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In this paper, we use the penalty method to study constrained minimization
problems for set-valued maps and develop Clarke’s exact penalty principle at
both local and global cases. Also, by using the notion of merit functions, we
generalize Clarke’s exact principle for them.
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1. INTRODUCTION

Many problems in economics, engineering and applied sciences are mod-
eled by nonlinear global minimization problems. Most attention in the search
for global solutions is rather than local ones of nonlinear optimization prob-
lems. Already, most research efforts have been appropriated to globally solving
either unconstrained problems or problems with simple constraints.
Recently, the more difficult case of global optimization problems with general
constraints has been as well explored, and different approaches are explained
(see [2, 12, 15]). Also, a specific attention is given to use of some augmented
Lagrangian functions to agreement the general constraints (see [8, 16, 11]).
Penalty approach is an important and useful technique for solving constrained
optimization. The idea of the penalty approach is not new; Eremin [7] and
Zangwill [19] introduced the notion of exact penalization for nonlinear con-
strained optimization and the exact penalty results were demonstrated by Ioffe
[10]. Zaslavski [19, 21] used the penalty approach to study a class of constrained
minimization problems on complete metric spaces and created the generalized
exact penalty property and obtained an estimation of the exact penalty. Also,
by using the penalty approach, he studied three constrained nonconvex mini-
mization problems with Lipschitzian functions (on bounded sets):
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1. an equality constrained problem in Banach space with a locally Lips-
chitzian constraint function,

2. an inequality constrained problem in a Banach space with a locally Lip-
schitzian constraint function,

3. a problem in a finite-dimensional space with mixed constraints and smooth
constraint functions.

A penalty function is called to have the exact penalty property [6, 9] if there
exists a penalty coefficient for which a solution of an unconstrained penal-
ized problem is a solution of the corresponding constrained problem. Ye [17]
studied Clarke’s exact penalty principle at both global and local for vector
valued functions. Also, Durea and Strugariu [4] employed a new method to
penalize a constrained non solid vector optimization problem by means of a
scalarization functional applied to the constrained system. In [5] they used
a double penalization procedure in order a set-valued optimization problem
with functional constrained to an unconstrained one. Recently, Strekalovsky
[14] consider a nonconvex optimization problem with the cost function and the
inequality constraints given by d.c functions (difference of two convex func-
tions) and showed that the original problem is reduced to a problem without
inequality constraints by means of the exact penalization techniques.
The main purpose of this paper is to extend results in [4, 17] from single-valued
function to set-valued maps. In the following, we express Clarke’s exact penalty
principle [3] for real-valued functions.

Theorem 1.1 (Clarke’s exact penalty principle). Let S be a subset of a
normed space X and f : X → R be Lipschitz of rank Lf on S. Let x belong
to a set C ⊂ S and suppose that f attains a minimum over C at x. Then, for
any L ≥ Lf , the function g(y) = f(y) + LdC(y) attains a minimum over S
at x. Conversely, suppose that C is closed. Then, for any L > Lf , any other
point minimizing g over S must also minimize the function f over C.

In this paper by using the concept of K-minimizers for set-valued maps,
we develop and prove Clarke’s exact penalty principle at both local and global
cases. The paper is organized as follows: Section 2 prepares briefly some
preliminary notions and results used in sequel. In Section 3, we give some
conditions under which the constrained set-valued optimization problem and
the unconstrained exact penalized problem are exactly equivalent. Also, we
express Clarke’s exact principle for merit functions which is a generalization of
penalty functions.
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2. PRELIMINARIES

Let X and Y be normed spaces. The closed unit ball of x ∈ X and the
distance of x from C ⊂ X are denoted by BX and dC(x) := infc∈C ||x − c||,
respectively. Recall that K ⊂ Y is a cone if λy ∈ K for all y ∈ K and λ ≥ 0,
a convex cone is one for which λ1y1 + λ2y2 ∈ K for all λ1, λ2 ≥ 0, and a cone
is pointed if K ∩ (−K) = {◦}, where ◦ denotes the zero element in Y . Now,
let Y be a normed space and K be a cone in Y . We consider the preference
relation for two vectors x, y ∈ Y induced by cone K given as follows:

x � y ⇐⇒ y − x ∈ K,
x ≺ y ⇐⇒ y − x ∈ K\{◦}.

