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In this paper, we establish the existence of at least two distinct weak solutions
for a class of elliptic equations involving a general operator in divergence form,
subject to Dirichlet boundary conditions in a smooth bounded domain in RN . A
critical point result for differentiable functionals is exploited, in order to prove
that the problem admits at least two distinct non-trivial weak solutions.
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1. INTRODUCTION

The purpose of this paper is to establish the existence of at least two
distinct weak solutions for the following elliptic Dirichlet problem

(1.1)

{
−div(a(x,∇u)) = λk(x)f(u), in Ω,
u = 0, on ∂Ω,

where Ω is a bounded domain in RN (N ≥ 2) with smooth boundary ∂Ω,
p > N , a : Ω̄ × RN → RN is a suitable continuous map of gradient type, and
λ is a positive real parameter. Further, f : R → R and k : Ω̄ → R+ are two
continuous functions.

The operator −div(a(x,∇u)) arises, for example, from the expression of
the p -Laplacian in curvilinear coordinates. We refer to the overview papers
[9, 11, 30, 39, 42] for the investigation on Dirichlet problems involving a general
operator in divergence form. For example, De Nápoli and Mariani in [9] studied
the existence of solutions to equations of p -Laplacian type. They proved the
existence of at least one solution, and under further assumptions, the existence
of infinitely many solutions. In order to apply mountain pass results, they
introduced a notion of uniformly convex functional that generalizes the notion
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of uniformly convex norm. Duc and Vu in [11] studied the non-uniform case.
The authors in [42] established the existence and multiplicity of weak solutions
of a problem involving a uniformly convex elliptic operator in divergence form.
They discussed the existence of one nontrivial solution by the mountain pass
lemma, when the nonlinearity has a (p − 1)-superlinear growth at infinity,
and two nontrivial solutions by minimization and mountain pass when the
nonlinear term has a (p − 1)-sublinear growth at infinity. In [6], Colasuonno,
Pucci and Varga studied different and very general classes of elliptic operators
in divergence form looking at the existence of multiple weak solutions. Their
contributions represent a nice improvement, in several directions, of the results
obtained by Kristály et al. in [25] in which a uniform Dirichlet problem with
parameter is investigated.

In [29] Molica Bisci and Rădulescu, applying mountain pass results stud-
ied the existence of solutions to nonlocal equations involving the p -Laplacian.
More precisely, they proved the existence of at least one nontrivial weak solu-
tion, and under additional assumptions, the existence of infinitely many weak
solutions. In [28], they also by using an abstract linking theorem for smooth
functionals established a multiplicity result on the existence of weak solutions
for a nonlocal Neumann problem driven by a nonhomogeneous elliptic differ-
ential operator.

Recently, motivated by this large interest, Molica Bisci and Repovš in
[30, Theorem 3.5] studied the existence of at least three weak solutions for the
following elliptic Dirichlet problem{

−div(a(x,∇u)) = λk(x)f(u), in Ω,
u = 0, on ∂Ω,

where Ω is a bounded domain in RN (N ≥ 2) with smooth boundary ∂Ω,
p > N , a : Ω̄ × RN → RN is a suitable continuous map of gradient type, and
λ is a positive real parameter. Further, f : R → R and k : Ω̄ → R+ are two
continuous functions, and f : R→ R is a continuous function such that

(f1) |f(t)| ≤ a1 + a2|t|q−1, ∀t ∈ R,

for some non-negative constants a1, a2, where q ∈]1, pN
N−p [, if p < N and 1 <

q < +∞ if p ≥ N. In addition,as customary, the symbol

p∗ :=


pN

N − p
if 1 < p < N,

∞ if p ≥ N,
denotes the critical Sobolev exponent of p. In this work, our goal is to obtain
the existence of two distinct weak solutions for problem (1.1).

A special case of our main result reads as follows.
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Theorem 1.1. Let f : R→ R be a non-negative continuous function with
f(0) 6= 0, satisfying a (q − 1)-sublinear growth at infinity for some q ∈]p, p∗[,
i.e.,

lim
|t|→∞

f(t)

|t|q−1
= 0.

Moreover, assume that there exist θ > p and M > 0 such that

0 < θF (t) ≤ tf(t),

for each t ∈ R and |t| ≥ M . Then, there exists λ? > 0, such that, for any
λ ∈]0, λ?[ the problem (1.1), admits two positive weak solutions.

For completeness, we recall that a careful and interesting analysis of el-
liptic problems was developed in the monographs [21, 34] as well as the papers
[14, 18, 24, 26, 31] and references therein.

