EXISTENCE OF TWO WEAK SOLUTIONS FOR ELLIPTIC EQUATIONS INVOLVING A GENERAL OPERATOR IN DIVERGENCE FORM

S. AMIRKHANLOU* and G. A. AFROUZI

Communicated by Lucian Beznea

Abstract

In this paper, we establish the existence of at least two distinct weak solutions for a class of elliptic equations involving a general operator in divergence form, subject to Dirichlet boundary conditions in a smooth bounded domain in \mathbb{R}^{N}. A critical point result for differentiable functionals is exploited, in order to prove that the problem admits at least two distinct non-trivial weak solutions.

AMS 2010 Subject Classification: 35J35, 35J60.
Key words: multiple solutions, boundary value problems, variational methods, critical point.

1. INTRODUCTION

The purpose of this paper is to establish the existence of at least two distinct weak solutions for the following elliptic Dirichlet problem

$$
\begin{cases}-\operatorname{div}(a(x, \nabla u))=\lambda k(x) f(u), & \text { in } \Omega, \tag{1.1}\\ u=0, & \text { on } \partial \Omega,\end{cases}
$$

where Ω is a bounded domain in $\mathbb{R}^{N}(N \geq 2)$ with smooth boundary $\partial \Omega$, $p>N, a: \bar{\Omega} \times \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ is a suitable continuous map of gradient type, and λ is a positive real parameter. Further, $f: \mathbb{R} \rightarrow \mathbb{R}$ and $k: \bar{\Omega} \rightarrow \mathbb{R}^{+}$are two continuous functions.

The operator $-\operatorname{div}(a(x, \nabla u))$ arises, for example, from the expression of the p-Laplacian in curvilinear coordinates. We refer to the overview papers [$9,11,30,39,42]$ for the investigation on Dirichlet problems involving a general operator in divergence form. For example, De Nápoli and Mariani in [9] studied the existence of solutions to equations of p-Laplacian type. They proved the existence of at least one solution, and under further assumptions, the existence of infinitely many solutions. In order to apply mountain pass results, they introduced a notion of uniformly convex functional that generalizes the notion

[^0]of uniformly convex norm. Duc and Vu in [11] studied the non-uniform case. The authors in [42] established the existence and multiplicity of weak solutions of a problem involving a uniformly convex elliptic operator in divergence form. They discussed the existence of one nontrivial solution by the mountain pass lemma, when the nonlinearity has a $(p-1)$-superlinear growth at infinity, and two nontrivial solutions by minimization and mountain pass when the nonlinear term has a $(p-1)$-sublinear growth at infinity. In [6], Colasuonno, Pucci and Varga studied different and very general classes of elliptic operators in divergence form looking at the existence of multiple weak solutions. Their contributions represent a nice improvement, in several directions, of the results obtained by Kristály et al. in [25] in which a uniform Dirichlet problem with parameter is investigated.

In [29] Molica Bisci and Rădulescu, applying mountain pass results studied the existence of solutions to nonlocal equations involving the p-Laplacian. More precisely, they proved the existence of at least one nontrivial weak solution, and under additional assumptions, the existence of infinitely many weak solutions. In [28], they also by using an abstract linking theorem for smooth functionals established a multiplicity result on the existence of weak solutions for a nonlocal Neumann problem driven by a nonhomogeneous elliptic differential operator.

Recently, motivated by this large interest, Molica Bisci and Repovš in [30, Theorem 3.5] studied the existence of at least three weak solutions for the following elliptic Dirichlet problem

$$
\begin{cases}-\operatorname{div}(a(x, \nabla u))=\lambda k(x) f(u), & \text { in } \Omega \\ u=0, & \text { on } \partial \Omega\end{cases}
$$

where Ω is a bounded domain in $\mathbb{R}^{N}(N \geq 2)$ with smooth boundary $\partial \Omega$, $p>N, a: \bar{\Omega} \times \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ is a suitable continuous map of gradient type, and λ is a positive real parameter. Further, $f: \mathbb{R} \rightarrow \mathbb{R}$ and $k: \bar{\Omega} \rightarrow \mathbb{R}^{+}$are two continuous functions, and $f: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function such that

$$
\begin{equation*}
|f(t)| \leq a_{1}+a_{2}|t|^{q-1}, \quad \forall t \in R, \tag{1}
\end{equation*}
$$

for some non-negative constants a_{1}, a_{2}, where $\left.q \in\right] 1, \frac{p N}{N-p}[$, if $p<N$ and $1<$ $q<+\infty$ if $p \geq N$. In addition, as customary, the symbol

$$
p^{*}:= \begin{cases}\frac{p N}{N-p} & \text { if } 1<p<N \\ \infty & \text { if } p \geq N\end{cases}
$$

denotes the critical Sobolev exponent of p. In this work, our goal is to obtain the existence of two distinct weak solutions for problem (1.1).