In particular, if Y = RN and K = RN
+ := {z ∈ RN : z has nonnegative

components} then we have a preference in the Pareto sense, and if Y = RN

and K = intRN
+ ∪ {◦}, where intC denotes the interior of set C, then we have

a preference in the weak Pareto sense.
The Aubin property is an important extension of Lipschitz continuity to

multifunctions. It has been introduced by Aubin [1] and is also referred to
as “Lipschitz-like” continuity. Now, we consider K-Lipschitz property near
a point in the following sense that is not the same as the usual Lipschitz
continuity.

Definition. Let S be a subset of X. Suppose that F : X → 2Y and K
is a cone of Y . We say that F is K-Lipschitz on S (of rank LF ) if there is a
constant LF > 0 and an element e ∈ K with ‖e‖ = 1 such that

F (x1) + LF ‖x1 − x2‖e ⊆ F (x2) +K, ∀x1, x2 ∈ S
Let x̄ ∈ K. We say that F is K-Lipschitz near x̄ if there is U , a neigh-

borhood of x̄, such that F is K-Lipschitz on U .

Definition. A point (x̄, ȳ) ∈ GrF is called to be a global K-minimizer
point for F on C if x̄ ∈ C and

(F (C)− ȳ) ∩ (−K\{◦}) = ∅.
If one replaces in the pervious formula the set C with C ∩U , where U is

a neighborhood of x̄, then local solutions are obtained.
The following lemma is an extension of Lemma 2.5 [13] in the case that

C is not necessarily closed.

Lemma 2.1 ([17]). Let C be a nonempty set and let x̄ ∈ C. Then, for
any ε > δ > 0 and any y ∈ B̄(x̄, ε−δ2 )

dC(y) = dC∩B̄(x̄,ε)(y).

Moreover, if C is a closed subset of a finite-dimensional space, then δ can be
chosen as ◦ in the above statement.
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3. MAIN RESULTS

In this section, we present some results for global and local exact penal-
ization for distance functions in set-valued optimization problems. We first
give an extension of Clarke’s exact penalty principle.

Theorem 3.1 (Global Exact Penalization for Distance Function). Let X
and Y be normed spaces, let S ⊂ X, C ⊂ S, and let K ⊂ Y be a convex and
pointed cone. Suppose that F : S → 2Y is K-Lipschitz on S of rank LF and e
is the element in K given by the K-Lipschitz continuity of F .

(i) Assume that K\{◦} is an open set. Then any global K-minimizer
of F on C is a global K-minimizer of the set-valued exact penalty function
F (x) + LFdC(x)e on S.

(ii) Assume that either C is closed or that K\{◦} is an open set. Then
for any L > LF , (x̄, ȳ) is a global K-minimizer of F on C if and only if it is
a global K-minimizer of the set-valued exact penalty function F (x) + LdC(x)e
on S.

Proof. By the K-Lipschitz continuity of F , there is a constant LF > 0
and an element e ∈ K with ‖e‖ = 1, such that

(1) F (x) + LF ‖x− x∗‖e ⊆ F (x∗) +K ∀x, x∗ ∈ S

To prove (i), suppose to the contrary that (x̄, ȳ) is a global K-minimizer of F
on C but not a global K-minimizer for F (x) + LFdC(x)e on S. Then there
exists (x, y) ∈ GrF with x ∈ S such that

(2) y + LFdC(x)e ≺ ȳ

Since K\{◦} is open, from (2), there exists a small enough ε > 0 such that

(3) y + LFdC(x)e ≺ ȳ − LF εe

By definition of the distance function, there exists x∗ε ∈ C such that ‖x−x∗ε‖ ≤
dC(x) + ε. Hence, (1) implies that, there exists y∗ε ∈ F (x∗ε) such that

y∗ε � y + LF ‖x− x∗ε‖ by (1)

� y + LF (dC(x) + ε)e ≺ ȳ by (3),

which implies y∗ε ≺ ȳ. This contradicts the fact that (x̄, ȳ) K-minimizes F on
C, and therefore the conclusion of (i) holds.

