
Dedicated to the memory of Cabiria Andreian-Cazacu

THE PERMUTATION ENTROPY AND THE ASSESSMENT OF
COMPARTMENT FIRE DEVELOPMENT: GROWTH AND DECAY

FLAVIA-CORINA MITROI-SYMEONIDIS and ION ANGHEL

Communicated by Lucian Beznea

We investigate the order/disorder characteristics of the compartment fire based
on experimental data. From our analysis, we claim that the permutation entropy
is suitable to detect the occurrence of the flashover and eventual unusual data
in fire experiments.
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1. INTRODUCTION

Given the sparse literature on the usefulness of the entropy in character-
izing fire data, our goal is to develop a new method to perform a local entropic
analysis of the time variation of the temperature during a full-scale fire exper-
iment, aiming to judge whether a flashover occurred or not and estimate the
time of occurrence.

The experimental data was collected during a full-scale fire experiment
conducted at Fire Officers Faculty in Bucharest. We do not include here the
description of the experimental setup (materials and methods), which can be
found in [2]. During the test, flames were observed to impinge on the ceiling
and exit through the front door opening, which is generally known as indicating
that the fire reaches the flashover.

In Section 2 we present the theoretical background (as notation, notions,
algorithms needed to perform the analysis).

Section 3 is dedicated to the results of the analysis of the collected raw
data and their interpretation. For recent research on the fire phenomena per-
formed using entropic tools the interested reader is referred to [4] and [6]. The
methodological challenge is that the data under study is likely to be produced
and affected by endogenous factors, but also confounded by external factors.
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2. THEORETICAL BACKGROUND AND REMARKS

2.1. The permutation entropy and the PYR-algorithm

The natural logarithm is used below, as elsewhere in this paper.

Shannon’s entropy [5] is defined as

H(P ) = −
n∑
i=1

pi log pi,

where P = (p1, . . . , pn) is a probability distribution. It is nonnegative and its
maximum value is H(U) = log n, where U = (1/n, . . . , 1/n). Throughout the
paper we use the convention 0 log 0 = 0.

For reader’s convenience, we describe below the procedure and the theo-
retical background we have used to determine a probability distribution out of
our experimental data.

The permutation entropy PE [1] quantifies uncertainty and disorder of a
time series based on the appearance of ordinal patterns, that is on comparisons
of neighboring values of time series. For other details on the PE-algorithm
applied to the present experimental data, see [2].

Let T = (t1, . . . , tn) be a time series with distinct values.

Step 1. The increasing rearranging of the components of each j-tuple
(ti, . . . , ti+j−1) as (ti+π1−1, . . . , ti+πj−1) yields a unique permutation of order j
denoted by π = (π1, . . . , πj), an encoding pattern that describes the up-and-
downs in the considered j-tuple.

Step 2. The absolute frequency of this permutation (the number of j-
tuples which are associated to this permutation) is

kπ ≡ #{i : i ≤ n− (j − 1), (ti, . . . , ti+j−1) is of type π}.
These values have the sum equal to the number of all consecutive j-tuples,

that is n− (j − 1).

Step 3. The permutation entropy of order j is defined as

PE(j) ≡ −
∑
π

pπ log pπ,

where pπ = kπ/(n− (j − 1)) is the relative frequency.

In [1] the measured values of the time series are considered distinct. The
authors neglect equalities and propose to break them by adding small random
perturbations (random noise) to the original series.



3 The permutation entropy and the assessment of compartment fire development 205

In [3] we propose a method to redistribute the ties (equalities), called
PYR-algorithm, which fits better in the context of fire phenomena. We briefly
describe it here.

Encoding Step. Let mx(d) = min{s : ts = max(t1, . . . , tn)}, determined
for the data collected at the thermocouple Td. The j-tuples with distinct ele-
ments are counted on behalf of a permutation as in the PE-algorithm encoding
step (Step 1 above). The same holds for each j-tuple (ti, . . . , ti+j−1) that con-
tains ties, after ordering the ties chronologically if i ≤ mx(d), or in reversed
chronological order if i > mx(d). This step is an adjustment of the counting
procedure inspired by the evolution of the fire: a j-tuple is considered on the
ascending trend before the maximum value of the temperature is reached (the
growth period), respectively on the descending trend afterwards (the decay
period).

Example. A 6-tuple which satisfies ti+2 < ti+3 = ti+6 < ti+1 < ti+4 =
ti+5, should be counted on behalf of the permutation (2, 3, 6, 1, 4, 5) if it occurs
on a growth period, or on behalf of the permutation (2, 6, 3, 1, 5, 4) if it appears
during the decay period.

The resulting entropy, computed following Step 2 and Step 3 in the PE-
algorithm above, is denoted by PYRPE(j). The name comes from the Greek
word πυ̃ρ (pyr), meaning fire.

3. RESULTS AND DISCUSSION

The raw data set under consideration consists of measured temperatures
during a compartment fire: six thermocouples T1, ..., T6 measure the tem-
peratures every second during the experiment. Hence, we get six time-series
consisting of 3046 entries (data points) each.

3.1. Growth and decay period

Reaching the maximum temperature is a significant event in the evolution
of the fire. We aim to assess the performance of the PYR-algorithm and the
permutation entropy during the growth and the decay period of the fire event.

