one, *Michigan Math. J.* 14 (1967), 1–27

Received July 14, 2017 Universidad Simón Bolívar, Departamento de Matemáticas Puras y Aplicadas ramirezv@usb.ve