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In this paper, we present a monotone hybrid numerical scheme to compute the
solution and the normalized flux for a singularly perturbed convection-diffusion
problem on different kind of nonuniform meshes. This scheme which involves
weight parameters is different from the usual hybrid scheme. The error analysis
for the proposed scheme is carried out. A second order parameter uniform error
bound is obtained for approximating the solution and the weighted derivative of
the solution. Further, the idea is extended for a system of singularly perturbed
convection-diffusion problems and the error estimate for the system is also cal-
culated. Some numerical experiments are presented to illustrate the efficiency
and effectiveness of the proposed scheme.
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1. INTRODUCTION

Differential equations with a small parameter ‘ε’ multiplying the highest
order derivative terms are usually known to be singularly perturbed. Singular
perturbation problems (SPPs) arise in many physical phenomena like a fluid
flow with high Reynolds number, semiconductor device modeling, mathemat-
ical biology etc. The numerical analysis of singularly perturbed problems has
always been far from trivial. As is well known, the numerical approximation of
convectiondiffusion equations requires some special treatment in order to ob-
tain good results when the problem is convection dominated due to the presence
of boundary or interior layers. Boundary layers are nothing but thin regions
where the solution varies very rapidly while away from these, the solution be-
haves regularly. This makes the solution of the SPPs multi-scale in character
which causes severe numerical difficulties. Standard numerical methods for
solving such problems are unstable and fail to give accurate results when the
perturbation parameter approaches to zero [8]. Therefore, it is important to
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326 D. Shakti , J. Mohapatra 2

develop suitable numerical methods for these problems, whose accuracy does
not depends on the parameter value. For the various approaches on the nu-
merical solution of differential equations with steep, continuous solutions, one
may refer the recent books [20, 24, 27] and the references therein.

Until now, several numerical methods for linear and nonlinear singu-
larly perturbed convection-diffusion problems on layer-adapted meshes such
as Shishkin type meshes and adaptive grids have been developed by many re-
searchers [8, 16, 19, 20, 23, 27]. The limitation of such approaches is that
most of these methods are of first order convergent. In order to get higher
order accuracy, Andreev and Kopteva [1] proposed a monotone three-point
finite difference scheme and proved the second order uniform convergent on
Bakhvalov mesh and the second order uniform convergent up to a logarith-
mic limit on Shishkin mesh for the convection-diffusion problem. In [14],
first and second-order difference schemes for a singularly perturbed quasilin-
ear two-point boundary value problem were studied on arbitrary nonuniform
meshes. Linß [16] provided sufficient conditions for uniform convergence on
layer-adapted grids for quasilinear convection-diffusion problems. The hybrid
scheme derived in [28] combines a central difference scheme in the layer region
and a midpoint upwind scheme in the outer region. Uniformly convergent class
of hybrid schemes for the solution and the derivatives of quasilinear singularly
perturbed problems were studied by Zheng et al. [30].

In recent years, there is an increasing interest towards the system of SPPs
as these problems appear in various applications [18]. Few numerical methods
have been developed to tackle these problems on different kind of nonuniform
meshes. In [4], a numerical method was constructed for a system of weakly cou-
pled convection-diffusion problems on Shishkin mesh. The convergence analysis
of the upwind scheme for a coupled system of equations on various nonuniform
meshes was provided in [17]. From the literature, it is evident that the use
of Shishkin mesh is more frequent for a uniformly convergent method. But,
to implement this one should have enough information about the location and
the width of the boundary layers, which is not available in all cases. In recent
years, the idea of the adaptive grid to obtain the parameter uniform numer-
ical approximation has gain tremendous attention of some researchers. This
mesh detects the layer automatically having the advantage over Shishkin type
meshes discussed earlier. The adaptive mesh is obtained from the idea of the
equidistribution of a positive monitor function, which involves the derivatives
of the solution. Thus, it detects the abrupt change in the solution and automat-
ically locates the boundary layer. Beckett and Mackenzie [2] applied adaptive
mesh generated by equidistributing a monitor function for convection-diffusion
problems. One can also refer Beckett et al. [3] for one-dimensional parabolic
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PDEs. This work concerned with the derivation of posteriori error estimators
for convection-diffusion problems using adaptive algorithms were established in
[5, 9, 12, 29]. An optimal error estimate using mesh equidistribution techniques
for a singularly perturbed system of reaction-diffusion boundary-value prob-
lems was provided by Das and Natesan [6]. Gowrisankar and Natesan applied
the adaptive mesh obtained by equidistribution of a monitor function for the
reaction-diffusion parabolic problem in [10] and convection-diffusion parabolic
problem in [11]. Recently, Shakti and Mohapatra developed adaptive mesh
based numerical methods for parameterized SPPs in [25] and for system of
nonlinear singularly perturbed problems in [26].

In this work, we propose a monotone hybrid scheme which is a combina-
tion of the midpoint and the central difference scheme with variable weights
on the nonuniform meshes for convection-diffusion problems to obtain second
order convergence. The weights are so chosen that the scheme automatically
switches from the midpoint scheme to the central difference scheme as the mesh
goes from coarse to fine and so, having an advantage for no apriori information
about the layer and the outer region. Furthermore, we have extended this idea
to system of convection diffusion-problems.