A special case of our main result reads as follows.

THEOREM 1.1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a non-negative continuous function with $f(0) \neq 0$, satisfying a $(q-1)$-sublinear growth at infinity for some $q \in] p, p^{*}[$, i.e.,

$$
\lim _{|t| \rightarrow \infty} \frac{f(t)}{|t|^{q-1}}=0
$$

Moreover, assume that there exist $\theta>p$ and $M>0$ such that

$$
0<\theta F(t) \leq t f(t)
$$

for each $t \in \mathbb{R}$ and $|t| \geq M$. Then, there exists $\lambda^{\star}>0$, such that, for any $\lambda \in] 0, \lambda^{\star}[$ the problem (1.1), admits two positive weak solutions.

For completeness, we recall that a careful and interesting analysis of elliptic problems was developed in the monographs $[21,34]$ as well as the papers $[14,18,24,26,31]$ and references therein.

2. AUXILIARY RESULTS

Assume that Ω is a bounded domain in $\mathbb{R}^{N}(N \geq 2)$ with smooth boundary $\partial \Omega$. Further, denote by X the space $W_{0}^{1, p}(\Omega)$ endowed with the norm

$$
\|u\|:=\left(\int_{\Omega}|\nabla u(x)|^{p} \mathrm{~d} x\right)^{1 / p}
$$

and X^{*} the topological dual of X.
By the compact embedding $X \hookrightarrow L^{q}(\Omega)$ for each $q \in\left[1, p^{*}[\right.$, there exists a positive constant c_{q} such that

$$
\begin{equation*}
\|u\|_{L^{q}(\Omega)} \leq c_{q}\|u\|, \quad(\forall u \in X) \tag{2.1}
\end{equation*}
$$

where c_{q} is the best constant of the embedding.
The functional $I_{\lambda}: X \rightarrow \mathbb{R}$ associated with (1.1) is introduced as following:

$$
I_{\lambda}(u):=\Phi(u)-\lambda \Psi(u),
$$

for every $u \in X$, where

$$
\Phi(u):=\int_{\Omega} A(x, \nabla u(x)) \mathrm{d} x
$$

and

$$
\Psi(u):=\int_{\Omega} k(x) F(u(x)) \mathrm{d} x,
$$

for every $u \in X$, where $k: \bar{\Omega} \rightarrow \mathbb{R}^{+}$is a positive and continuous function, and

$$
F(s)=\int_{0}^{s} f(t) \mathrm{d} t
$$

for every $s \in \mathbb{R}$. By standard arguments, Φ is Gâteaux differentiable and sequentially weakly lower semicontinuous and its Gâteaux derivative is the functional $\Phi^{\prime}(u) \in X^{*}$, given by

$$
\Phi^{\prime}(u)(v):=\int_{\Omega} a(x, \nabla u(x)) \nabla v(x) \mathrm{d} x,
$$

for every $v \in X$. Moreover, Ψ is a Gâteaux differentiable sequentially weakly upper continuous functional whose Gâteaux derivative is given by

$$
\Psi^{\prime}(u)(v):=\int_{\Omega} k(x) f(u(x)) v(x) \mathrm{d} x,
$$

for every $v \in X$. Fixing the real parameter λ, a function $u: \Omega \rightarrow \mathbb{R}$ is said to be a weak solution of (1.1) if $u \in X$ and

$$
\int_{\Omega} a(x, \nabla u(x)) \nabla v(x) \mathrm{d} x-\lambda \int_{\Omega} k(x) f(u(x)) v(x) \mathrm{d} x=0,
$$

for every $v \in X$. Therefore, the critical points of I_{λ} are exactly the weak solutions of (1.1).

Definition 2.1. A Gâteaux differentiable function I satisfies the PalaisSmale condition (in short (PS)-condition) if any sequence $\left\{u_{n}\right\}$ such that
(a) $\left\{I\left(u_{n}\right)\right\}$ is bounded,
(b) $\lim _{n \rightarrow+\infty}\left\|I^{\prime}\left(u_{n}\right)\right\|_{X^{*}}=0$,
has a convergent subsequence.
Definition 2.2. Let X be a reflexive real Banach space. The operator $T: X \rightarrow X^{*}$ is said to satisfy the $\left(S_{+}\right)$condition if the assumptions $u_{n} \rightharpoonup u_{0}$ in X and $\lim \sup _{n \rightarrow+\infty}\left\langle T\left(u_{n}\right)-T(u), u_{n}-u_{0}\right\rangle \leq 0$ imply $u_{n} \rightarrow u_{0}$ in X.

