CLASS NUMBER ONE CRITERIA FOR QUADRATIC FIELDS

VÍCTOR JULIO RAMÍREZ VIÑAS

Communicated by Alexandru Zaharescu

Abstract

In this study we obtain a criterion for the class number of the quadratic number fields to be one. We also apply this criterion to give an elementary proof of the fact that rings $\mathbb{Z}\left[\frac{-1+\sqrt{-d}}{2}\right]$ are unique factorization domains for $d=$ $3,7,11,19,43,67,163$. We also prove that the rings $\mathbb{Z}\left[\frac{-1+\sqrt{D}}{2}\right]$ are unique factorization domains for $D=5,13,21,29,53,77$.

AMS 2010 Subject Classification: 11N32, 11R29, 13A05. Key words: unique factorization domain, primes, prime producing polynomial.

1. INTRODUCTION

It has been known for a long time that there exists a close connection between prime producing polynomials and the class number one problem for quadratic fields. Lehmer [2] observed in 1936 that if $x^{2}+x+q$ is prime for $x=0,1, \ldots, q-2$, then the class number of the field $\mathbb{Q}(\sqrt{1-4 q})$ must necessarily be one. In 1980 Kutsuna [1] proved the following for real quadratic fields: If $-n^{2}+n+q$ is prime for all positive $n<\sqrt{q}-1$, then the class number of the field $\mathbb{Q}(\sqrt{1+4 q})$ must necessarily be one. For this matter, we suggest reading the book of Mollin [3].

The aim of this paper is to prove the following:
Theorem. Let q be an integer. If $\left|x^{2}+x+q\right|$ is 1 or prime for $x=$ $0,1, \ldots,\lfloor\sqrt{|q| / 3}\rfloor$, then $\mathbb{Z}\left[\frac{-1+\sqrt{1-4 q}}{2}\right]$ is a unique factorization domain.

We also apply this criterion to give an elementary proof of the fact that rings $\mathbb{Z}\left[\frac{-1+\sqrt{-d}}{2}\right]$ are unique factorization domains for $d=3,7,11,19,43,67,163$. We also prove that the rings $\mathbb{Z}\left[\frac{-1+\sqrt{D}}{2}\right]$ are unique factorization domains for $D=5,13,21,29,53,77$.

2. PRELIMINARIES

We shall denote, as usual, the field of complex numbers by \mathbb{C}, the ring of rational integers by \mathbb{Z}. In what follows $\alpha \in \mathbb{C}$ is a root of the irreducible polynomial $x^{2}+x+q \in \mathbb{Z}[x]$.

Lemma 1. Let p be a prime. Then p is prime in $\mathbb{Z}[\alpha]$ if and only if $x^{2}+x+q$ is irreducible in $\mathbb{Z}_{p}[x]$.

Proof. See [4, Lemma 2.3, page 141].
Lemma 2. If $\mathbb{Z}[\alpha]$ is not a unique factorization domain, then there is a prime number p which is not prime in $\mathbb{Z}[\alpha]$ such that whenever $\omega \in \mathbb{Z}[\alpha]$ is such that
$p \mid N(\omega), \quad$ then $\quad p^{2} \leq|N(\omega)|$,
where N stands for the norm map.
Proof. See [4, Lemma 2.2, page 140].

3. MAIN THEOREM

TheOrem 1. If $\left|x^{2}+x+q\right|$ is 1 or prime for $x=0,1, \ldots,\lfloor\sqrt{|q| / 3}\rfloor$, then $\mathbb{Z}[\alpha]$ is a unique factorization domain.

Proof. Suppose that $\mathbb{Z}[\alpha]$ is not a unique factorization domain. Then by Lemma 2, there is a prime number p which is not prime in $\mathbb{Z}[\alpha]$ such that

$$
\begin{equation*}
\omega \in \mathbb{Z}[\alpha] \quad \text { and } \quad p \mid N(\omega) \quad \text { implies that } \quad p^{2} \leq|N(\omega)| . \tag{2}
\end{equation*}
$$

Since p is not prime in $\mathbb{Z}[\alpha]$, by Lemma 1 , we get that there exists $a \in \mathbb{Z}$ such that

$$
\begin{equation*}
0 \leq a \leq(p-1) / 2 \quad \text { and } \quad a^{2}+a+q \equiv 0 \quad(\bmod p), \tag{3}
\end{equation*}
$$

and since

$$
N(a-\alpha)=a^{2}+a+q,
$$

we get that $p \mid N(a-\alpha)$. Combining (2) and (3), we get $4 p^{2} \leq 4|N(a-\alpha)|=\left|(2 a+1)^{2}+4 q-1\right| \leq(2 a+1)^{2}+4|q|+1 \leq p^{2}+4|q|+1$, giving

$$
\begin{equation*}
3 p^{2} \leq 4|q|+1 \tag{4}
\end{equation*}
$$

From (3) and (4), we get that $a \leq \sqrt{\frac{|q|}{3}}$, so by our assumption $\left|a^{2}+a+q\right|$ is prime. Thus,

$$
\begin{equation*}
p=\left|a^{2}+a+q\right| . \tag{5}
\end{equation*}
$$

Combining (2) and (5) we get $p^{2} \leq p$, which is impossible. Thus, $\mathbb{Z}[\alpha]$ must be a unique factorization domain.

4. APPLICATIONS OF THEOREM 1

As an immediate corollary we also get
Theorem 2 (Lehmer [2]). If $x^{2}+x+q$ is prime for $x=0,1, \ldots, q-2$, then $\mathbb{Z}[\alpha]$ is a unique factorization domain.