The rest of the paper is organized as follows: In Section 2, we define the
continuous problems and their properties. Section 3 and Section 4 is devoted
to the construction of a monotone hybrid scheme and description of the layer
adapted meshes for the scalar and the system of convection-diffusion problems
respectively. Moreover, in Section 5 we carried out a convergence analysis
and obtained the parameter uniform bound of the scheme. To validate the
theoretical results, numerical experiments with some test problems are carried
out in Section 6 and the results are shown in the shape of tables and figures.
Henceforth, ‘C’ denotes a generic positive constant independent of both the
perturbation parameters and the mesh parameter N which can take different
values at different places. Throughout this paper, we assume ε ≤ CN−1, ε1 ≤
CN−1, and ε2 ≤ CN−1, where ε, ε1, and ε2 are the perturbation parameters,
as is generally the case in practise. Here, we denote ||γ|| = max |γ(x)|, ||Γ|| =
max
k
‖γk(x)‖ where Γ = (γ1, γ2, . . . , γk)

T and g(xi) = gi, gi−1/2 = (g(xi−1) +

g(xi))/2.

2. CONTINUOUS PROBLEM & ITS PROPERTIES

In this section, we first describe the properties of a scalar convection-
diffusion problem and then the properties of system of convection diffusion
problems.
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2.1. SCALAR CONVECTION DIFFUSION PROBLEM

Consider the following singularly perturbed boundary value problem(BVP):

(1)

{
Lεu ≡ −εu′′(x)− (a(x)u(x))′ = f(x) x ∈ Ω = (0, 1),
u(0) = s0, u(1) = s1,

where 0 < ε � 1, 0 < α ≤ a(x) ≤ α∗ and s0, s1 are given constants. It has
a boundary layer in neighborhood of x = 0. The following lemma shows that
the operator  Lε satisfies the maximum principle.

Lemma 2.1. Let v(x) be a smooth function satisfying v(0) ≥ 0, v(1) ≥ 0
and Lεv(x) ≥ 0 for every x ∈ Ω then v(x) ≥ 0 for all x ∈ Ω.

Proof. Let x∗ ∈ Ω be such that v(x∗) = min
x∈Ω

v(x) and assume that v(x∗) <

0. Clearly x∗ 6= 0, 1 and v′(x∗) = 0. So, Lεv(x∗) ≡ −εv′′(x∗) + (a(x∗)v(x∗))′ <
0, which is a contradiction. Hence, v(x) ≥ 0 for every x ∈ Ω.

Lemma 2.2. The solution u(x) of the BVP (1) and its derivatives satisfy
the following bounds:

(2) |u(k)(x)| ≤ C(1 + ε−k exp(−αx/ε)), k = 0, 1, 2, 3.

Proof. Using the idea discussed in Lemma 2.3 page 1027 of [13], one can
prove the above lemma.

Let us decompose the solution of BVP (1) into a smooth component v(x)
and a singular component w(x) as: u(x) = v(x) + w(x).

Now, v(x) = v0(x)+εv1(x)+ε2v2(x), where v0, v1 and v2 are the solution
of the following problems:

−av′0(x) = f(x), v0(1) = s1,
−av′1(x) = −v′′0(x), v1(1) = 0,
−Lεv2(x) = v′′1(x), v2(0) = 0, v2(1) = 0.

The regular component v(x) satisfies the BVP:

(3) Lεv(x) = f(x) v(0) = v0(0) + εv1(0), v(1) = s1,

and the singular component w(x) satisfies

(4) Lεw(x) = 0, |w(0)| ≤ C, w(1) = 0,

where w(0) depends on v(x) and its derivatives which are bounded uniformly
in ε.

The following lemma provides the bounds for the components v and w.
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Lemma 2.3. The smooth component v(x) and the singular component
w(x) of the solution u(x) of BVP (1) satisfy the following bounds:

|v(k)(x)| ≤ C,

|w(k)(x)| ≤ Cε−k exp(−αx/ε), k = 0, 1, 2, 3.

Proof. Using the idea given in Lemma 3.3 of [8], one can prove the above
bounds.

2.2. SYSTEM OF CONVECTION DIFFUSION PROBLEMS

Next, consider the following coupled system of convection-diffusion BVPs:

(5)


L1u1 ≡ −ε1u

′′
1(x)− (a1(x)u1(x))′ = f1(x), u1(0) = u1(1) = 0,

L2u2 ≡ −ε2u
′′
2(x)− (a2(x)u2(x))′ − (b1(x)u1)′ = f2(x),

u2(0) = u2(1) = 0,

where 0 ≤ ε1 ≤ ε2 � 1 are the small parameters and 0 < αk ≤ ak ≤ α∗k for
x ∈ Ω, k = 1, 2. The system (6) is a coupled system of convection-diffusion
problems, when b1(x) 6= 0. The solution u1 exhibits a boundary layer of width
O(ε1) near x = 0. The boundary layer occurring in the solution u2 depends
on the relative values of two small parameters. One may refer introduction
section of [4] for more details.

The following theorem gives the derivative estimate of the solution com-
ponent u1 and u2.