Our main tool is the following critical point theorem.
Theorem 2.3 (see [1, Theorem 3.2]). Let X be a real Banach space and let $\Phi, \Psi: X \rightarrow \mathbb{R}$ be two continuously Gâteaux differentiable functionals such that Φ is bounded from below and $\Phi(0)=\Psi(0)=0$. Fix $r>0$ such that $\sup _{\{\Phi(u)<r\}}<+\infty$ and assume that, for each $\left.\lambda \in\right] 0, \frac{r}{\sup _{\{\Phi(u)<r\}} \Psi(u)}[$, the functional $I_{\lambda}:=\Phi-\lambda \Psi$ satisfies (PS)-condition and it is unbounded from below. Then, for each $\lambda \in] 0, \frac{r}{\sup _{\{\Phi(u)<r\}} \Psi(u)}\left[\right.$, the functional I_{λ} admits two distinct critical points.

3. MAIN RESULTS

In this section we formulate our main results. Let $p \geq 1$ and let $\Omega \subseteq \mathbb{R}^{N}$ be a bounded Euclidean domain, where $N \geq 2$. Further, let $A: \bar{\Omega} \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ and let $A=A(x, \xi)$ be a continuous function in $\bar{\Omega} \times \mathbb{R}^{N}$, with continuous gradient $a(x, \xi):=\nabla_{\xi} A(x, \xi): \bar{\Omega} \times \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$, and assume that the following conditions hold:
$\left(\alpha_{1}\right) A(x, 0)=0$ for all $x \in \Omega$;
$\left(\alpha_{2}\right) A$ satisfies $\Lambda_{1}|\xi|^{p} \leq A(x, \xi) \leq \Lambda_{2}|\xi|^{p}$ for all $x \in \bar{\Omega}, \xi \in \mathbb{R}^{N}$, where Λ_{1} and Λ_{2} are positive constants.
$\left(\alpha_{3}\right) a$ satisfies the growth condition $|a(x, \xi)| \leq c\left(1+|\xi|^{p-1}\right)$ for all $x \in \Omega$, $\xi \in \mathbb{R}^{N}, c>0$;
$\left(\alpha_{4}\right) A$ is p-uniformly convex, that is

$$
A\left(x, \frac{\xi+\eta}{2}\right) \leq \frac{1}{2} A(x, \xi)+\frac{1}{2} A(x, \eta)-k|\xi-\eta|^{p}
$$

for every $x \in \bar{\Omega}, \xi, \eta \in \mathbb{R}^{N}$ and some $k>0$. $\left(\alpha_{5}\right) a$ satisfies the strictly monotonicity condition, that is

$$
\left(a\left(x, \xi_{1}\right)-a\left(x, \xi_{2}\right)\right)\left(\xi_{1}-\xi_{2}\right)>0
$$

for all $\xi_{1}, \xi_{2} \in \mathbb{R}^{N}$ with $\xi_{1} \neq \xi_{2}$.

Proposition 3.1. The operator $T: X \rightarrow X^{*}$ defined by

$$
T(u)(v):=\int_{\Omega} a(x, \nabla u(x)) \nabla v(x) \mathrm{d} x
$$

for every $u, v \in X$, is strictly monotone.

Proof. Taking into account $\left(\alpha_{5}\right)$, the operator T is strictly monotone.

We recall that c_{q} is the constant of the embedding $X \hookrightarrow L^{q}(\Omega)$ for each $q \in\left[1, p^{*}\left[\right.\right.$, and c_{1} stands for c_{q} with $q=1$; see (2.1). Now, we establish the main abstract result of this paper.