Theorem 3 (Kutsuna [1]). If $-x^{2}+x+q$ is prime for every integer x with $1 \leq x \leq \sqrt{q}-1$, then $\mathbb{Z}[\alpha]$ is a unique factorization domain.

Proof. It is easy to verify that

$$
-x^{2}+x+q=-(x-1)^{2}-(x-1)+q .
$$

Thus, by Theorem 1 , we get that $\mathbb{Z}[\alpha]$ is a unique factorization domain.
Theorem 4. Let $d \in\{3,7,11,19,43,67,163\}$. Then the ring $\mathbb{Z}\left[\frac{-1+\sqrt{-d}}{2}\right]$ is a unique factorization domain.

Proof. Put $f(x)=\left|x^{2}+x+q\right|, \delta=\sqrt{|q| / 3}$ and $\alpha=\frac{-1+\sqrt{1-4 q}}{2}$.
If $q=1,2$, then $\delta<1$ and $f(0)$ is 1 or prime. By Theorem 1 , we get that $\mathbb{Z}\left[\frac{-1+\sqrt{-3}}{2}\right]$ and $\mathbb{Z}\left[\frac{-1+\sqrt{-7}}{2}\right]$ are unique factorization domains.

If $q=3,5,11$, then $\delta<2$. Furthermore, we get that $f(0)$ and $f(1)$ are prime numbers. By Theorem 1, we get that $\mathbb{Z}\left[\frac{-1+\sqrt{-11}}{2}\right], \mathbb{Z}\left[\frac{-1+\sqrt{-19}}{2}\right]$ and $\mathbb{Z}\left[\frac{-1+\sqrt{-43}}{2}\right]$ are unique factorization domains.

If $q=17$, then $\delta<3$. Furthermore, we get that $f(0), f(1)$ and $f(2)$ are prime numbers. By Theorem 1, we get that $\mathbb{Z}\left[\frac{-1+\sqrt{-67}}{2}\right]$ is a unique factorization domain.

If $q=41$, then $\delta<4$. Furthermore, we get that $f(0), f(1), f(2)$ and $f(3)$ are prime numbers. By Theorem 1 , we get that $\mathbb{Z}\left[\frac{-1+\sqrt{-163}}{2}\right]$ is a unique factorization domain.

It is now well-known (see [5]) that there exactly nine complex quadratic fields with class number one. They are $\mathbb{Q}(\sqrt{-d})$ for $d \in\{1,2,3,7,11,19,43,67,163\}$. Combining this with theorem 1 we get the remarkable:

Theorem 5. Let q be a positive integer, let $f_{q}(x)=x^{2}+x+q$. Then, the following assertions are equivalent:

1. $q=1,2,3,5,11,17,41$.
2. $f_{q}(x)$ is 1 or prime for $x=0,1, \ldots,\lfloor\sqrt{q / 3}\rfloor$.
3. $\mathbb{Z}\left[\frac{-1+\sqrt{1-4 q}}{2}\right]$ is a unique factorization domain.

Proof. The implication 1) $\Rightarrow 2$) has been already verified in the proof of Theorem 4. The implication 2$) \Rightarrow 3$) is an immediate consequence of Theorem 1. The proof of 3$) \Rightarrow 1$) follows from the complete determination of all imaginary quadratic fields with class number 1.

THEOREM 6. Let $d \in\{5,13,21,29,53,77\}$. Then the ring $\mathbb{Z}\left[\frac{-1+\sqrt{d}}{2}\right]$ is a unique factorization domain.

Proof. Put $f(x)=\left|x^{2}+x+q\right|, \delta=\sqrt{|q| / 3}$ and $\alpha=\frac{-1+\sqrt{1-4 q}}{2}$.
If $q=-1,-3,-5,-7$, then $\delta<2$. Furthermore, we get that $f(0)$ and $f(1)$ are 1 or prime numbers. By Theorem 1 , we get that $\mathbb{Z}\left[\frac{-1+\sqrt{5}}{2}\right], \mathbb{Z}\left[\frac{-1+\sqrt{13}}{2}\right]$, $\mathbb{Z}\left[\frac{-1+\sqrt{21}}{2}\right]$ and $\mathbb{Z}\left[\frac{-1+\sqrt{29}}{2}\right]$ are unique factorization domains.

If $q=-13,-19$, then $\delta<3$. Furthermore, we get that $f(0), f(1)$ and $f(2)$ are prime numbers. By Theorem 1 , we get that $\mathbb{Z}\left[\frac{-1+\sqrt{53}}{2}\right]$ and $\mathbb{Z}\left[\frac{-1+\sqrt{77}}{2}\right]$ are unique factorization domains.

Acknowledgments. The author wishes to thank the referees for so carefully checking the manuscript.

REFERENCES

[1] M. Kutsuna, On a criterion for the class number of a quadratic number field to be one, Nagoya Math. J. 79 (1980), 123-129.
[2] D.H. Lehmer, On the function $x^{2}+x+A$, Sphinx, 6 (1936), 212-214.
[3] R. A. Mollin, Quadratics, CRC Press, Boca Raton, 1996.
[4] V. J. Ramírez, A new proof of the Unique Factorization of $\mathbb{Z}\left[\frac{1+\sqrt{-d}}{2}\right]$ for $d=$ 3, 7, 11, 19, 43, 67, 163, Rev. Colombiana Mat. (2) 50 (2016), 139-143.
[5] H. M. Stark. A complete determination of the complex quadratic fields of class number one, Michigan Math. J. 14 (1967), 1-27

Received July 14, 2017
Universidad Simón Bolívar,
Departamento de Matemáticas Puras y Aplicadas
ramirezv@usb.ve