Theorem 2.4. The solution u = (u1, u2) of the system (6) and its deriva-
tives satisfy the following bound for x ∈ Ω:

(6)


|u(k)

1 (x)| ≤ C(1 + ε−k1 exp(−α1x/ε1)), k = 0, 1, 2, 3,

|u2(x)| ≤ C,

|u(k)
2 (x)| ≤ C(1 + ε

−(k−1)
2 (ε−1

1 exp(−α1x/ε1) + ε−1
2 exp(−α2x/ε2)),

k = 1, 2, 3.

Proof. The bounds of the solution u can be obtained by using the idea
given in Theorem 3 of Bellew [4] and in Section 3 of Linß [17].

3. SCALAR CONVECTION DIFFUSION PROBLEM

This section is devoted for the discretization of the scalar convection-
diffusion problems using a monotone hybrid difference scheme and the descrip-
tion of certain nonuniform meshes.
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3.1. DISCRETE PROBLEM

We consider a monotone hybrid finite difference scheme to find UN =
{UNi }Ni=0 on an arbitrary nonuniform mesh ΩN = {0 = x0 < x1 < . . . xN−1 <
xN = 1}, which is defined as follows:

(7)

 LNε U ≡ −
[ANUN ]i+1 − [ANUN ]i

~σ,i
= fσ,i−1/2, for i = 1, ..., N − 1

UN0 = s0, UNN = s1,

where,

[ANU ]i = ε
UNi − UNi−1

hi
+ σiaiU

N
i + (1− σi)ai−1U

N
i−1,

~σ,i = (1− σi)hi + σi+1hi+1, hi = xi − xi−1,

fσ,i−1/2 = (f(xi−1 + hiσi) + f(xi + hi+1σi+1))/2.(8)

The σi is chosen differently by different researchers [1, 16, 30]. The idea be-
hind the different choice of σi is that it should satisfies the discrete maximum
principle. Here, we have chosen σi as:

(9) σi =

{
1
2 , if 1

2 ≥ 1− ε/hiai−1,

1, if 1
2 < 1− ε/hiai−1.

The derivative at xi−1/2 is computed as:

(10) D−UNi =
UNi − UNi−1

hi
, i = 1, 2 . . . N.

After rearranging the terms in (7), the following form is obtained:

(11)

{
r−i U

N
i−1 + rciU

N
i + r+

i U
N
i+1 = fσ,i−1/2, for i = 1, ..., N − 1,

UN0 = s0, UNN = s1,

where,

r−i = − 1

~σ,i

(
ε

hi
− (1− σi)ai−1

)
, r+

i = − 1

~σ,i

(
ε

hi+1
+ σi+1ai+1

)
,

rci =
1

~σ,i

(
ε

hi
+

ε

hi+1
+ σiai − (1− σi+1)ai

)
.

The tri-diagonal system (11) has the following properties:

(12) r−i < 0, r+
j < 0, rci > 0 for i = 1, ..., N − 1.

This matrix has diagonal predominance with respect to the columns. There-
fore, the tri-diagonal matrix (11) is a monotone matrix.



7 Monotone hybrid scheme for convection diffusion problems 331

3.2. GENERATION PF THE GRID

Here, in this section we describe the construction of nonuniform meshes
specially the Shishkin type meshes and the adaptive grid.

3.2.1. SHISHKIN TYPE MESHES(S-TYPE MESHES)

Without loss of generality, assume N is an even integer for the discretiza-

tion of Ω. Define τ = min

{
1
2 ,

2ε
α lnN

}
as the transition point. Since the layer

is on the left side, the mesh is obtained by dividing each of the subdomains
[0, τ ] and [τ, 1] of ΩN into N/2 subintervals. In [0, τ ], the mesh will be graded
and in [τ, 1] the mesh will be coarse. On [0, τ ], the mesh is given by the piece-
wise continuously differentiable and monotonic increasing function φ such that
φ(0) = 0 and φ(1/2) = lnN . Now the mesh points are,

(13) xi =


2ε

α
φ(ti), for ti = i

N , i = 0, 1, . . . , N/2,

1−
(

1− 2ε

α
lnN

)
2(N − i)

N
, for i = N/2 + 1, . . . , N.

To define the Shishkin mesh (S-mesh) and the Bakhvalov-Shishkin mesh (B-
S-mesh), let us consider a new monotonically decreasing function ‘ψ’ that is
closely related to φ, defined by φ = − lnψ which satisfies ψ(0) = 1 and ψ(1

2) =
N−1, then

ψ(t) = e(−2 lnN)t, ( S-mesh)(14)

ψ(t) = 1− 2(1−N−1)t, (B-S-mesh)(15)

For S-type meshes, we have the following results:

Lemma 3.1. For piecewise differentiable mesh generating function φ sat-
isfying the condition

(16) max
[0,1/2]

φ′(x) = max
[0,1/2]

|ψ′|
ψ
≤ CN,

we have
(17)

max
i

∫ xi

xi−1

(1 + ε−1 exp(−αx/2ε))dx ≤ C
{
ε+ (N−1 +N−τ/2) max

x∈[0,1/2]
|ψ′(x)|

}
,

where

max
x∈[0,1/2]

|ψ′(x)| ≤ C, (B-S-mesh)

max
x∈[0,1/2]

|ψ′(x)| ≤ C lnN, (S-mesh).
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Proof. One can refer Lemma 3 page no. 251 of [16] for the proof.

