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We give some characterizations and properties of C -cotorsion modules and
strongly C -coherent rings. Strongly C -coherent rings and C -semihereditary
rings are characterized by C -cotorsion modules. Moreover, we define C -cotorsion
dimensions for modules and rings respectively, these dimension have nice prop-
erties when the ring is strongly C -coherent.
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1. INTRODUCTION

Recall that a ring R is said to be left coherent [2, 7] if every finitely
generated left ideal of R is finitely presented, a ring R is said to be left semi-
hereditary if every finitely generated left ideal of R is projective. Coherent
rings, semihereditary rings and their generalizations have been studied exten-
sively by many authors (see, for example, [2, 3, 4, 6, 9, 14, 16, 19, 20, 22]). In
[23], we introduced the concepts of C -coherent rings and C -semihereditary
rings.

Let C be a class of some finitely presented left R-modules. Following
[23], a ring R is called C -coherent if every C ∈ C is 2-presented; a ring R is
called C -semihereditary, if whenever 0 → K → P → C → 0 is exact , where
C ∈ C , P is finitely generated projective, then K is projective. To characterize
C -coherent rings and C -semihereditary rings, in [23], we also introduced the
concepts of C -injective modules and C -flat modules. According to [23], a left
R-module M is called C -injective if Ext1R(C,M) = 0 for every C ∈ C , a
right R-module M is called C -flat if TorR1 (M,C) = 0 for every C ∈ C . In
[24], we introduced the concepts of C -projective modules and strongly C -
coherent rings. Following [24], a left R-module M is called C -projective if
Ext1R(M,E) = 0 for any C -injective module E; a ring R is called strongly
C -coherent, if whenever 0→ K → P → C → 0 is exact, where C ∈ C and P
is finitely generated projective, then K is C -projective. We recall also that a
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right R-module M is called cotorsion [7] if Ext1R(F,M) = 0 for any flat module
right R-module F . In [24], we introduced the concept of C -cotorsion modules,
following [24], a right R-module M is called C -cotorsion if Ext1R(F,M) = 0
for any C -flat module F .

In this article, we continues to study C -cotorsion modules , strongly C -
coherent rings and C -semihereditary rings. We give some characterizations
and properties of C -cotorsion modules, strongly C -coherent rings, and C -
semihereditary rings. Strongly C -coherent rings and C -semihereditary rings
are characterized by C -cotorsion modules. As corollaries, some results of left
semihereditary rings are obtained. Furthermore, we define C -cotorsion di-
mensions of modules and rings, we show that over a strongly C -coherent ring,
these dimensions has some nice properties. As corollaries, some results of right
perfect rings are given.

Next, we recall some known notions and facts needed in the sequel.
Given a class L of R-modules, we will denote by

L ⊥ = {M : Ext1R(L,M) = 0, L ∈ L }
the right orthogonal class of L , and by

⊥L = {M : Ext1R(M,L) = 0, L ∈ L }
the left orthogonal class of L .

Let F be a class of R-modules and M an R-module. Following [7], we
say that a homomorphism ϕ : M → F where F ∈ F is an F-preenvelope of
M if for any morphism f : M → F ′ with F ′ ∈ F , there is a g : F → F ′ such
that gϕ = f . An F-preenvelope ϕ : M → F is said to be an F-envelope if
every endomorphism g : F → F such that gϕ = ϕ is an isomorphism. Dually,
we have the definitions of F-precovers and F-covers. F-envelopes (F-covers)
may not exist in general, but if they exist, they are unique up to isomorphism.

Following [1], a pair (A ,B) of classes of R-modules is called a cotorsion
pair if A ⊥ = B and ⊥B = A . A cotorsion pair (A ,B) is called hereditary [8,
Definition 1.1] if whenever 0 → A′ → A → A′′ → 0 is exact with A,A′′ ∈ A
then A′ is also in A . By [8, Proposition 1.2], a cotorsion pair (A ,B) is
hereditary if and only if whenever 0 → B′ → B → B′′ → 0 is exact with
B′, B ∈ B then B′′ is also in B. A cotorsion pair (A ,B) is called perfect [8]
if every R-module has an A -cover and a B-envelope. A cotorsion pair (A ,B)
is called complete (see [7, Definition 7.16] and [17, Lemma 1.13]) if for any
R-module M , there are exact sequences 0 → M → B → A → 0 with A ∈ A
and B ∈ B, and 0→ B′ → A′ →M → 0 with A′ ∈ A and B′ ∈ B.

Throughout this paper, R is an associative ring with identity and all
modules considered are unitary, C is a class of some finitely presented left
R-modules. For any R-module M , E(M) denotes the injective envelope of M .
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2. C -COTORSION MODULES

Throughout this paper, we will denote the class of C -flat (resp., C -
cotorsion, C -injective, C -projective) modules by C F (resp., C CT , C I, CP).
By [23, Theorem 2.10(2)], the pair (C F ,C CT ) is a perfect cotorsion pair.
We will denote the C -flat cover of M by C F (M) and denote the C -cotorsion
envelope of M by C CT (M) respectively.