2. AUXILIARY RESULTS

Assume that Ω is a bounded domain in RN (N ≥ 2) with smooth boundary
∂Ω. Further, denote by X the space W 1,p

0 (Ω) endowed with the norm

‖u‖ :=

(∫
Ω
|∇u(x)|p dx

)1/p

,

and X∗ the topological dual of X.
By the compact embedding X ↪→ Lq(Ω) for each q ∈ [1, p∗[, there exists

a positive constant cq such that

(2.1) ‖u‖Lq(Ω) ≤ cq‖u‖, (∀u ∈ X)

where cq is the best constant of the embedding.
The functional Iλ : X → R associated with (1.1) is introduced as follow-

ing:
Iλ(u) := Φ(u)− λΨ(u),

for every u ∈ X, where

Φ(u) :=

∫
Ω
A(x,∇u(x))dx,

and

Ψ(u) :=

∫
Ω
k(x)F (u(x))dx,

for every u ∈ X, where k : Ω̄→ R+ is a positive and continuous function, and

F (s) =

∫ s

0
f(t)dt,
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for every s ∈ R. By standard arguments, Φ is Gâteaux differentiable and
sequentially weakly lower semicontinuous and its Gâteaux derivative is the
functional Φ′(u) ∈ X∗, given by

Φ′(u)(v) :=

∫
Ω
a(x,∇u(x))∇v(x)dx,

for every v ∈ X. Moreover, Ψ is a Gâteaux differentiable sequentially weakly
upper continuous functional whose Gâteaux derivative is given by

Ψ′(u)(v) :=

∫
Ω
k(x)f(u(x))v(x)dx,

for every v ∈ X. Fixing the real parameter λ, a function u : Ω → R is said to
be a weak solution of (1.1) if u ∈ X and∫

Ω
a(x,∇u(x))∇v(x)dx− λ

∫
Ω
k(x)f(u(x))v(x)dx = 0,

for every v ∈ X. Therefore, the critical points of Iλ are exactly the weak
solutions of (1.1).

Definition 2.1. A Gâteaux differentiable function I satisfies the Palais-
Smale condition (in short (PS)-condition) if any sequence {un} such that

(a) {I(un)} is bounded,

(b) limn→+∞ ‖I ′(un)‖X∗ = 0,

has a convergent subsequence.

Definition 2.2. Let X be a reflexive real Banach space. The operator
T : X → X∗ is said to satisfy the (S+) condition if the assumptions un ⇀ u0

in X and lim supn→+∞〈T (un)− T (u), un − u0〉 ≤ 0 imply un → u0 in X.

Our main tool is the following critical point theorem.

Theorem 2.3 (see [1, Theorem 3.2]). Let X be a real Banach space and
let Φ,Ψ : X → R be two continuously Gâteaux differentiable functionals such
that Φ is bounded from below and Φ(0) = Ψ(0) = 0. Fix r > 0 such that

sup{Φ(u)<r} < +∞ and assume that, for each λ ∈
]
0, r

sup{Φ(u)<r}Ψ(u)

[
, the

functional Iλ := Φ − λΨ satisfies (PS)-condition and it is unbounded from

below. Then, for each λ ∈
]
0, r

sup{Φ(u)<r}Ψ(u)

[
, the functional Iλ admits two

distinct critical points.
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3. MAIN RESULTS

In this section we formulate our main results. Let p ≥ 1 and let Ω ⊆ RN
be a bounded Euclidean domain, where N ≥ 2. Further, let A : Ω̄× RN → R
and let A = A(x, ξ) be a continuous function in Ω̄ × RN , with continuous
gradient a(x, ξ) := ∇ξA(x, ξ) : Ω̄ × RN → RN , and assume that the following
conditions hold:
(α1) A(x, 0) = 0 for all x ∈ Ω;
(α2) A satisfies Λ1|ξ|p ≤ A(x, ξ) ≤ Λ2|ξ|p for all x ∈ Ω̄, ξ ∈ RN , where Λ1 and
Λ2 are positive constants.
(α3) a satisfies the growth condition |a(x, ξ)| ≤ c(1 + |ξ|p−1) for all x ∈ Ω,
ξ ∈ RN , c > 0;
(α4) A is p-uniformly convex, that is

A(x,
ξ + η

2
) ≤ 1

2
A(x, ξ) +

1

2
A(x, η)− k|ξ − η|p,

for every x ∈ Ω̄, ξ, η ∈ RN and some k > 0.
(α5) a satisfies the strictly monotonicity condition, that is

(a(x, ξ1)− a(x, ξ2)) (ξ1 − ξ2) > 0

for all ξ1, ξ2 ∈ RN with ξ1 6= ξ2.

Proposition 3.1. The operator T : X → X∗ defined by

T (u)(v) :=

∫
Ω
a(x,∇u(x))∇v(x)dx,

for every u, v ∈ X, is strictly monotone.

Proof. Taking into account (α5), the operator T is strictly monotone.