3.2.2. ADAPTIVE GRID

In order to show the parameter uniform bounds, the adaptive grid ap-
proach has attracted many researchers in last few years [3, 6, 15, 25]. The
idea of equidistribution principle is a commonly used technique to generate
the adaptive grid. A mesh ΩN is said to be equidistributed if

(18)

∫ xj

xj−1

M
(
u(s), s

)
ds =

∫ xj+1

xj

M
(
u(s), s

)
ds, j = 1, . . . , N − 1,

where M
(
u(x), x

)
> 0 is called the monitor function. Generally, the monitor

function is a measure of the computational error or the solution variation.
Equivalently,

(19)

∫ xj

xj−1

M
(
u(s), s

)
ds =

1

N

∫ 1

0
M
(
u(s), s

)
ds, j = 1, . . . , N − 1.

The advantage of using the adaptive grid is that it does not require any apriori
information about solution and it can detect the locations and width of the
layers accurately. Here, we have usedM(u(x), x) = 1+|u′′(x)|1/2 as the monitor
function.

The proposed idea of using the monotone hybrid scheme using the adap-
tive grid technique involves two steps: firstly the adaptive mesh has to be deter-
mined by a mesh generation algorithm and thereafter the difference scheme is
to be computed using the adaptively generated nonuniform mesh. We consider
the well-known de-Boor algorithm to generate the appropriate adaptive mesh.
Many researchers have used the adaptive mesh generation algorithm to solve
the various kind of SPPs. Mackenzie [19] analyzed the uniform convergence
of an upwind method for convection diffusion problem on an adaptive grid.
Uniform convergence of finite difference approximation for SPP on an adap-
tive grid was proved in [2]. Kopteva and Stynes [14] constructed an adaptive
method for solving a quasi linear one dimensional convection diffusion prob-
lem. Das and Natesan [6] consider the adaptive mesh technique to solve the
system of reaction diffusion problem. The adaptive mesh can be obtained by
using the following algorithm:

ADAPTIVE MESH GENERATION ALGORITHM

Step 1: Let us consider the initial mesh {x0
i : 0, 1/N, 2/N, . . . , 1} as the uniform

mesh.
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Step 2: For k = 0, 1, . . . assuming the mesh {xki } is given, compute the discrete
solution from the discrete problem.

Step 3: Find the discretized monitor function Mk
i . Compute

l
(k)
i = h

(k)
i

(
M

(k)
i−1 +M

(k)
i

2

)
for i = 1, . . . , N, and set M

(k)
0 = M

(k)
1 , M

(k)
N = M

(k)
N−1. Denote L0 = 0

and Li :=
∑N

i=1 l
(k)
i .

Step 4: Let C0 be the user chosen constant, where C0 > 1. If,
max l

(k)
i

LN
≤ C0

N
,

then go to Step 6, otherwise continue to Step 5.

Step 5: Set Yi = iLN/N for i = 0, 1, . . . , N. Interpolate the points (Li, xi).
Generate the new mesh {xk+1

i } by evaluating this interpolate at Yi for
i = 0, 1, . . . , N .

Step 6: Set xki as the final mesh and compute the difference approximation on
the final mesh. Stop.

Lemma 3.2. The mesh width generated by the equidistribution of the mon-
itor function M(u(x), x) satisfies hi ≤ CN−1 for i = 0, 1, ..., N .

Proof. It is clear that M(u(x), x) ≥ 1. So, by the equidistribution prin-
ciple and the bounds of derivatives of the solution given in Lemma 2.2

(20) hi ≤
∫ xi

xi−1

M(u(x), x)dx =
1

N

∫ 1

0
M(u(x), x)dx ≤ CN−1.

Thus, we have the desired inequality. One can refer [2, 19] for more details.

The following result allows an easy analyzation of the uniform convergence
of the numerical solution and the derivative obtained by the proposed monotone
hybrid scheme on the adaptive grid.

Lemma 3.3. For an appropriate choice of the monitor function, we have

(21) max
i

∫ xi

xi−1

(1 + ε−1 exp(−αx/2ε))dx ≤ CN−1.

Proof. From the solution decomposition, |w′′(x)| ≤ |u′′(x)| + |v′′(x)| ≤
C[1 + u′′(x)] and from the equidistribution principle, we have

max
i

∫ xi

xi−1

(
1 + ε−1 exp(−αx/2ε)

)
dx ≤ max

i

∫ xi

xi−1

(
1 + |w′′(x)|1/2

)
dx,
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≤ max
i

∫ xi

xi−1

(
1 + |u′′(x)|1/2

)
dx

≤ 1

N

∫ 1

0
M(u(x), x)dx ≤ CN−1.

Thus, we have the desired estimate.

4. SYSTEM OF CONVECTION DIFFUSION PROBLEMS

In this section, we extend the idea of the monotone hybrid scheme for the
system of convection diffusion problems.