Recall that a right R-module F is called min-flat [14] if TorR1 (F,R/I) = 0
for every minimal left ideal I; a right R-module M is called min-cotorsion [14]
if Ext1R(F,M) = 0 for any min-flat module right R-module F ; a right R-
module F is called P-flat [10] or (1, 1)-flat [20] if TorR1 (F,R/Ra) = 0 for every
a ∈ R; a right R-module M is called P-cotorsion [9] if Ext1R(F,M) = 0 for any
P-flat module right R-module F . Let n be a nonnegative integer. Recall that
a left R-module M is said to be n-presented in case there is an exact sequence
of left R-modules Fn → Fn−1 → · · · → F1 → F0 → M → 0 in which every Fi
is a finitely generated free , equivalently projective left R-module. A right R-
module F is called (n, 0)-flat [21, 22] if TorR1 (F, V ) = 0 for every n-presented
left R-module V ; a right R-module M is called n-flat [12] if TorR1 (M,N) = 0
for every finitely presented left R-module N with projective dimension ≤ n.
We call a right R-module M (n, 0)-cotorsion if Ext1R(F,M) = 0 for any (n, 0)-
flat module F , and we call a right R-module M n-cotorsion if Ext1R(F,M) = 0
for any n-flat module F .

Example 1. (1) Let C be the class of all finitely presented left R-modules.
Then a right R-module M is C -cotorsion if and only if it is cotorsion.

(2) Let C = {R/I : I is a minimal left ideal of R}. Then a right R-module
M is C -cotorsion if and only if it is min-cotorsion.

(3) Let C = {R/Ra : a ∈ R}. Then a right R-module M is C -cotorsion
if and only if it is P-cotorsion.

(4) Let C be the class of all n-presented left R-modules. Then a right
R-module M is C -cotorsion if and only if it is (n,0)-cotorsion.

(5) Let C be the class of all finitely presented left R-modules with pro-
jective dimension ≤ n. Then a right R-module M is C -cotorsion if and only if
it is n-cotorsion.

Next, we give some characterizations of C -cotorsion modules.

Theorem 1. Let M be a right R-module. Then the following statements
are equivalent:

(1) M is C -cotorsion.

(2) M is injective with respect to every exact sequence 0→ C → B → F → 0
of right R-modules with F C -flat.
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(3) For any C -flat module F , F is projective with respect to every exact
sequence 0→M →M ′ →M ′′ → 0.

Moreover, if E(M) is C -flat, then the above conditions are also equivalent to:

(4) If the sequence 0 → M → F → L → 0 is exact, where F is C -flat, then
F → L→ 0 is a C -flat precover of L.

(5) M is a kernel of a C -flat precover E → L with E injective.

Proof. (1)⇒ (2). By the exact sequence

Hom(B,M)→ Hom(C,M)→ Ext1R(F,M) = 0.

(2) ⇒ (1). For any C -flat module F , there exists an exact sequence
0 → K → P → F → 0, where P is projective. Hence we get an exact
sequence Hom(P,M)→ Hom(K,M)→ Ext1R(F,M)→ Ext1R(P,M) = 0, and
thus Ext1R(F,M) = 0 by (2). Therefore, M is C -cotorsion.

(1)⇒ (3). Assume (1). Then we have an exact sequence Hom(F,M ′)→
Hom(F,M ′′)→ Ext1R(F,M) = 0 for every C -flat module F , and so (3) follows.

(3)⇒ (1). Firstly, we have an exact sequence

0→M → E
f→ N → 0

of right R-modules, where E is injective. And so, for any C -flat module

F , we have an exact sequence Hom(F,E)
f∗→ Hom(F,N) → Ext1R(F,M) →

Ext1R(F,E) = 0. By (3), f∗ is epic, so Ext1R(F,M) = 0, and (1) follows.

(3)⇒ (4). It is obvious.

(4)⇒ (5). Assume (4). Then, letting E = E(M) and L = E(M)/M , we
have (5).

(5) ⇒ (1). By (5), we have an exact sequence 0 → M → E
f→ L → 0,

where E is injective, and E
f→ L→ 0 is a C -flat precover of L. Let F be any

C -flat right R-module. Then we get an exact sequence

Hom(F,E)
f∗→ Hom(F,L)→ Ext1R(F,M)→ Ext1R(F,E) = 0

with f∗ epic, which implies that Ext1R(F,M) = 0, and (1) follows.

Proposition 1. Let {Mi | i ∈ I} be a family of right R-modules. Then
the following statements are equivalent.

(1) Each Mi is C -cotorsion.
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(2)
∏
i∈IMi is C -cotorsion.

Proof. By the isomorphism Ext1R(F,
∏
i∈IMi) ∼=

∏
i∈I Ext1R(F,Mi).

Proposition 2. Let F be a class of right R-modules.