We now prove (ii). Suppose to the contrary that (x̄, ȳ) is a global K-
minimizer of F on C but not a global K-minimizer for F (x) + LdC(x)e on S
and L > LF . Then there exists (x, y) ∈ GrF with x ∈ S such that

(4) y + LdC(x)e ≺ ȳ
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Observe that x cannot lie in the set C, since else x̄ would not be a global
K-minimizer of F on C. Assume that C is closed. Then x /∈ C implies that
dC(x) > 0. Since L

LF
> 1, one can choose x∗ ∈ C such that ‖x−x∗‖ < L

LF
dC(x).

Hence, one has

(5) y + LF ‖x− x∗‖e ≺ y + LdC(x)e ≺ ȳ.

Now, by using the K-Lipschitz property of F (relation (1)), there exists y∗ ∈
F (x∗) such that

(6) y∗ � y + LF ‖x− x∗‖e.

Hence, by using relations (5) and (6), we have

y∗ ≺ ȳ,

which contradicts the fact that (x̄, ȳ) is a global K-minimizer of F on C, and
hence the necessity (ii) under the assumption that C is closed is proved. When
C is not closed but K\{◦} is open, the rest of the proof is similar to the proof
of (i). Therefore the necessity in (ii) holds.

To prove the sufficiency in (ii) by contradiction suppose that (x̄, ȳ) is a
minimizer of F (x) +LdC(x)e on S with x̄ ∈ C but not a minimizer of F on C
and L > LF . Then there is (x, y) ∈ GrF with x ∈ C such that y ≺ ȳ. Since
dC(x) = 0, the above relationship implies that

y + LdC(x)e ≺ ȳ + LdC(x̄)e.

contradicting the fact that (x̄, ȳ) is a minimizer of F (x) +LdC(x)e on S. Now,
it remains to prove that it is not possible to have x̄ /∈ C and to have (x̄, ȳ)
be a minimizer of F (x) + LdC(x)e on S. When C is closed, since x̄ /∈ C and
L
LF

> 1, one can pick x∗ ∈ C such that ‖x− x∗‖ < L
LF
dC(x̄). Then

(7) ȳ + LF ‖x∗ − x̄‖e ≺ ȳ + LdC(x̄)e.

Also, by using the K-Lipschitzian of F , there exists y∗ ∈ F (x∗) such that
y∗ ≺ ȳ+LF ‖x∗−x̄‖e. Hence by using relation (7) y∗ ≺ ȳ+LdC(x̄)e. Therefore,
we obtain

y∗ + LdC(x∗)e ≺ ȳ + LdC(x̄)e.
This contradicts the fact that (x̄, ȳ) is a K-minimizer of F (x) + LdC(x)e on
S. So, x̄ must lie in C. Now suppose that C is not closed but K\{◦} is open.
Let ε > 0 and x∗ε ∈ C be such that ‖x̄ − x∗ε‖ ≤ dC(x̄) + ε. Then by using
K-Lipschitzian property of F there exists y∗ε ∈ F (x∗ε) such that

y∗ε � ȳ + LF (dC(x̄) + ε)e ≺ ȳ + L(dC(x̄) + ε)e.

Hence, we have
y∗ε + LdC(x∗ε)e ≺ ȳ + LdC(x̄)e+ Lεe.
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Since ε > 0 is arbitrary and K\{◦} is open, this contradicts the fact that
(x̄, ȳ) is a global K-minimizer of F (x) + LdC(x)e on S. Therefore x̄ must lie
in C.

Example 3.2. Suppose that X = Y = R, S = [−1, 5], C = [−1, 1],K =
[0,+∞[, e = 1 and F : X → 2Y given by

F (x) =

{
|x| −1 ≤ x ≤ 1;

|x− 3| − 1 1 ≤ x ≤ 5.

By some computation we can see that F is K-Lipschitz on S of rank LF = 1.
Also, C is closed, K\{◦} is an open set and (0, 0) is a global K-minimizer of
F on C. Therefore Theorem 3.1 implies that it is a global K minimizer of the
set-valued exact penalty function F (x) + LdC(x)e on S for any L ≥ LF .