4.1. DISCRETE PROBLEM

Here, we develop a monotone finite difference method for (6) on a nonuni-
form grid ΩN . Here, we have chosen two appropriate variable weights which
automatically switches the scheme from the central difference scheme to the
midpoint upwind scheme as nodal points moves from the layer region to the
outer region. Let U be the discrete approximation of the continuous solution
u. Then our scheme is:

(22)


Find U = [U1, U2] such that
[LNU]i = fi, for i = 1, 2, . . . , N,
U0 = UN = 0,

i.e. find Uk,1 . . . , Uk,N−1 for k = 1, 2 satisfying

(23)


LN1 U1,i ≡ −

[A1U1]i+1 − [A1U1]i
~σ1,i

= f1,σ1,i−1/2,

LN2 U2,i ≡ −
[A2U2]i+1 − [A2U2]i

~σ2,i
= f2,σ2,i−1/2,

where,

[A1U1]i = ε1
U1,i − U1,i−1

hi
+ σ1,ia1,iU1,i + (1− σ1,i)a1,i−1U1,i−1,

[A2U2]i = ε2
U2,i − U2,i−1

hi
+ σ2,ia2,iU2,i + (1− σ2,i)a2,i−1U2,i−1

+ σ2,ib1,iU1,i + (1− σ2,i)b1,i−1U1,i−1,

~σk,i = (1− σk,i)hi + σk,i+1hi+1, with increasing variable weights given by

(24) σk,i =

{ 1
2 , if 1

2 ≥ 1− εk/hiak,i−1,

1, if 1
2 < 1− εk/hiak,i−1.
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For σk,i = 1
2 , we obtain the central difference scheme while for σk,i = 1 the

midpoint scheme is obtained. After rearranging the terms in (23), we get the
following form of the difference scheme:

(25)

{
r−1,iU

N
1,i−1 + rc1,iU

N
1,i + r+

1,iU
N
1,i+1 = f1,σ1,i−1/2, for i = 1, ..., N − 1

UN0 = s0, UNN = s1,

where,

r−1,i = − 1

~σ1,i

(
ε1

hi
− (1− σ1,i)a1,i−1

)
, r+

1,i = − 1

~σ1,i

(
ε1

hi+1
+ σ1,i+1a1,i+1

)
,

rc1,i =
1

~σ1,i

(
ε1

hi
+

ε1

hi+1
+ σ1,ia1,i − (1− σ1,i+1)a1,i

)
.

Again,

(26)

{
r−2,iU

N
2,i−1 + rc2,iU

N
2,i + r+

2,iU
N
2,i+1 = gσ2,i−1/2, for i = 1, ..., N − 1

UN0 = s0, UNN = s1,

where,

r−2,i = − 1

~σ2,i

(
ε2

hi
− (1− σ2,i)a2,i−1

)
,

r+
2,i = − 1

~σ2,i

(
ε2

hi+1
+ σ2,i+1a2,i+1

)
,

rc2,i =
1

~σ2,i

(
ε2

hi
+

ε2

hi+1
+ σ2,ia2,i − (1− σ2,i+1)a2,i

)
gσ2,i−1/2 = f2,σ1,i−1/2 +

1

~σ2,i

(
σ2,i+1b1,i+1U1,i+1 + (1− σ2,i+1)b1,iU1,i

−σ2,ib1,iU1,i − (1− σ2,i)b1,i−1U1,i−1

)
.

It is clear that tri-diagonal systems (25) and (26) has the following prop-
erties:

(27) r−i < 0, r+
j < 0, rci > 0 for i = 1, ..., N − 1.

This matrix has the diagonal predominance with respect to the columns. There-
fore, the tri-diagonal matrix (25) and (26) are monotone matrices.

4.2. MESH GENERATION

4.2.1. SHISHKIN MESH

To construct the Shishkin mesh, we divide the domain Ω to three subdo-
mains as [0, τ1], [τ1, τ2] and [τ2, 1]. On the subinterval [τ2, 1], where the solution



336 D. Shakti , J. Mohapatra 12

behaves regularly, the mesh is coarse; on the other two subintervals [0, τ1] and
[τ1, τ2] the mesh is fine. Let N be the mesh parameter which is divisible by 4.
Define the transition parameters τ1 and τ2 as

τ2 = min

{
1

2
, κ0

ε2

α2
lnN

}
and τ1 = min

{
1

4
,
τ2

2
, κ1

ε2

α1
lnN

}
, κ0, κ1 ≥ 1.

Then the mesh widths are

(28) hi =


H1 = 4τ1

N 1 ≤ i ≤ N
4 ,

H2 = 4(τ2−τ1)
N

N
4 < i ≤ N

2 ,

H3 = 2(1−τ2)
N

N
2 < i ≤ N.

We consider the case τ1 ≤
τ2

2
, since when τ1 =

τ2

2
then ε1 = O(ε2) and the

results can be easily obtained. Further, we assume that τ2 = κ0
ε2
α2

lnN and

τ1 = κ1
ε2
α1

lnN , as otherwise N−1 is exponentially small compared with ε1 and
ε2.

Lemma 4.1. Let the nodes 0 = x0 < x1 < . . . < xN = 1 of ΩN generated
with the step size (28) with xi − xi−1 = O(N−1), then

(29)

[ ∫ xi

xi−1

(
1 +

2∑
k=1

ε−1
k exp(−αkx/2εk)

)
dx

]2

≤ CN−2 ln2N.