(1) If P ∈ F for any projective right R-module P and ϕ : F → M is an
F -precover, then ϕ is epic.

(2) If E ∈ F for any injective right R-module E and ϕ : M → F is an
F -preenvelope, then ϕ is monic.

Proof. (1). At first, there is an epimorphism of right R-modules P
α→M → 0,

where P is projective. Since ϕ : F → M is an F -precover and P ∈ F , there
exists a homomorphism β : P → F such that α = ϕβ. It follows that ϕ is
epic.

(2). It is dually to the proof of (1). �

Corollary 1. (1) C -flat covers of C -cotorsion modules are C -cotorsion.

(2) C -cotorsion enlopes of C -flat modules are C -flat.

Proof. (1). Let N be a C -cotorsion module and ϕ : F → N a C -
flat cover of N . Then by Proposition 2(1), ϕ is epic. So we have an exact

sequence 0 → Ker(ϕ) → F
ϕ→ N → 0. Note that C -flat modules are closed

under extensions, by [18, Lemma 2.1.1], Ext1R(F ′,Ker(ϕ)) = 0 for any C -flat
module F ′, so Ker(ϕ) is C -cotorsion since (C F ,C CT ) is a cotorsion pair by
[23, Theorem 2.10(2)], and thus F is C -cotorsion.

(2). Let F be a C -flat module and ψ : F → E an C -cotorsion enlope
of F . Then by Proposition 2(2), ψ is monic. So we have an exact sequence

0 → F
ψ→ E → E/im(ψ) → 0. Note that C -cotorsion modules are closed

under extensions , by [18, Lemma 2.1.2], Ext1R(E/im(ψ), N) = 0 for any C -
cotorsion module N , so E/im(ψ) is C -flat since (C F , C CT ) is a cotorsion
pair by [23, Theorem 2.10(2)], and thus E is C -flat.

Theorem 2. Let R be a ring and C be a class of some finitely presented
left R-modules. Then (C F ,C CT ) is a complete cotorsion pair.

Proof. Let M be any right R-module. Since (C F ,C CT ) is a perfect
cotorsion pair by [23, Theorem 2.10(2)], M has a C -flat cover ϕ : F → M
and a C -cotorsion enlope ψ : M → N . Moreover, by Proposition 2, ϕ is epic
and ψ is monic. So we have two exact sequence 0 → K → F → M → 0 and
0 → M → N → L → 0, where K = Ker(ϕ), L = N/im(ψ). Note that C -flat



300 Z. Zhu 6

modules and C -cotorsion modules are closed under extensions, by [18, Lemma
2.1.1, Lemma 2.1.2], we have that K is C -cotorsion, and L is C -flat. This
complete the proof.

Proposition 3. The following statements are equivalent for a ring R:

(1) R is strongly C -coherent.

(2) Ext2R(C,N) = 0 for any left R-module C ∈ C and any C -injective left
R-module N.

(3) R is C -coherent and (C F ,C CT ) is a hereditary cotorsion pair.

Proof. (1)⇔ (2). It follows from [24, Theorem 1(6)].
(2)⇔ (3). It follows from [23, Proposition 3.11].

Corollary 2. Let R be a strongly C -coherent ring, M a C -cotorsion
right R-module . Then ExtkR(F,M) = 0 for all C -flat module F and all positive
integers k.

Proof. Since R is a strongly C -coherent ring, by Proposition 3, we have
that (C F ,C CT ) is a hereditary cotorsion pair, and so ExtkR(F,M) = 0 for all
C -flat module F and all positive integers k by [8, Proposition 1.2].

3. THE C -COTORSION DIMENSION OVER STRONGLY
C -COHERENT RINGS

The cotorsion dimension of modules and rings were defined by Mao and
Ding in [13], now we define the C -cotorsion dimension of modules and rings
as following .

Definition 1.

(1) The C -cotorsion dimension of a module MR is defined by
C CT -dim(M) = inf{n : Extn+1

R (F,M) = 0 for every C -flat module F}

(2) The C -cotorsion global dimension of a ring R is defined by
C CT -D(R) =sup{C CT -dim(M): M is a right R-module}

Theorem 3. Let R be a strongly C -coherent ring, M a right R-module
and n a nonnegative integer. Then the following conditions are equivalent:

(1) C CT -dim(MR) ≤ n.

(2) Extn+kR (F,M) = 0 for all C -flat module F and all positive integers k .
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(3) Extn+1
R (F,M) = 0 for all C -flat module F .

(4) If the sequence of right R-modules

0→M
ε→ E0

d0→ · · · → En−1
dn−1→ En → 0

is exact with E0, · · · , En−1 C -cotorsion, then En is also C -cotorsion.

(5) There exists an exact sequence of right R-modules

0→M → E0 → · · · → En−1 → En → 0

with E0, · · · , En−1, En C -cotorsion.

(6) C CT -dim(C F (MR)) ≤ n.