Theorem 3.2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function such that condition $\left(\mathrm{f}_{1}\right)$ holds. Moreover, assume that
(f_{2}) there exist $\theta>p$ and $M>0$ such that

$$
0<\theta F(t) \leq t f(t)
$$

for each $t \in \mathbb{R}$ and $|t| \geq M$. Then, for each $\lambda \in] 0, \lambda^{\star}[$, problem (1.1) admits at least two distinct weak solutions, where

$$
\lambda^{\star}:=\frac{1}{\|k\|_{\infty}\left(\frac{a_{1} c_{1}}{\Lambda_{1}^{1 / p}}+\frac{a_{2} c_{q}^{q}}{q \Lambda_{1}^{q / p}}\right)} .
$$

Proof. Our aim is to apply Theorem 2.3 to problem (1.1) in the case $r=1$ to the space $X:=W_{0}^{1, p}(\Omega)$ with the norm

$$
\|u\|:=\left(\int_{\Omega}|\nabla u(x)|^{p} \mathrm{~d} x\right)^{1 / p}
$$

and to the functionals $\Phi, \Psi: X \rightarrow \mathbb{R}$ be defined by
$\Phi(u):=\int_{\Omega} A(x, \nabla u(x)) \mathrm{d} x \quad$ and $\quad \Psi(u):=\int_{\Omega} k(x) F(u(x)) \mathrm{d} x$, for all $u \in X$.
The functional Φ is in $C^{1}(X, \mathbb{R})$ and $\Phi^{\prime}: X \rightarrow X^{*}$ is strictly monotone (see Proposition 3.1). Now we prove that Φ^{\prime} is a mapping of type (S_{+}). Let $u_{n} \rightharpoonup u$ in X and $\lim \sup _{n \rightarrow+\infty}\left\langle\Phi^{\prime}\left(u_{n}\right)-\Phi^{\prime}(u), u_{n}-u\right\rangle \leq 0$. Then $u_{n} \rightarrow u$ in X (see Theorem 3.1 of [12]). So, Φ^{\prime} is a mapping of type $\left(S_{+}\right)$. By Theorem 3.1 from [12], we get that $\Phi^{\prime}: X \rightarrow X^{*}$ is a homeomorphism. Moreover, thanks to condition $\left(\mathrm{f}_{1}\right)$ and to the compact embedding $W_{0}^{1, p}(\Omega) \hookrightarrow L^{q}(\Omega)$ for each $q \in\left[1, p^{*}\left[\right.\right.$, the functional Ψ is in $C^{1}(X, \mathbb{R})$ and has compact derivative and

$$
\Psi^{\prime}(u)(v)=\int_{\Omega} k(x) f(u(x)) v(x) \mathrm{d} x
$$

for every $v \in X$. Now we prove that $I_{\lambda}=\Phi-\lambda \Psi$ satisfies (PS)-condition for every $\lambda>0$. Namely, we will prove that any sequence $\left\{u_{n}\right\} \subset X$ satisfying

$$
\begin{equation*}
d:=\sup _{n} I_{\lambda}\left(u_{n}\right)<+\infty, \quad\left\|I_{\lambda}^{\prime}\left(u_{n}\right)\right\|_{X^{*}} \rightarrow 0, \quad \text { as } n \rightarrow+\infty \tag{3.1}
\end{equation*}
$$

contains a convergent subsequence. For n large enough, we have by (3.1)

$$
d \geq I_{\lambda}\left(u_{n}\right)=\int_{\Omega} A\left(x, \nabla u_{n}(x)\right) \mathrm{d} x-\lambda \int_{\Omega} k(x) F\left(u_{n}(x)\right) \mathrm{d} x,
$$

and

$$
\begin{aligned}
I_{\lambda}\left(u_{n}\right) \geq & \int_{\Omega} A\left(x, \nabla u_{n}(x)\right) \mathrm{d} x-\frac{\lambda}{\theta} \int_{\Omega} k(x) f\left(u_{n}(x)\right) u_{n}(x) \mathrm{d} x \\
= & \left(1-\frac{1}{\theta}\right) \int_{\Omega} A\left(x, \nabla u_{n}(x)\right) \mathrm{d} x \\
& +\frac{1}{\theta}\left(\int_{\Omega} A\left(x, \nabla u_{n}(x)\right) \mathrm{d} x-\lambda \int_{\Omega} k(x) f\left(u_{n}(x)\right) u_{n}(x) \mathrm{d} x\right)
\end{aligned}
$$

$$
\geq\left(1-\frac{1}{\theta}\right) \Lambda_{2}\left\|u_{n}\right\|^{p}+\frac{1}{\theta}\left\langle I_{\lambda}^{\prime}\left(u_{n}\right), u_{n}\right\rangle .
$$

Due to (3.1), we can actually assume that $\left|\frac{1}{\theta}\left\langle I_{\lambda}^{\prime}\left(u_{n}\right), u_{n}\right\rangle\right| \leq\left\|u_{n}\right\|$. Thus,

$$
d+\left\|u_{n}\right\| \geq I_{\lambda}\left(u_{n}\right)-\frac{1}{\theta}\left\langle I_{\lambda}^{\prime}\left(u_{n}\right), u_{n}\right\rangle \geq\left(1-\frac{1}{\theta}\right) \Lambda_{2}\left\|u_{n}\right\|^{p} .
$$