Proof. For 1 ≤ i ≤ N/4, using the mesh width estimates, we obtain

[ ∫ xi

xi−1

(
1 +

2∑
k=1

ε−1
k exp(−αkx/2εk)

)
dx

]2

≤ C
[
hi −

2

α1
exp(−α1x/2ε1)

∣∣∣∣xi
xi−1

− 2

α2
exp(−α2x/2ε2)

∣∣∣∣xi
xi−1

]2

,

≤ C
[
hi −

2

α1
exp(−α1xi/2ε1)(1− exp(−α1hi/2ε1))−

2

α2
exp(−α2x/2ε2)(1− exp(−α2hi/2ε2))

]2

,

≤ CN−2 ln2N.(30)

Using the inequality ε−1
1 exp(−α1x/2ε1) ≤ ε−1

2 exp(−α2x/2ε2), for x >
2ε1
α1

and the mesh width estimates, we have[ ∫ xi

xi−1

(
1 +

2∑
k=1

ε−1
k exp(−αkx/2εk)

)
dx

]2
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≤ C
[ ∫ xi

xi−1

(
1 + exp(−α2x/2ε2)

)
dx

]2

,

≤ C
[
hi −

2

α2
exp(−α2xi/2ε2)(1− exp(−α2hi/2ε2))

]2

,

≤ CN−2 ln2N.(31)

For N/4 < i ≤ N/2. Again, using the inequality (31) and the mesh width
estimates for N/2 < i ≤ N , we have[ ∫ xi

xi−1

(
1 +

2∑
k=1

ε−1
k exp(−αkx/2εk)

)
dx

]2

≤ C
[ ∫ xi

xi−1

(
1 + exp(−α2x/2ε2)

)
dx

]2

,

≤ C
[
hi +

2

α2
(exp(−α2xi/2ε2)− exp(−α2xi−1/2ε2)

]2

,

≤ C
[
hi +

2

α2
exp(−α2xN/2/2ε2)

]2

,

≤ CN−2.(32)

Combining (30), (31) and (32), we complete the proof.

4.2.2. ADAPTIVE GRID

The adaptive grid generation algorithm for the system of SPPs has got
much attention. Here, we have used the same adaptive algorithm which is de-
scribed in Section 3. For the coupled system, we need such a monitor function
which can measure the solution variation in both the components of the sys-
tem simultaneously. Once such type of monitor function was discussed in [6].
The details about the monitor function is discussed in the next section in
Remark 5.11.

5. ERROR ANALYSIS

Here, we carry out the error estimates in solving the scalar and the sys-
tem of convection diffusion problems by the monotone hybrid scheme on the
nonuniform meshes discussed above. Also, we derive the analysis for the scaled
derivative of the solution.
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5.1. SCALAR CONVECTION DIFFUSION PROBLEMS

The following result provides the stability of the monotone hybrid scheme
for scalar convection diffusion problem.

Theorem 5.1. Let vi is a solution of the monotone hybrid scheme with
zero boundary condition then,

(33) ‖v‖ ≤ C max
i

∣∣∣∣N−1∑
j=i

~σ,jfσ, j−1/2

∣∣∣∣,
and

(34) max
i
ε|D−vi| ≤ C max

i

∣∣∣∣N−1∑
j=i

~σ,jfσ, j−1/2

∣∣∣∣.
Proof. The proof of (33) is given in [1]. Now to prove (34), let us write

the mesh function v as

(35) vi = bVi +Wi,

where Vi and Wi are the solutions of the difference equations given as:

ANVi = 1, i = 1, 2, ..., N, V0 = 0, VN = 0,

ANWi =

N−1∑
j=i

~σ,jfσ, j−1/2, i = 1, 2, ..., N W0 = 0,W1 = 0,

and the constant b is

b = − [ε/hN − (1− σN )aN−1]WN−1

1 + [ε/hN − (1− σNaN−1)]VN−1
.

Since the matrix associated with the above is a monotone matrix, then by the
discrete maximum principle, we can prove that

0 ≤ Vi ≤ 2/α and |Wi| ≤ Vi max
i

∣∣∣∣N−1∑
j=i

~σjfσ, j−1/2

∣∣∣∣.
As ε/hN − (1− σN )aN−1 is non-negative, then we have

|b| ≤ max
i

∣∣∣∣N−1∑
j=i

~σ,jfσ, j−1/2

∣∣∣∣.
Now,

(36) ANvi = bANVi +ANWi = b+

N−1∑
j=i

~σ,jfσ, j−1/2.
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So,

(37) max
i
|ANvi| ≤ C max

i

∣∣∣∣N−1∑
j=i

~σ,jfσ, j−1/2

∣∣∣∣.
Thus from (10), we obtain

max
i
ε|D−vi| ≤ max

i
|ANvi|+ max

i
|σiaivi + (1− σi)ai−1vi−1|

≤ 2 max
i

∣∣∣∣N−1∑
j=i

~σ,jfσ, j−1/2

∣∣∣∣+ α‖v‖

≤ C max
i

∣∣∣∣N−1∑
j=i

~σ,jfσ, j−1/2

∣∣∣∣,
which is the required bound.

5.1.1. ERROR ESTIMATES OF THE NUMERICAL SOLUTION

Theorem 5.2. The error of the monotone hybrid difference scheme sat-
isfies the following bound:

(38) ‖u− UN‖ ≤ C max
i
h2
i + C

(
max
i

∫ xi

xi−1

(1 + ε−1 exp(−αx/2ε)dx)

)2

.