Proof. (1)⇒ (2). Use induction on n. If n = 0, then M is C -cotorsion.
Since R is a strongly C -coherent ring, by Corollary 2, we have ExtkR(F,M) =
0 for all C -flat module F and all positive integers k. Now suppose that
Extn−1+kR (F,N) = 0 for any C -flat module F , any positive integer k and
any right R-module N with C CT -dim(N) ≤ n − 1. Then for any right R-
module M with C CT -dim(M) ≤ n. If C CT -dim(M) = 0, then (2) holds
by Corollary 2. If C CT -dim(M) > 0, then there exists a positive inte-
ger m ≤ n such that Extm+1

R (F,M) = 0 for any C -flat module F , which
implies that ExtmR (F,E(M)/M) = 0 for any C -flat module F . So C CT -
dim(E(M)/M) ≤ m − 1, and hence C CT -dim(E(M)/M) ≤ n − 1. By hy-
pothesis, we have Extn−1+kR (F,E(M)/M) = 0 for any C -flat module F and

any positive integer k, it follows that Extn+kR (F,M) = 0. Therefore, (2) holds
by induction.

(2)⇒ (3)⇒ (1) and (4)⇒ (5) are obvious.

(3)⇒(4). SinceR is strongly C -coherent and E0, ··, En−1 are C -cotorsion,
by Corollary 2, we have Extn+1

R (F,M) ∼= ExtnR(F, im(d0)) ∼= Extn−1R (F, im(d1))
∼= · · · ∼= Ext1R(F, im(dn−1)) = Ext1R(F,En). Therefore (4) follows from (3).

(5) ⇒ (3). It follows from the above isomorphism Extn+1
R (F,M) ∼=

Ext1R(F,En).

(1) ⇔ (6). Let M be any right R-module and F be any C -flat module.
By the proof of Corollary 1(1), we have an exact sequence of right R-modules
0→ K → C F (M)→M → 0, where K is C -cotorsion. Thus, we get an exact
sequence

Extn+1
R (F,K)→ Extn+1

R (F,C F (M))→ Extn+1
R (F,M)→ Extn+2

R (F,K).

Since R is strongly C -coherent, by Corollary 2, we have Extn+1
R (F,K) =

Extn+2
R (F,K) = 0. So, Extn+1

R (F,C F (M)) ∼= Extn+1
R (F,M), and the results

follows.
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By Theorem 3, we have immediately the next proposition.

Proposition 4. Let R be a strongly C -coherent ring and 0→ A→ B →
C → 0 an exact sequence of right R-modules. If two of C CT -dim(A),C CT -
dim(B),C CT -dim(C) are finite, then so does the third. Moreover,

(1) C CT -dim(B) ≤ sup {C CT -dim(A),C CT -dim(C)}.

(2) C CT -dim(A) ≤ sup {C CT -dim(B),C CT -dim(C) + 1}.

(3) C CT -dim(C) ≤ sup {C CT -dim(B),C CT -dim(A)− 1}.

Corollary 3. Let R be a strongly C -coherent ring and 0→ A→ B →
C → 0 an exact sequence of right R-modules. Then C CT -dim(B) < sup
{C CT -dim(A),C CT -dim(C)} if and only if C CT -dim(B) < C CT -dim(A).
Moreover,

(1) C CT -dim(B) < sup {C CT -dim(A),C CT -dim(C)} < ∞ if and only if
C CT -dim(B) < C CT -dim(A) = C CT -dim(C) + 1 <∞.

(2) C CT -dim(B) < sup {C CT -dim(A),C CT -dim(C)} = ∞ if and only if
C CT -dim(B) < C CT -dim(A) = C CT -dim(C) =∞.

Proof. It is easy to see that if C CT -dim(B) < C CT -dim(A) then C CT -
dim(B) < sup {C CT -dim(A),C CT -dim(C)}.

Now suppose that C CT -dim(B) < sup {C CT -dim(A),C CT -dim(C)},
we will prove that C CT -dim(B) < C CT -dim(A). Otherwise, if C CT -dim(B) ≥
C CT -dim(A), then we have C CT -dim(A) ≤ C CT -dim(B) < C CT -dim(C) <
∞, this is contrary to the result of Proposition 4(3).

(1) We need only to prove that if

C CT -dim(B) < sup {C CT -dim(A),C CT -dim(C)} <∞, then

C CT -dim(B) < C CT -dim(A) = C CT -dim(C) + 1 <∞.

Indeed, in this case, we have C CT -dim(B) < C CT -dim(A) by the above
proof, and so we have C CT -dim(A) ≤ C CT -dim(C) + 1 <∞ by Proposition
4(2), and C CT -dim(C) + 1 ≤ C CT -dim(A) by Proposition 4(3), and hence
C CT -dim(B) < C CT -dim(A) = C CT -dim(C) + 1 <∞.

(2). We need only to prove that if

C CT -dim(B) < sup {C CT -dim(A),C CT -dim(C)} =∞, then

C CT -dim(B) < C CT -dim(A) = C CT -dim(C) =∞.