It follows from this quadratic inequality that $\left\{\left\|u_{n}\right\|\right\}$ is bounded. By the Eberlian-Smulyan theorem, passing to a subsequence if necessary, we can assume that $u_{n} \rightharpoonup u$. Then $\Psi^{\prime}\left(u_{n}\right) \rightarrow \Psi^{\prime}(u)$ because of compactness. Since $I_{\lambda}^{\prime}\left(u_{n}\right)=\Phi^{\prime}\left(u_{n}\right)-\lambda \Psi^{\prime}\left(u_{n}\right) \rightarrow 0$, then $\Phi^{\prime}\left(u_{n}\right) \rightarrow \lambda \Psi^{\prime}(u)$. Since Φ^{\prime} is a homeomorphism, then $u_{n} \rightarrow u$ and so I_{λ} satisfies (PS)-condition.
From (f_{2}), by standard computations, there is a positive constant C such that

$$
\begin{equation*}
F(t) \geq C|t|^{\theta} \tag{3.2}
\end{equation*}
$$

for all $t \in \mathbb{R}$ and $|t|>M$. In fact, setting $a:=\min _{|\xi|=M} F(\xi)$ and

$$
\begin{equation*}
\varphi_{t}(s):=F(s t), \quad \forall s>0, \tag{3.3}
\end{equation*}
$$

by (f_{2}), for every $t \in \Omega$ and $|t|>M$ one has

$$
0<\theta \varphi_{t}(s)=\theta F(s t) \leq s t \cdot f(s t)=s \varphi_{t}^{\prime}(s), \quad \forall s>\frac{M}{|t|}
$$

Therefore,

$$
\int_{M /|t|}^{1} \frac{\varphi_{t}^{\prime}(s)}{\varphi_{t}(s)} \mathrm{d} s \geq \int_{M /|t|}^{1} \frac{\theta}{s} \mathrm{~d} s
$$

then

$$
\varphi_{t}(1) \geq \varphi_{t}\left(\frac{M}{|t|}\right) \frac{|t|^{\theta}}{M^{\theta}}
$$

Taking into account of (3.3), we obtain

$$
F(t) \geq F\left(\frac{M}{|t|} t\right) \frac{|t|^{\theta}}{M^{\theta}} \geq a(x) \frac{|t|^{\theta}}{M^{\theta}} \geq C|t|^{\theta}
$$

where $C>0$ is a constant. Thus, (3.2) is proved.
Fixed $u_{0} \in X \backslash\{0\}$, for each $t>1$ one has

$$
I_{\lambda}\left(t u_{0}\right) \leq \Lambda_{2} t^{p}\left\|u_{0}\right\|^{p}-\lambda C t^{\theta} \int_{\Omega}\left|u_{0}(x)\right|^{\theta} \mathrm{d} x
$$

Since $\theta>p$, this condition guarantees that I_{λ} is unbounded from below. Fixed $\lambda \in] 0, \lambda^{\star}$ [, from condition (α_{2}) it follows that

$$
\begin{equation*}
\|u\|<\left(\frac{r}{\Lambda_{1}}\right)^{1 / p} \tag{3.4}
\end{equation*}
$$

for each $u \in X$ such that $u \in \Phi^{-1}(]-\infty, 1[)$. Moreover, the compact embedding $X \hookrightarrow L^{1}(\Omega),\left(\mathrm{f}_{1}\right),(3.4)$ and the compact embedding $X \hookrightarrow L^{q}(\Omega)$ imply that, for each $u \in \Phi^{-1}(]-\infty, 1[)$, we have

$$
\begin{aligned}
\Psi(u) & \leq\|k\|_{\infty}\left(a_{1}\|u\|_{L^{1}(\Omega)}+\frac{a_{2}}{q}\|u\|_{L^{q}(\Omega)}^{q}\right) \\
& \leq\|k\|_{\infty}\left(a_{1} c_{1}\|u\|+\frac{a_{2}}{q}\left(c_{q}\|u\|\right)^{q}\right) \\
& <\|k\|_{\infty}\left(\frac{a_{1} c_{1} r^{1 / p}}{\Lambda_{1}^{1 / p}}+\frac{a_{2} c_{q}^{q} r^{q / p}}{q \Lambda_{1}^{q / p}}\right)
\end{aligned}
$$

hence, by choosing $r=1$, one has

$$
\begin{equation*}
\sup _{\Phi(u)<1} \Psi(u) \leq\|k\|_{\infty}\left(\frac{a_{1} c_{1}}{\Lambda_{1}^{1 / p}}+\frac{a_{2} c_{q}^{q}}{q \Lambda_{1}^{q / p}}\right)=\frac{1}{\lambda^{\star}}<\frac{1}{\lambda} \tag{3.5}
\end{equation*}
$$