Proof. Let zi = UNi − u(xi) be the error function, then

(39) ‖UN − u‖ ≤ C max
i

∣∣∣∣N−1∑
j=i

~σ,j(LNε z)j
∣∣∣∣.

Integrating the BVP (1) from xσ,j to xσ,j+1, we get

(40) (Au)(xσ,j+1)− (Au)(xσ,j)−
∫ xσ,j+1

xσ,j

f(x)dx = 0,

where (Au)(x) = εu′(x) + a(x)u(x). Now

~σ,j [LNε z]j = ε

[
u′j+1 −

uj+1 − uj
hj+1

]
− ε
[
u′j −

uj − uj−1

hj

]
+ σiajuj +

(1− σi)aj−1uj−1 − a(xσ,j−1/2)u(xσ,j−1/2)−
∫ xσ,j+1

xσ,j

f(x)dx+ ~σ,jfσ,j−1/2.

Combining the above equation with (39), we have
(41)

‖u−UN‖ ≤ C max
i

∣∣∣∣[ANu]i−[Au](xσ,i)

∣∣∣∣+C max
i

∣∣∣∣~σ,ifσ,i−1/2−
∫ xσ,i+1

xσ,i

f(x)dx

∣∣∣∣.
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From (8), we get

(42) ‖u− UN‖ ≤ C max
i

∣∣∣∣[ANu]i − [Au](xσ,i)

∣∣∣∣+ C max
i
h2
i .

Here, we have two cases for σi.

Case 1. For σi = 1/2, we have∣∣∣∣[ANu]i − [Au](xσ,i)

∣∣∣∣ ≤ Cε∫ xi

xi−1

|u′′′(x)|(x− xi−1)dx

+C

∫ xi

xi−1

|u′′(x)|(x− xi−1)dx.

(43)

Differentiating once the BVP (1), we get εu′′′ = −f − a′′u− 2a′u′ − au′′
which implies that |εu′′′| ≤ C(1 + u′′). So we have,∣∣∣∣[ANu]i−[Au](xσ,i)

∣∣∣∣ ≤ Cε

∫ xi

xi−1

(x−xi−1)dx+ C

∫ xi

xi−1

|u′′(x)|(x− xi−1)dx

≤ Ch2
i + C

∫ xi

xi−1

(1 + ε−2 exp(−αx/ε))(x− xi−1)dx

≤ Ch2
i + C

∫ xi

xi−1

ε−2 exp(−αx/ε)(x− xi−1)dx.

By using the inequality
∫ b
a ψ(t)(t− a)k−1dt ≤ 1

k

[ ∫ b
a ψ(t)1/kdt

]k
, we have∣∣∣∣[ANu]i − [Au](xσ,i)

∣∣∣∣ ≤ Ch2
i + C

[ ∫ xi

xi−1

ε−1 exp(−αx/2ε)dx
]2

≤ Ch2
i + C

[ ∫ xi

xi−1

(1 + ε−1 exp(−αx/2ε))dx
]2

.

Case 2. If σi = 1, then

(44)

∣∣∣∣[ANu]i − [Au](xσ,i)

∣∣∣∣ ≤ C ε

(xi − xi−1)

∫ xi

xi−1

|u′′(x)|(x− xi−1)dx.

From the definition of σi, we have ε/(xi − xi−1) ≤ α∗/2. Thus,∣∣∣∣[ANu]i − [Au](xσ,i)

∣∣∣∣ ≤ C

∫ xi

xi−1

(1 + ε−2 exp(−αx/ε))(x− xi−1)dx

≤ Ch2
i + C

∫ xi

xi−1

ε2 exp(−αx/ε)(x− xi−1)dx.

Proceeding as we have done for σi = 1/2, we obtain

(45)

∣∣∣∣[ANu]i− [Au](xσ,i)

∣∣∣∣ ≤ Ch2
i +C

[ ∫ xi

xi−1

(1+ε−1 exp(−αx/2ε))dx
]2

.
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Thus we have the required estimate.

5.1.2. ERROR ESTIMATES OF THE NORMALIZED FLUX

In many real life application, the approximation of the derivatives are
desirable such as normal derivatives are required to compute the skin friction
coefficients and to calculate the stress intensity factors. There are very few
research articles available approximating the derivatives (refer[7, 21, 22]). The
approximation of unweighted derivative outside layer was dealt in [7] and the
approximated derivative in the entire domain on Shishkin mesh and Bakhvalov
mesh in [15]. The uniform first order convergent upwind finite difference scheme
using grid equidistribution to approximate the normalized flux was developed
in [21]. Recently, a second order convergent scheme is proposed to compute
the derivative on S-type mesh for quasilinear SPP in [30]. Here, we shall derive
the bounds of ε-weighted derivative errors on the adaptive grid.