Indeed, in this case, we have C CT -dim(B) is finite. Note that sup {C CT -
dim(A),C CT -dim(C)} = ∞, by the first party of Proposition 4, we have
C CT -dim(A) = C CT -dim(C) =∞.
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Corollary 4. Let R be a strongly C -coherent ring, F a C -flat right
R-module and n a nonnegative integer. Then the following are equivalent:

(1) C CT -dim(FR) ≤ n.

(2) There exists an exact sequence of right R-modules 0→ F → E0 → · · · →
En−1 → En → 0 such that E0, · · · , En−1, En are C -cotorsion envelopes
of C -flat modules.

Proof. (1)⇒ (2). By [23, Theorem 2.10], every right R-module has a C -
cotorsion envelope. And so, by Lemma 2.4(2), we can obtain exact sequences

0→ F
ϕ0−→ E0

π0−→ E0/im(ϕ0)→ 0

0→ E0/im(ϕ0)
ϕ1−→ E1

π1−→ E1/im(ϕ1)→ 0
· · ·

0→ En−2/im(ϕn−2)
ϕn−1−→ En−1

πn−1−→ En−1/im(ϕn−1) −→ 0,

where F
ϕ0→ E0, E0/im(ϕ0)

ϕ1→ E1, · · · , En−2/im(ϕn−2)
ϕn−1→ En−1 are monic

C -cotorsion enolpes. Observing that (C F ,C CT ) is a cotorsion pair, by [18,
Theorem 2.1.2], each Ei/im(ϕi) is C -flat. Thus, we get an exact sequence

0 → F
ϕ0→ E0

ϕ1π0→ · · · ϕn−1πn−2→ En−1
πn−1→ En → 0 , where E0, · · · , En−1

are C -cotorsion envelope of C -flat modules , En = En−1/im(dn−1) is C -flat.
Since C CT -dim(FR) ≤ n, by Theorem 3(4), En is C -cotorsion, and so, as the
C -cotorsion envelope of itself, En is also a C -cotorsion envelope of a C -flat
module. Therefore, (2) is proved.

(2)⇒ (1). It follows immediately from Theorem 3.

Theorem 4. Let R be a strongly C -coherent ring. Then

(1) C CT -D(R) =sup{pd(F ): F is a C -flat right R-module}
=sup{C CT -dim(F ): F is a C -flat right R-module}.

(2) If C CT -D(R) <∞, then

C CT -D(R) =sup{pd(F ) : F ∈ C F ∩ C CT }
=sup{pd(C CT (F )): F is a C -flat right R-module}
=sup{pd(C F (E)): E is a C -cotorsion right R-module}
=sup{C CT -dim(P ): P is a projective right R-module}.

Proof. (1). Write C CT -D(R) = n, sup{pd(F ) : F is a C -flat right R-
module} = m, and sup{C CT -dim(F ): F is a C -flat right R-module} = k. If
n = ∞, then it is clear that m ≤ n. If n < ∞, then C CT -dim(M) ≤ n for
any right R-module M . Since R is strongly C -coherent, by Theorem 3, we
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have Extn+1
R (F,M) = 0 for any C -flat module F and any right R-module M ,

so pd(F ) ≤ n for any C -flat module F , and thus m ≤ n. In a similar way we
can prove that n ≤ m, and so n = m. It is easy to see that n ≥ k. Now we
prove that m ≤ k. If k = ∞, then it is clear that m ≤ k. If k < ∞. Let
F be any C -flat module and M be any right R-module. Then by Theorem
2, we have an exact sequence of right R-modules 0 → K → F1 → M → 0,
where K is C -cotorsion and F1 is C -flat. So, since C CT -dim(F ) ≤ k and R
is strongly C -coherent, by Theorem 3 and Corollary 2, we get the following
exact sequence

0 = Extk+1
R (F, F1)→ Extk+1

R (F,M)→ Extk+2
R (F,K) = 0.

It shows that Extk+1
R (F,M) = 0, so pd(F ) ≤ k, and hence m ≤ k. Therefore,

m = n = k.
(2) Write sup{pd(F ) : F ∈ C F ∩ C CT } = l1, sup{pd(C CT (F )): F is

a C -flat right R-module} = l2, sup{pd(C F (E)): E is a C -cotorsion right
R-module} = l3, sup{C CT -dim(P ): P is a projective right R-module} = l4.
Then by (1) and Corollary 1, we have n ≥ l1 = l2 = l3 and n ≥ l4.

Now we claim n ≤ l2. In fact, for any C -flat right R-module F , we have
C CT -dim(F ) ≤ n, so, by Corollary 4, we have an exact sequence of right R-
modules 0 → F → E0 → · · · → En−1 → En → 0 such that E0, · · · , En−1, En
are C -cotorsion envelopes of C -flat modules. By hypothesis, pd(Ei) ≤ l2 for
each i, so by induction on n we have pd(F ) ≤ l2, and hence n ≤ l2 by (1).