Theorem 3.3 (Local Exact Penalization for Distance Functions). Let X
and Y be normed spaces, C ⊂ S ⊂ X, and let K ⊂ Y be a convex and pointed
cone and also x̄ ∈ S. Suppose that there exists a positive constant ε such that
F : S → 2Y is K-Lipschitz on B̄(x̄, ε) of rank LF . Let e be an element in K
given by the Lipschitz continuity of F .

(i) Assume that K\{◦} is an open set. Let (x̄, ȳ) ∈ GrF be a local K-
minimizer of F on C. Then, for any L ≥ LF , it is a local K-minimizer of the
exact penalty function F (x) + LdC(x)e on S. Assume that C is closed. Then,
for any L > LF , if (x̄, ȳ) ∈ GrF is a local K-minimizer of F on C then it is
a local K-minimizer of the exact penalty function F (x) + LdC(x)e on S.

(ii) Assume that either C is closed or K\{◦} is an open set, and L > LF .
Suppose that (x̄, ȳ) ∈ GrF is a K-minimizer of the exact penalty function
F (x) + LdC(x)e on S ∩ B̄(x̄, ε) and C ∩ B̄(x̄, ε) 6= φ. Then (x̄, ȳ) ∈ GrF is a
K-minimizer of F on C ∩ B̄(x̄, ε).

Proof. (i) Assume that K\{◦} is an open set and L ≥ LF . Let (x̄, ȳ) be a
local K-minimizer of F on C but not a local K-minimizer of the exact penalty
function F (x) + LdC(x)e on S. Hence, there exists a closed ball B̄(x̄, ε) such
that (x̄, ȳ) is a global K-minimizer of F over B̄(x̄, ε)∩ S and F is K-Lipschitz
of rank LF on B̄(x̄, ε). It follows from Theorem 3.1 (i) that (x̄, ȳ) is a global
K-minimizer of F (x) + LdC∩B̄(x̄,ε)(x)e on B̄(x̄, ε) ∩ S. Now by using Lemma

(2.1), (x̄, ȳ) is a global K-minimizer of F (x) + LdC(x)e on B̄(x̄, ε3) ∩ S. So
(x̄, ȳ) is a local K-minimizer of F (x) + LdC(x)e on S.

By using Theorem 3.1 (ii) in place of Theorem 3.1 (i) in the above proof,
one can prove (i) under the assumption that C is closed and L > LF .

(ii) Suppose that (x̄, ȳ) is a K-minimizer of F (x)+LdC(x)e on S∩B̄(x̄, ε)
with x̄ ∈ C but not a local K-minimizer of F on C ∩ B̄(x̄, ε). Therefore, there
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is (x, y) ∈ GrF with x ∈ C ∩ B̄(x̄, ε) such that y ≺ ȳ, which implies that

y + LdC(x)e ≺ ȳ + LdC(x̄)e,

which contradicts with (x̄, ȳ) is a K-minimizer of F (x)+LdC(x)e on S∩B̄(x̄, ε).
Now, we show that it is not possible to have x̄ /∈ C, C ∩ B̄(x̄, ε) 6= φ for some
ε > 0 and (x̄, ȳ) being a K-minimizer of F (x) + LdC(x)e on S ∩ B̄(x̄, ε). By
assumption, F is K-Lipschitz on B̄(x̄, ε) of rank LF and C ∩ B̄(x̄, ε) 6= φ.
When C is closed, since x̄ /∈ C and L

LF
> 1, one can put (x∗, y∗) ∈ GrF with

x∗ ∈ C∩B̄(x̄, ε) to be such that ‖x̄−x∗‖ < L
LF
dC(x̄) and y∗ � ȳ+LF ‖x∗−x̄‖e.

Hence, we deduce
y∗ ≺ ȳ + LdC(x)e.