We plot the values of the permutation entropy for 3 and 4-tuples: the
line connecting the values of the permutation entropy for the growth period
is denoted by G(j), for the decay period by D(j), where j = 3 or 4 is the
embedding dimension. The probability distribution is determined on the time
intervals [1,mx(i)] and [mx(i), 3046− j + 1] , where i = 1, 2, ..., 6 and mx(i) is
the time when the maximum temperature value is reached at the thermocouple
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Ti. The entropy on the decay period is usually bigger, that is, the temperature
has more fluctuations after the maximum temperature has been reached. When
we increase the distance to the fire, the entropy looks similar on the two periods
under consideration. See Figure 1 and Figure 2.
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Fig. 1 – PYRPE(3) on the growth and decay intervals.
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Fig. 2 – PYRPE(4) on the growth and decay intervals.

3.2. The permutation entropy plotted against time. An important
local minimum

It is of interest to observe the evolution of the permutation entropy in
time, so we plot it cumulatively (denoted by CPYRPE): the probability dis-
tribution corresponding to each interval [1, t], where t ∈ [490, 3046− j + 1], is
determined by counting the patterns as prescribed by the PYR-algorithm for
the j-tuples (tn, . . . , tn+j−1), where 1 ≤ n ≤ t − j + 1. The plots against the
time t, for 3 and 4-tuples, appear in Figure 3, respectively Figure 4.

At the moment t = mx(i)−j+1, the maximum temperature value at the
thermocouple Ti becomes the last element of the last j-tuple counted for the
plot of PYRPE. Then the graph of the entropies changes its appearance, we
observe there a local minimum (see red star plots of PYRPE at each thermo-
couple). It is due to the structure of the compartment fire data, so one can infer
that this minimum would appear regardless of the occurrence of a flashover or
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the position of the thermocouple. The descent of the plot while approaching
the moment mx(i) is due to the monotonous increase in temperature.

We remark that the plot of the values corresponding to the thermocouple
T5 looks different, which leads us to the conclusion that it might also indicate a
turbulence, a white noise perturbation of undetermined origin or a malfunction
of this thermocouple (an improperly calibrated scale), however this is beyond
the scope of the present paper to discuss it in detail.
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Fig. 3 – CPYRPE(3) plotted against time.
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Fig. 4 – CPYRPE(4) plotted against time.

Of major importance is the adequacy of the (PYR-) algorithm used to
determine the probability distribution. The similarities of the plots, for j = 3
and 4, are not consequences of the mathematical properties of the entropy, but
a result of the PYR-algorithm, that is of the fire phenomena evolution.

3.3. Flashover

Another meaningful event during a compartment fire development is the
eventual occurrence of the flashover. We further describe a new procedure to
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detect the prior occurrence and estimate the time of the flashover by analyzing
the temperature time series collected during the fire experiment.

First, we plot the evolution of the complementary cumulative (with re-
spect to the maximum temperature) permutation entropy, denoted CCPYRPE:
the probability distribution is determined by the PYR-algorithm for the j-
tuples (tn, . . . , tn+j−1), where t ≤ n ≤ mx(i)− j + 1, where t ∈ [1,mx(i)− j]
and i = 1, 2, .., 6. By plotting these values against time, we determine the time
when the entropies take the value zero (the zero entropy time denoted fur-
ther by ZE(j)). See Figure 5 and Figure 6. We note that the conclusions
remain unchanged when running the analysis for different embedding dimen-
sions. The fact that the CCPYRPE takes the value zero while approaching
the maximum temperature shows that the temperature has no other fluctua-
tions before reaching its maximum, its increase is monotonous, hence the fire
development can be further interpreted as the flashover occurrence.

Unexpectedly, ZE(j) is the same for the embedding dimensions j = 3 and
j = 4 at every thermocouple. This fact cannot be mathematically explained
(the counting of the j-tuples yields probability distributions with 6, respectively
24 components) and we consider that the results characterize compartment fire
events.

As expected, the way the temperature fluctuates depends on the position
of the thermocouple, that is on the distance to the upper layer and on the
distance to the fire source. The thermocouples T2 and T3, respectively T4
and T6, have only little delays in between their ZE(j) (see Table 1). The
thermocouples are situated outside the area of the fire, so the values do not
coincide.

The fact that at T1 the temperature has fluctuations in the 4-tuple which
ends with mx(1) (and therefore the entropy is not zero) could be intuitively
explained by its position at the highest layer, where the resulting faster-moving
smoke and fire gases are encountered. We stress that some isolated fluctuations
at T1 seem to occur when other thermocouples recordings reach the zero en-
tropy time, that is when they record the flashover. Therefore, we do not ignore
such singletons of fluctuating data, but consider them significant for further
analysis of the dynamics of the fire.

(Table 1)

Zero Entropy time T1 T2 T3 T4 T5 T6

mx(i) 1140 1140 1138 1186 918 1180

ZE(3) − 1012 1010 1066 907 1162

ZE(4) − 1012 1010 1066 907 1162

The occurrence of the flashover and its exact time have not been inves-
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Fig. 5 – CCPYRPE(3) plotted from the ignition time to mx(i)
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Fig. 6 – CCPYRPE(4) plotted from the ignition time to mx(i).

tigated yet by means of entropy. Our results clearly demonstrate that such
analysis is possible and more experimental data gathered from the fire zone
might enable a better estimate of this time.

The fluctuation of the temperature (see also Figure 7) is affecting the evo-
lution of the entropy. Figure 5 and Figure 6 show that there is an increase of the
local permutation entropy followed by a sudden decrease, for each thermocou-
ple except T5 (since before the flashover, the temperature is highly oscillating
before it starts to increase fast).
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Fig. 7 – Time-temperature plot.
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