We recall that cq is the constant of the embedding X ↪→ Lq(Ω) for each
q ∈ [1, p∗[, and c1 stands for cq with q = 1; see (2.1). Now, we establish the
main abstract result of this paper.

Theorem 3.2. Let f : R→ R be a continuous function such that condi-
tion (f1) holds. Moreover, assume that

(f2) there exist θ > p and M > 0 such that

0 < θF (t) ≤ tf(t),
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for each t ∈ R and |t| ≥M . Then, for each λ ∈]0, λ?[, problem (1.1) admits at
least two distinct weak solutions, where

λ? :=
1

‖k‖∞

(
a1c1

Λ
1/p
1

+
a2c

q
q

qΛ
q/p
1

) .

Proof. Our aim is to apply Theorem 2.3 to problem (1.1) in the case r = 1
to the space X := W 1,p

0 (Ω) with the norm

‖u‖ :=

(∫
Ω
|∇u(x)|pdx

)1/p

,

and to the functionals Φ,Ψ : X → R be defined by

Φ(u) :=

∫
Ω
A(x,∇u(x)) dx and Ψ(u) :=

∫
Ω
k(x)F (u(x)) dx, for all u ∈ X.

The functional Φ is in C1(X,R) and Φ′ : X → X∗ is strictly monotone (see
Proposition 3.1). Now we prove that Φ′ is a mapping of type (S+). Let un ⇀ u
in X and lim supn→+∞〈Φ′(un) − Φ′(u), un − u〉 ≤ 0. Then un → u in X (see
Theorem 3.1 of [12]). So, Φ′ is a mapping of type (S+). By Theorem 3.1
from [12], we get that Φ′ : X → X∗ is a homeomorphism. Moreover, thanks
to condition (f1) and to the compact embedding W 1,p

0 (Ω) ↪→ Lq(Ω) for each
q ∈ [1, p∗[, the functional Ψ is in C1(X,R) and has compact derivative and

Ψ′(u)(v) =

∫
Ω
k(x)f(u(x))v(x)dx,

for every v ∈ X. Now we prove that Iλ = Φ − λΨ satisfies (PS)-condition for
every λ > 0. Namely, we will prove that any sequence {un} ⊂ X satisfying

(3.1) d := sup
n
Iλ(un) < +∞, ‖I ′λ(un)‖X∗ → 0, as n→ +∞

contains a convergent subsequence. For n large enough, we have by (3.1)

d ≥ Iλ(un) =

∫
Ω
A(x,∇un(x)) dx− λ

∫
Ω
k(x)F (un(x)) dx,

and

Iλ(un) ≥
∫

Ω
A(x,∇un(x)) dx− λ

θ

∫
Ω
k(x)f(un(x))un(x) dx

=

(
1− 1

θ

)∫
Ω
A(x,∇un(x)) dx

+
1

θ

(∫
Ω
A(x,∇un(x)) dx− λ

∫
Ω
k(x)f(un(x))un(x) dx

)



7 Existence of two weak solutions for elliptic equations 319

≥
(

1− 1

θ

)
Λ2‖un‖p +

1

θ
〈I ′λ(un), un〉.

Due to (3.1), we can actually assume that |1θ 〈I
′
λ(un), un〉| ≤ ‖un‖. Thus,

d+ ‖un‖ ≥ Iλ(un)− 1

θ
〈I ′λ(un), un〉 ≥

(
1− 1

θ

)
Λ2‖un‖p.

It follows from this quadratic inequality that {‖un‖} is bounded. By the
Eberlian-Smulyan theorem, passing to a subsequence if necessary, we can as-
sume that un ⇀ u. Then Ψ′(un) → Ψ′(u) because of compactness. Since
I ′λ(un) = Φ′(un) − λΨ′(un) → 0, then Φ′(un) → λΨ′(u). Since Φ′ is a homeo-
morphism, then un → u and so Iλ satisfies (PS)-condition.
From (f2), by standard computations, there is a positive constant C such that

(3.2) F (t) ≥ C|t|θ

for all t ∈ R and |t| > M . In fact, setting a := min|ξ|=M F (ξ) and

(3.3) ϕt(s) := F (st), ∀s > 0,

by (f2), for every t ∈ Ω and |t| > M one has

0 < θϕt(s) = θF (st) ≤ st · f(st) = sϕ′t(s), ∀s > M

|t|
.

Therefore, ∫ 1

M/|t|

ϕ′t(s)

ϕt(s)
ds ≥

∫ 1

M/|t|

θ

s
ds,

then

ϕt(1) ≥ ϕt
(M
|t|

) |t|θ
M θ

.

Taking into account of (3.3), we obtain

F (t) ≥ F
(M
|t|
t
) |t|θ
M θ
≥ a(x)

|t|θ

M θ
≥ C|t|θ,

where C > 0 is a constant. Thus, (3.2) is proved.