Finally, we prove that n ≤ l4. For any C -flat module F , by (1), pd(F ) ≤
n. So we have an exact sequence of right R-modules

0→ Pn → Pn−1 → · · · → P1 → P0 → F → 0,

where P0, P1, · · · , Pn are projective. But C CT -dim(Pi) ≤ l4, i = 0, 1, · · · , n,
by induction on n, we have C CT -dim(F ) ≤ l4. It shows that n ≤ l4 by (1).
This complete the proof.

Corollary 5. Let R be a strongly C -coherent ring and n a nonnegative
integer. Then the following conditions are equivalent:

(1) C CT -D(R) ≤ n.

(2) All C -flat right R-modules are of projective dimension ≤ n.

(3) All C -flat right R-modules are of C -cotorsion dimension ≤ n.

(4) Extn+1
R (F, F ′) = 0 for all C -flat right R-modules F, F ′.

(5) Extn+kR (F, F ′) = 0 for all C -flat right R-modules F, F ′ and positive in-
tegers k.



11 C -cotorsion modules 305

(6) C CT -D(R) <∞ and all right R-modules in C F ∩C CT are of projective
dimension ≤ n.

(7) C CT -D(R) < ∞ and all projective right R-modules are of C -cotorsion
dimension ≤ n.

Let F be a class of modules. According to [5], an F-envelope φ : M → F
is said to have the unique mapping property if for any homomorphism f :
M → F ′ with F ′ ∈ F , there is a unique homomorphism g : F → F ′ such
that f = gφ. Dually, we can define the concept of an F-cover with the unique
mapping property .

Corollary 6. Let R be a ring and C be a class of some finitely pre-
sented left R-modules. Then the following conditions are equivalent:

(1) C CT -D(R) = 0.

(2) All right R-modules are C -cotorsion.

(3) All C -flat right R-modules are projective.

(4) Every right R-module has a C -cotorsion envelope with the unique map-
ping property.

In this case, R is a right perfect ring. Moreover, if R is a strongly C -coherent
ring, then the above conditions are equivalent to:

(5) All C -flat right R-modules are C -cotorsion.

(6) Ext1R(F, F ′) = 0 for all C -flat right R-modules F, F ′.

(7) ExtkR(F, F ′) = 0 for all C -flat right R-modules F, F ′ and positive integers
k.

(8) C CT -D(R) <∞ and all right R-modules in C F ∩ C CT are projective.

(9) C CT -D(R) <∞ and all projective right R-modules are C -cotorsion.

(10) Every C -flat right R-module has a projective cover with the unique map-
ping property.

Proof. (1)⇔ (2)⇔ (3), (2)⇒ (4), and (3)⇒ (10) are obvious.
(4)⇒ (2). LetM be a rightR-module. Then by (4), M has a C -cotorsion

envelope ϕ : F → C CT (F ) with the unique mapping property. So, by the

proof of Corollary 1(2), we get an exact sequence 0→M
ϕ→ C CT (M)

π→ F →
0, where F is C -flat. Let i : F → C CT (F ) be a C -cotorsion envelope of F ,
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then i is monic by Proposition 2(2). Thus, we have 0 = iπϕ : M → C CT (F ),
iπ : C CT (M) → C CT (F ) such that 0 = (iπ)ϕ. But 0 = 0ϕ, by the unique
mapping property, we have iπ = 0. It follows that π = 0, which implies that
ϕ is an isomorphism, and thus M is C -cotorsion.

If R is a strongly C -coherent ring, then by Corollary 5 and the above
proof, the equivalence of (1)-(9) are clear.

(10) ⇒ (3). Let F be a C -flat right R-module. Then by (10), F has a
projective cover α : P → F with the unique mapping property. By Proposition

2(1), α is epic, so we get an exact sequence 0 → K
β→ P

α→ F → 0, where
K = Ker(α) . Since R is strongly C -coherent, by Proposition 3, (C F ,C CT ) is
a hereditary cotorsion pair, and so K is C -flat. Thus, K has a epic projective
cover γ : P ′ → K with the unique mapping property. Now, we have 0 = αβγ :
P ′ → F , βγ : P ′ → P such that 0 = α(βγ). But 0 = α0, by the unique
mapping property, we have βγ = 0. And so β = 0, which implies that α is an
isomorphism, and therefore F is projective.

Recall that a ring R is right perfect in case each right R-module has a
projective cover, it is well known that a ring R is right perfect if and only
if every flat right R-module is projective. Let C be the class of all finitely
presented left R-modules. Then by Corollary 6, we have the following results.

Corollary 7. Let R be a ring. Then the following conditions are equiv-
alent:

(1) R is right perfect.

(2) All right R-modules are cotorsion.

(3) Every right R-module has a cotorsion envelope with the unique mapping
property.

Moreover, if R is a left coherent ring, then the above conditions are equivalent
to:

(4) All flat right R-modules are cotorsion .