From (3.5) one has

$$
\lambda \in] 0, \lambda^{\star}[\subseteq] 0, \frac{1}{\sup _{\{\Phi(u)<1\}} \Psi(u)}[
$$

So all hypotheses of Theorem 2.3 are verified. Therefore, for each $\lambda \in] 0, \lambda^{\star}[$, the functional I_{λ} admits two distinct critical points that are weak solutions of problem (1.1).

Remark 3.3. Theorem 1.1 is an immediately consequence of Theorem 3.2.
Remark 3.4. We observe that, if f is non-negative and $f(0) \neq 0$ in Ω, then Theorem 3.2 ensures the existence of two positive weak solutions for problem (1.1) (see, e.g., [32, Theorem 11.1]).

Remark 3.5. Thanks to Talenti's inequality, it is possible to obtain an estimate of the embedding's constants c_{1}, c_{q}. By the Sobolev embedding theorem there exists a positive constant c such that

$$
\begin{equation*}
\|u\|_{L^{p^{*}}(\Omega)} \leq c\|u\|, \quad(\forall u \in X), \tag{3.6}
\end{equation*}
$$

see [33, Proposition B.7]. The best constant that appears in (3.6) is

$$
\begin{equation*}
c:=\frac{1}{N \sqrt{\pi}}\left(\frac{N!\Gamma\left(\frac{N}{2}\right)}{2 \Gamma\left(\frac{N}{p}\right) \Gamma\left(N+1-\frac{N}{p}\right)}\right)^{1 / N} \eta^{1-1 / p} \tag{3.7}
\end{equation*}
$$

where

$$
\eta:=\frac{N(p-1)}{N-p}
$$

see, for instance, [38].
Due to (3.7), as a simple consequence of Hölder's inequality, it follows that

$$
c_{q} \leq \frac{\operatorname{meas}(\Omega)^{\frac{p^{*}-q}{p^{*} q}}}{N \sqrt{\pi}}\left(\frac{N!\Gamma\left(\frac{N}{2}\right)}{2 \Gamma\left(\frac{N}{p}\right) \Gamma(N+1-N / p)}\right)^{1 / N} \eta^{1-1 / p},
$$

where "meas (Ω) " denotes the Lebesgue measure of the set Ω.
In conclusion we present the concrete examples of application of Theorem 3.2 whose construction is motivated by [2, Example 4.1].

Example 3.6. We consider the function f defined by

$$
f(t):= \begin{cases}c+d q t^{q-1}, & \text { if } t \geq 0 \\ c-d q(-t)^{q-1}, & \text { if } t<0\end{cases}
$$

for each $t \in \mathbb{R}$, where $1<p<q<p^{*}$ and c, d are two positive constants. For fixed $p<\theta<q$ and

$$
\begin{equation*}
r>\max \left\{\left[\frac{(\theta-1) c}{d(q-\theta)}\right]^{h},\left[\frac{c}{d}\right]^{h}\right\} \tag{3.8}
\end{equation*}
$$

with $h=\frac{1}{q-1}$, we prove that f verifies the assumptions requested in Theorem 3.2. Condition $\left(\mathrm{f}_{1}\right)$ of Theorem 3.2 is easily verified. We observe that

$$
F(t)=c t+d|t|^{q}
$$

for each $t \in \mathbb{R}$. Taking (3.8) into account, condition $\left(\mathrm{f}_{2}\right)$ is verified (see Example 4.1 of $[2])$ and clearly $f(0) \neq 0$ in Ω,. Therefore, problem (1.1) has at least two non-trivial weak solutions for every $\lambda \in] 0, \lambda^{\star}\left[\right.$, where λ^{\star} is the constant introduced in the statement of Theorem 3.2.