Fixed u0 ∈ X\{0}, for each t > 1 one has

Iλ(tu0) ≤ Λ2t
p‖u0‖p − λCtθ

∫
Ω
|u0(x)|θdx.

Since θ > p, this condition guarantees that Iλ is unbounded from below. Fixed
λ ∈ ]0, λ?[, from condition (α2) it follows that

(3.4) ‖u‖ < (
r

Λ1
)1/p,
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for each u ∈ X such that u ∈ Φ−1(]−∞, 1[). Moreover, the compact embedding
X ↪→ L1(Ω), (f1), (3.4) and the compact embedding X ↪→ Lq(Ω) imply that,
for each u ∈ Φ−1(]−∞, 1[), we have

Ψ(u) ≤ ‖k‖∞

(
a1‖u‖L1(Ω) +

a2

q
‖u‖qLq(Ω)

)

≤ ‖k‖∞

(
a1c1‖u‖+

a2

q
(cq‖u‖)q

)

< ‖k‖∞

(
a1c1r

1/p

Λ
1/p
1

+
a2c

q
qrq/p

qΛ
q/p
1

)
,

hence, by choosing r = 1, one has

(3.5) sup
Φ(u)<1

Ψ(u) ≤ ‖k‖∞

(
a1c1

Λ
1/p
1

+
a2c

q
q

qΛ
q/p
1

)
=

1

λ?
<

1

λ
.

From (3.5) one has

λ ∈]0, λ?[⊆

]
0,

1

sup{Φ(u)<1}Ψ(u)

[
.

So all hypotheses of Theorem 2.3 are verified. Therefore, for each λ ∈]0, λ?[,
the functional Iλ admits two distinct critical points that are weak solutions of
problem (1.1).

Remark 3.3. Theorem 1.1 is an immediately consequence of Theorem 3.2.

Remark 3.4. We observe that, if f is non-negative and f(0) 6= 0 in Ω, then
Theorem 3.2 ensures the existence of two positive weak solutions for problem
(1.1) (see, e.g., [32, Theorem 11.1]).

Remark 3.5. Thanks to Talenti’s inequality, it is possible to obtain an es-
timate of the embedding’s constants c1, cq. By the Sobolev embedding theorem
there exists a positive constant c such that

(3.6) ‖u‖Lp∗ (Ω) ≤ c‖u‖, (∀ u ∈ X),

see [33, Proposition B.7]. The best constant that appears in (3.6) is

(3.7) c :=
1

N
√
π

(
N !Γ(N2 )

2Γ(Np )Γ(N + 1− N
p )

)1/N

η1−1/p,

where

η :=
N(p− 1)

N − p
,
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see, for instance, [38].
Due to (3.7), as a simple consequence of Hölder’s inequality, it follows

that

cq ≤
meas(Ω)

p∗−q
p∗q

N
√
π

(
N !Γ(N2 )

2Γ(Np )Γ(N + 1−N/p)

)1/N

η1−1/p,

where “meas(Ω)” denotes the Lebesgue measure of the set Ω.

In conclusion we present the concrete examples of application of Theorem
3.2 whose construction is motivated by [2, Example 4.1].

Example 3.6. We consider the function f defined by

f(t) :=

{
c+ dqtq−1, if t ≥ 0,
c− dq(−t)q−1, if t < 0.

for each t ∈ R, where 1 < p < q < p∗ and c, d are two positive constants. For
fixed p < θ < q and

(3.8) r > max

{[
(θ − 1)c

d(q − θ)

]h
,
[ c
d

]h}
,

with h = 1
q−1 , we prove that f verifies the assumptions requested in Theorem

3.2. Condition (f1) of Theorem 3.2 is easily verified. We observe that

F (t) = ct+ d|t|q,
for each t ∈ R. Taking (3.8) into account, condition (f2) is verified (see Example
4.1 of [2]) and clearly f(0) 6= 0 in Ω,. Therefore, problem (1.1) has at least
two non-trivial weak solutions for every λ ∈]0, λ?[, where λ? is the constant
introduced in the statement of Theorem 3.2.

Example 3.7. Thanks to Theorem 1.1, the problem{
−div(a(x,∇u)) = λ(u3 + 1), in Ω,
u = 0, on ∂Ω,

admits two positive weak solutions for each λ ∈]0, λ∗[, where

λ∗ =
1

‖k‖∞

(
c1

Λ
1/p
1

+
c44

4Λ
4/p
1

)

≥ N
√
π

(
2Γ(Np )Γ(N + 1− N

p )

N !Γ(N2 )

)1/N

.

In fact, it is enough to observe that f satisfies

lim
|t|→∞

f(t)

|t|3
= 0,

and 0 < 3F (ξ) ≤ ξf(ξ) for all |ξ| ≥ 2.
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