Now, the above implies that y∗+LdC(x∗)e ≺ ȳ+LdC(x̄)e. This contradicts the
fact that (x̄, ȳ) is a K-minimizer of F (x) +LdC(x)e on S ∩ B̄(x̄, ε). Therefore
x̄ must lie in C. Consider the case when K\{◦} is open. Let δ > 0 be a small
enough with x∗δ ∈ C be such that ‖x̄ − x∗δ‖ ≤ dC(x̄) + δ and x∗δ is included in
the ball B̄(x̄, ε). Then by K-Lipschitzation of F , there exists y∗δ ∈ F (x∗δ) such
that

y∗δ � ȳ + LF ‖x∗δ − x̄‖e � ȳ + LF (dC(x̄) + δ)e ≺ ȳ + L(dC(x̄) + δ)e.

Hence the above implies that

y∗δ + LdC(x∗δ)e ≺ ȳ + LdC(x̄)e+ Lδe.

Since δ > 0 is arbitrary and K\{◦} is an open set, this contradicts the fact
(x̄, ȳ) is a K-minimizer of F (x) + LdC(x)e on S ∩ B̄(x̄, ε). Therefore x̄ must
lie in C.

In Theorems 3.1 and 3.3, we showed that under suitable conditions the
distance function is an exact penalty function in set-valued optimization prob-
lems. In 1997, Ye et al. [18] introduced the concept of merit functions that by
using them we can characterize exact penalty functions.

Definition ([18]). Let X be a normed space and C ⊂ S ⊂ X. We call a
function ψ : S → R a merit function if

1. ψ(y) ≥ 0, ∀y ∈ S,

2. ψ(y) = 0 if and only if y ∈ C.

It is easy to see that if C is a closed set, then the distance function is
a merit function. Also, we can obtain some merit functions that are more
appropriate than the distance function.

Definition ([17] ). We say that a merit function ψ : S → R is a global
error bound function if ψ(x) ≥ dC(x) for every x ∈ S.
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Because an error bound function is restricted from below by the distance
function, we can obtain similar result for merit function.
In next theorems we present the global and local exact penalty results for merit
functions. Since, the proof are similar to the proof of Theorems 3.1 and 3.3,
respectively, we omit them.

Theorem 3.4 (Global Exact Penalty for Merit Function). Let X and Y
be normed spaces, let C ⊂ S ⊂ X, and let K ⊂ Y be a convex and pointed
cone. Asseme that F : S → 2Y is K-Lipschitz on S and that e is the element
in K given by the K-Lipschitz continuity of F . Suppose that ψ : S → R is a
global error bound function.

(i) Assume that K \ {◦} is an open set. Then any global K-minimizer of
F on C is a global K-minimizer of the exact penalty function F (x) +LFψ(x)e
on S.

(ii) Assume that either C is closed or that K \ {◦} is an open set. Then
(x̄, ȳ) is a global K-minimizer of F on C if and only if it is a global K-minimizer
of the exact penalty function F (x) + Lψ(x)e on S for any L > LF .

Theorem 3.5 (Local Exact Penalty For Merit Function). Let X and Y
be normed spaces, let C ⊂ S ⊂ X, and let K ⊂ Y be a convex and pointed
cone. Let x̄ ∈ S. Suppose that one can find a positive constant ε > 0 such that
F : S → 2Y is K-Lipschitz on B̄(x̄, ε) of rank LF and ψ : S → R is an error
bound function on B̄(x̄, ε). Let e be an element in K given by the Lipschitz
continuity of F . Then the following statements hold.

(i) Assume that K \ {◦} is an open set. For any L ≥ LF , if (x̄, ȳ) is a
local K-minimizer of F on C ⊂ S, then it is a local K-minimizer of the exact
penalty function F (x) + Lψ(x)e on S. Conversely, assume that C is closed.
Then, for any L > LF , if (x̄, ȳ) is a local K-minimizer of F on C ⊂ S then it
is a local K-minimizer of the exact penalty function F (x) + Lψ(x)e on S.

(ii) Assume that either C is closed or that K \{◦} is an open set, and that
L > LF . Suppose that (x̄, ȳ) is a K-minimizer of the exact penalty function
F (x) + Lψ(x)e on S ∩ B̄(x̄, ε), and that C ∩ B̄(x̄, ε) 6= φ. Then (x̄, ȳ) is a
K-minimizer of the function F on C ∩ B̄(x̄, ε).
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