(5) Ext1R(F, F ′) = 0 for all flat right R-modules F, F ′.

(6) ExtkR(F, F ′) = 0 for all flat right R-modules F, F ′ and positive integers
k.

(7) CT -D(R) <∞ and all flat cotorsion right R-modules are projective.

(8) CT -D(R) <∞ and all projective right R-modules are cotorsion .
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(9) Every flat right R-module has a projective cover with the unique mapping
property.

We note that the equivalence of (1), (2), (4) in Corollary 7 was shown in
[13, Corollary 2. 2. 7 ].

Let A be a submodule of the right R-module B. Recall that A is said
to be a pure submodule of B if for all left R-module M , the induced map
A ⊗R M → B ⊗R M is monic, or equivalently, if for every finitely presented
left R-module V , the induced map A⊗R V → B ⊗R V is monic. We call A a
C -pure submodule of B if for all C ∈ C , the induced map A⊗R C → B ⊗R C
is monic.

Theorem 5. Let R be a strongly C -coherent ring. Then the following
statements are equivalent:

(1) C CT -D(R) ≤ 1.

(2) All C -flat right R-modules are of projective dimension ≤ 1.

(3) All C -flat right R-modules are of C -cotorsion dimension ≤ 1.

(4) Every quotient module of a C -cotorsion right R-module is C -cotorsion.

(5) Every quotient module of an injective right R-module is C -cotorsion.

(6) Every C -pure submodule of a projective right R-module is projective.

Proof. (1)⇔ (2)⇔ (3). It follows from Corollary 5.

(2)⇒ (4). Let E be any C -cotorsion module and K a submodule of E.
Then for any C -flat right R-module F , by (2), we have Ext2R(F,E) = 0. So,
from the exact sequence 0 = Ext1R(F,E)→ Ext1R(F,E/K)→ Ext2R(F,E) = 0,
we have Ext1R(F,E/K) = 0, i.e., E/K is C -cotorsion.

(4)⇒ (5). It is obvious.

(5) ⇒ (1). Let M be any right R-module and F be any C -flat right
R-module. By (5), E(M)/M is C -cotorsion, and so Ext1R(F,E(M)/M) = 0.
It follows that Ext2R(F,M) = 0, and hence (1) holds.

(2) ⇒ (6). Let P be a projective right R-module and K a C -pure
submodule of P . Then it is easy to see that P/K is C -flat. By (2), pd(P/K) ≤
1, and so K is projective.

(6) ⇒ (2). Let F be a C -flat right R-module. Then there is an exact
sequence 0 → K → P → F → 0 with P projective. Since F is C -flat, K is
C -pure in P . So K is projective by (6), and thus pd(F ) ≤ 1. �
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Corollary 8. Let R be a left coherent ring. Then the following state-
ments are equivalent:

(1) All right R-modules are of cotorsion dimension ≤ 1.

(2) All flat right R-modules are of projective dimension ≤ 1.

(3) All flat right R-modules are of cotorsion dimension ≤ 1.

(4) Every quotient module of a cotorsion right R-module is cotorsion .

(5) Every quotient module of an injective right R-module is cotorsion .

(6) Every pure submodule of a projective right R-module is projective.

The equivalence of (1) and (2) in the following theorem appeared in [23,
Theorem 4.3], but we give it here for completeness and we give a new proof.

Theorem 6. Let R be a ring and C be a class of some finitely presented
left R-modules. Then following statements are equivalent:

(1) R is C -semihereditary.

(2) Every right R-module has an epic C -flat envelope.

(3) R is strongly C -coherent and every C -cotorsion right R-module has an
epic C -flat envelope.

Proof. (1) ⇒ (2). Let M be a right R-module and let {Ki}i∈I be the
family of all submodules of M such that M/Ki is C -flat. Let F = M/∩i∈I Ki

and π be the natural epimorphism of M to F . Define α : F →
∏
i∈IM/Ki

by α(m + ∩i∈IKi) = (m + Ki) for m ∈ M . Then α is a monomorphism.
Since R is a C -semihereditary ring, it is C -coherent, so

∏
i∈IM/Ki is C -

flat by [23, Theorem 3.3 (5)]. Moreover, by [23, Theorem 4.3 (2)], we have
that every submodule of a C -flat module is C -flat, and so F is C -flat. For
any C -flat right R-module F ′ and any homomorphism f : M → F ′. Since
M/Ker(f) ∼= Im(f) ⊆ F ′, M/Ker(f) is C -flat, and thus Ker(f) = Kj for
some j ∈ I. Now we define g : F → F ′;x + ∩i∈IKi 7→ f(x), then g is a
homomorphism such that f = gπ. Thus, π is a C -flat preenvelope of M . Note
that epic preenvelope is an envelope, so π : M → F is an epic C -flat envelope
of M .