Example 3.7. Thanks to Theorem 1.1, the problem

$$
\begin{cases}-\operatorname{div}(a(x, \nabla u))=\lambda\left(u^{3}+1\right), & \text { in } \Omega \\ u=0, & \text { on } \partial \Omega\end{cases}
$$

admits two positive weak solutions for each $\lambda \in] 0, \lambda^{*}[$, where

$$
\begin{aligned}
\lambda^{*} & =\frac{1}{\|k\|_{\infty}\left(\frac{c_{1}}{\Lambda_{1}^{1 / p}}+\frac{c_{4}^{4}}{4 \Lambda_{1}^{4 / p}}\right)} \\
& \geq N \sqrt{\pi}\left(\frac{2 \Gamma\left(\frac{N}{p}\right) \Gamma\left(N+1-\frac{N}{p}\right)}{N!\Gamma\left(\frac{N}{2}\right)}\right)^{1 / N} .
\end{aligned}
$$

In fact, it is enough to observe that f satisfies

$$
\lim _{|t| \rightarrow \infty} \frac{f(t)}{|t|^{3}}=0
$$

and $0<3 F(\xi) \leq \xi f(\xi)$ for all $|\xi| \geq 2$.

REFERENCES

[1] G. Bonanno, Relations between the mountain pass theorem and local minima. Adv. Nonlinear Anal. 1 (2012), 205-220.
[2] G. Bonanno and A. Chinnì, Existence and multiplicity of weak solutions for elliptic Dirichlet problems with variable exponent. J. Math. Anal. Appl. 418 (2014), 812-827.
[3] H. Brézis, Analyse Functionelle - Theorie et Applications. Masson, Paris (1983).
[4] A. Callegari and A. Nachman, A nonlinear singular boundary value problem in the theory of pseudoplastic fuids. SIAM J. Appl. Math. 38 (1980), 275-281.
[5] M. M. Coclite and G. Palmieri, On a singular nonlinear Dirichlet problem. Comm. Partial Differential Equations 14 (1989), 1315-1327.
[6] F. Colasuonno, P. Pucci, and Cs. Varga, Multiple solutions for an eigenvalue problem involving p-Laplacian type operators. Nonlinear Anal. 75 (2012), 4496-4512.
[7] M. G. Crandall, P. H. Rabinowitz, and L. Tartar, On a Dirichlet problem with a singular nonlinearity. Comm. Partial Differential Equations 2 (1977), 193-222.
[8] F. Cîrstea, M. Ghergu, and V. Rădulescu, Combined effects of asymptotically linear and singular nonlinearities in bifurcation problems of Lane-Emden-Fowler type. J. Math. Pures Appl. 84 (2005), 493-508.
[9] P. De Népoli and M.C. Mariani, Mountain pass solutions to equations of p-Laplacian type. Nonlinear Anal. 54 (2003), 1205-1219.
[10] J. I. Díaz, J. M. Morel, and L. Oswald, An elliptic equation with singular nonlinearity. Comm. Partial Differential Equations 12 (1987), 1333-1344.
[11] D. M. Duc and N. T. Vu, Nonuniformly elliptic equations of p-Laplacian type. Nonlinear Anal. 61 (2005), 1483-1495.
[12] X.-L. Fan and Q.-H. Zhang, Existence of solutions for $p(x)$-Laplacian Dirichlet problem. Nonlinear Anal. 52 (2003), 1843-1852.
[13] M. Ferrara and G. Molica Bisci, Existence results for elliptic problems with Hardy potential. Bull. Sci. Math. 138 (2014) 846-859.
[14] A. Ferrero and F. Gazzola, Existence of solutions for singular critical growth semilinear elliptic equations. J. Differential Equations 177 (2001), 494-522.
[15] M. Galewski and G. Molica Bisci, Existence results for one-dimensional fractional equations. Math. Meth. Appl. Sci. 39 (2016), 1480-1492.
[16] J. P. García Azorero and I. Peral Alonso, Hardy inequalities and some critical elliptic and parabolic problems. J. Differential Equations 144 (1998), 441-476.
[17] M. Ghergu and V. Rădulescu, Bifurcation for a class of singular elliptic problems with quadratic convection term. C. R. Math. Acad. Sci. Paris 338 (2004), 831-836.
[18] M. Ghergu and V. Rădulescu, Ground state solutions for the singular Lane-EmdenFowler equation with sublinear convection term. J. Math. Anal. Appl. 333 (2007), 265273.
[19] M. Ghergu and V. Rădulescu, Multi-parameter bifurcation and asymptotics for the singular Lane-Emden-Fowler equation with a convection term. Proc. Roy. Soc. Edinburgh Sect. A 135 (2005), 61-83.
[20] M. Ghergu and V. Rădulescu, On a class of sublinear singular elliptic problems with convection term. J. Math. Anal. Appl. 311 (2005), 635-646.
[21] M. Ghergu and V. Rădulescu, Singular Elliptic Problems. Bifurcation and Asymptotic Analysis. Oxford Lecture Series in Mathematics and Its Applications, vol. 37, Oxford Univ. Press, 2008.
[22] S. Heidarkhani, M. Ferrara, G. A. Afrouzi, G. Caristi, and S. Moradi, Existence of solutions for Dirichlet quasilinear systems including a nonlinear function of the derivative. Electron. J. Diff. Equ. 2016 (2016), 56, 1-12.
[23] S. Heidarkhani and J. Henderson, Multiple solutions for a Dirichlet quasilinear system containing a parameter. Georgian Math. J. 21 (2014), 187-197.
[24] X. He and W. Zou, Multiple solutions for the Brézis-Nirenberg problem with a Hardy potential and singular coefficients. Comput. Math. Appl. 56 (2008), 1025-1031.
[25] A. Kristály, H. Lisei and Cs. Varga, Multiple solutions for p-Laplacian type equations. Nonlinear Anal. 68 (2008) 1375-1381.
[26] A. Kristály and Cs. Varga, Multiple solutions for elliptic problems with singular and sublinear potentials, Proc. Amer. Math. Soc. 135 (2007), 2121-2126.
[27] R. Livrea, Existence of three solutions for a quasilinear two point boundary value problem. Arch. Math. (Basel) 79 (2002), 288-298.
[28] G. Molica Bisci and V. Rădulescu, Applications of local linking to nonlocal Neumann problems. Commun. Contemp. Math. 17 (2014) 1450001 (17 pages).
[29] G. Molica Bisci and V. Rădulescu, Mountain pass solutions for nonlocal equations. Ann. Acad. Sci. Fenn. Math. 39 (2014), 579-592.
[30] G. Molica Bisci and D. Repovš, Multiple solutions for elliptic equations involving a general operator in divergence form. Ann. Acad. Sci. Fenn. Math. 39 (2014), 259-273.
[31] E. Montefusco, Lower semicontinuity of functionals via the concentration-compactness principle. J. Math. Anal. Appl. 263 (2001), 264-276.
[32] P. Pucci and J. Serrin, The strong maximum principle revisited. J. Differential Equations 196 (2004), 1-66; Erratum, ibid., 207 (2004), 226-227.
[33] P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations. CBMS Reg. Conf. Ser. Math., vol. 65, Amer. Math. Soc., Providence, RI, 1986.
[34] V. Rădulescu, Singular Phenomena in Nonlinear Elliptic Problems. From Blow-Up Boundary Solutions to Equations with Singular Nonlinearities. In: M. Chipot (Ed.), Handbook of Differential Equations: Stationary Partial Differential Equations, vol. 4, Elsevier, North-Holland, Amsterdam, 2007, pp. 485-593.
[35] B. Ricceri, A general variational principle and some of its applications. J. Comput. Appl. Math. 113 (2000), 401-410.
[36] J. Shi and M. Yao, On a singular nonlinear semilinear elliptic problem. Proc. Roy. Soc. Edinburgh Sect. A 128 (1998), 1389-1401.
[37] J. Simon, Régularité de la solution d'une équation non linéaire dans \mathbb{R}^{N}. In: P. Benilan, J. Robert (Eds.), Journées d'Analyse Non Linéaire, Lecture Notes in Mathematics, vol. 665, Springer, 1978, pp. 205-227.
[38] G. Talenti, Best constants in Sobolev inequality. Ann. Mat. Pura Appl. 110 (1976), 353-372.
[39] Z. Yang and D. Geng, H. Yan, Three solutions for singular p-Laplacian type equations. Electron. J. Differ. Equ. 61 (2008), 1-12.
[40] E. Zeidler, Nonlinear functional analysis and its applications. Vol. II, Springer, Berlin-Heidelberg-New York (1985).
[41] Z. Zhang, Nonexistence of positive classical solutions of a singular nonlinear Dirichlet problem with a convection term. Nonlinear Anal. 27 (1996), 957-961.
[42] L. Zhao, P. Zhao, and X. Xie, Existence and multiplicity of solutions for divergence type elliptic equations. Electronic J. Differ. Equ. 43 (2011), 1-9.

Received November 11, 2017

University of Mazandaran
Faculty of Mathematical Sciences
Department of Mathematics
Babolsar, Iran
amirkhanlou.s@gmail.com
afrouzi@umz.ac.ir

[^0]: * Corresponding author