(2) ⇒ (3). Assume (2), then we need only to prove that R is strongly
C -coherent. By (2), every right R-module has a C -flat preenvelope, so, by [23,
Theorem 3.2], R is C -coherent. Now Let 0→ L′

ι→ L→ L′′ → 0 be an exact
sequence of right R-modules with L,L′′ ∈ C F . Then L′ has an epic C -flat
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envelope σ : L′ → F , so, there exists a homomorphism τ : F → L such that
ι = τσ, which implies that σ is an isomorphism , and hence L′ ∈ C F . It shows
that (C F ,C CT ) is a hereditary cotorsion pair. Therefore, by Proposition 3,
R is strongly C -coherent.

(3) ⇒ (1). Assume (3). Let 0 → L → P → C → 0 be exact , where
C ∈ C , P is finitely generated projective. We will prove that L is projective.
Let M be any right R-module. Since (C F ,C CT ) is a perfect cotorsion pair
by [23, Theorem 2.10(2)], M has a C -flat cover f : F → M . Moreover, by
Proposition 2, f is epic. Write K = Ker(f). Then by [18, Lemma 2.1.1], K
is C -cotorsion. By hypothesis, K has an epic C -flat envelope φ : K → F ′.
Let i : K → F be the inclusion map. Then there exists a homomorphism
α : F ′ → F such that i = αφ. It follows that φ is an isomorphism , and so
K ∼= F ′ is C -flat. Note that R is strongly C -coherent, by Proposition 3 and
[23, Proposition 3.11], we have Tor2(F,C) = 0. Thus, by the following two
exact sequences

0 = Tor2(M,P )→ Tor2(M,C)→ Tor1(M,L)→ Tor1(M,P ) = 0

0 = Tor2(F,C)→ Tor2(M,C)→ Tor1(K,C)→ Tor1(F,C) = 0
we have Tor1(M,L) ∼= Tor2(M,C) ∼= Tor1(K,C) = 0, and so L is flat. Ob-
serving that R is C -coherent, L is finitely presented, and hence it is projective,
as required.

Recall that: a ring R is called a left Costa’s n-coherent ring [4] if ev-
ery n-presented left R-module is (n + 1)-presented; a ring R is called left
Lee n-coherent [12](for integers n > 0 or n = ∞) if every finitely generated
submodule of a free left R-module whose projective dimension is ≤ n − 1 is
finitely presented; a ring R is called a left n-hereditary ring [22] if every (n−1)-
presented submodule of a projective left R-module is projective. We call a ring
R left n∗-hereditary if every finitely generated submodule of a projective left
R-module whose projective dimension ≤ n− 1 is projective.

Corollary 9. The following statements are equivalent for a ring R:

(1) R is n-hereditary.

(2) Every right R-module has an epic (n,0)-flat envelope.

(3) R is left Costa’s n-coherent and every (n,0)-cotorsion right R-module
has an epic flat envelope.

Corollary 10. The following statements are equivalent for a ring R:

(1) R is n∗-hereditary.
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(2) Every right R-module has an epic n-flat envelope.

(3) R is left Lee’s n-coherent and every n-cotorsion right R-module has an
epic n-flat envelope.

Corollary 11. The following statements are equivalent for a ring R:

(1) R is semihereditary.

(2) Every right R-module has an epic flat envelope.

(3) R is left coherent and every cotorsion right R-module has an epic flat
envelope.

Proposition 5. Let R be a C -semihereditary ring. Then the class of
C -flat modules is closed under inverse limits.

Proof. Let {Fi, ψji } be an inverse system with index set I , where Fi
is C -flat. Since R is C -semihereditary, lim←−Fi has an epic C -flat envelope
σ : lim←−Fi → F by Theorem 6. Let αi : lim←−Fi → Fi be a family of morphisms

of the inverse limit. Then we have αi = ψjiαj . So there exists fi : F → Fi
such that αi = fiσ for each i ∈ I. Thus , we have fiσ = ψji fjσ for any i ≤ j,

it follows that fi = ψji fj for any i ≤ j because σ is epic. By the definition
of inverse limits, there exists a morphism τ : F → lim←−Fi such that fi = αiτ .

Thus, αi(τσ) = (αiτ)σ = fiσ = αi, and so τσ = 1lim←−Fi
by the definition of

inverse limits. Consequently , we have lim←−Fi
σ∼= F is C -flat.

Recall that a ring R is called a left PP ring [11] if every left ideal is
projective. A ring R is called a left PS ring [15] if every minimal left ideal is
projective.

Corollary 12. (1) If R is a left semihereditary ring, then the class
of flat right R-modules is closed under inverse limits.

(2) [9, Corollary 3.10] If R is a left PP ring, then the class of P-flat right
R-modules is closed under inverse limits.

(3) If R is a left PS ring, then the class of min-flat right R-modules is closed
under inverse limits.

(4) If R is a left n-hereditary ring, then the class of (n,0)-flat right R-modules
is closed under inverse limits.
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(5) If R is a left n∗-hereditary ring, then the class of n-flat right R-modules
is closed under inverse limits.
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