Theorem 5.3. There exists a constant C independent of ε and mesh
points such that

max
i
ε|D−UNi − u′(xi−1/2)| ≤

C max
i
h2
i + C

(
max
i

∫ xi

xi−1

(1 + ε−1 exp(−αx/2ε))dx
)2

.
(46)

Proof. By Taylor’s series expansion, we have

ε|D−UNi − u′(xi−1/2)| ≤ ε|D−UNi −D−ui|+ ε|D−ui − u′(xi−1/2)|

≤ ε|D−zi|+
∣∣∣∣3ε2

∫ xi

xi−1

u′′′(x)(x− xi−1)dx

∣∣∣∣
≤ C max

i

∣∣∣∣N−1∑
j=i

~σ,j [LNε zj ]
∣∣∣∣

+ max
i

∫ xi−1

xi

(1 + ε−2 exp(−αx/ε))dx.

From the proof of Theorem 5.2, we have the desired bound.

The main contribution of this paper is to derive a second order uniform
convergence results for approximating the numerical solution and the weighted
normalized flux by the proposed scheme on the adaptive grid. Here, we give
an outline of the convergence results on S-type mesh.
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Theorem 5.4. Let u = {ui}Ni=0 and UN = {UNi }Ni=0 be the exact solution
and the discrete solution obtained by the monotone hybrid method on S-type
meshes respectively. Then,

‖u− UN‖ ≤ CN−2 ln2N, (S-mesh)

‖u− UN‖ ≤ CN−2, (B-S-mesh)

Proof. The detailed proof of the parameter uniform error estimates of the
monotone hybrid method for BVP (1) on Shishkin mesh and Bakhvalov mesh
was carried out by Andreev and Kopteva in [1].

Theorem 5.5. The numerical derivative of BVP (1) on S-type meshes
satisfies the following estimates:

max
i
ε|D−UNi − u′i−1/2| ≤ CN

−2 ln2N, (S-mesh)

max
i
ε|D−UNi − u′i−1/2| ≤ CN

−2 (B-S-mesh)

Proof. From Lemma 3.1 and Theorem 5.3, we get the desired estimates.

Now, the convergence result of Theorem 5.2 and Theorem 5.3 is used to
conclude the parameter uniform second order convergence for approximating
the solution and the derivative on the adaptive grid.

Theorem 5.6. Let u = {ui}Ni=0 and UN = {UNi }Ni=0 be the exact solution
and the discrete solution obtained by the monotone hybrid method on adaptive
grid respectively. Then, we have the following estimates:

(47) ‖u− UN‖ ≤ CN−2,

and

(48) max
i
ε|D−UNi − u′i−1/2| ≤ CN

−2.

Proof. Combining Lemma 3.3 and Theorem 5.2 with Theorem 5.3, one
can obtain the desired error estimates.

5.1.3. CONVERGENCE OF THE GLOBAL SOLUTIONS

Theorem 5.7. Let u = {ui}Ni=0 be the solution of problem (1) and UN =
{UNi }Ni=0 be the solution obtained by the monotone hybrid scheme on the adap-
tive grid. Then for sufficiently large N, we have the following bound

‖u− Ũ‖ ≤ CN−2,

where Ũ is a piecewise linear interpolation of UN on [0, 1].
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Proof. Let Ũ(x) denotes the piecewise polynomial and is defined as Ũ(x) =∑N
i=0 U

N
i ρi(x), where ρi(x) is the piecewise linear function denoted by ρi(xj) =

δi,j for 0 ≤ i, j ≤ N . By using the triangle inequality,

(49) ‖u− Ũ‖ ≤ ‖ũ− Ũ‖+ ‖ũ− u‖,
As, ũ− Ũ =

∑N
i=0(ui−UNi )ρi(x), where ρi(x) ≥ 0 and ‖

∑N
i=0 ρi(x)‖ ≤ 1, thus

from Theorem 5.6

(50) ‖ũ− Ũ‖ ≤ CN−2.

Now to bound ‖ũ−u‖, we use the error estimate of linear interpolation. Thus,

‖ũ− u‖ ≤ 2hi

∫ xi−1

xi

|u′′(x)|dx.

From the bound of the solution, we deduce

‖ũ− u‖ ≤ Chi

∫ xi−1

xi

(1 + ε−2 exp(−αx/ε))dx

≤ C

(
h2
i + hiε

−2

∫ xi−1

xi

(exp(−αx/2ε)dx
)

≤ C

(
N−2 +N−1ε

∫ xi

xi−1

(1 + |uxx(x)|1/2)dx

)
.

Using the equidistribution principle, we obtain

‖ũ− u‖ ≤ C
(
N−2 + εN−2

∫ 1

0
M(u(x), x)dx

)
≤ CN−2.

Thus, we have desired bound.

5.2. SYSTEM OF CONVECTION DIFFUSION PROBLEMS

Theorem 5.8. Let u be the solution of (6) and U be its approximation
obtained by the scheme (23) on any arbitrary non uniform grid then

(51) ‖u−U‖ ≤ C
{

max
i
h2
i +

{
max
i

∫ xi

xi−1

(1+

2∑
k=1

ε−k1 exp(−αkx/2εk))dx
}2}

.

Proof. We know from the stability inequality (refer Theorem 1 of Andreev
and Kopteva [1], Lemma 1 of Linß[17]) that

(52) ‖v‖ ≤ C min
V :Vx=Lµv

‖V ‖, µ = 1, 2, for all v ∈ RN+1
0 .

Introducing the continuous operator, discrete operator and functions as:

(53) B1v1 = ε1v
′
1 + a1v1, F1 =

∫ 1

.
f1(s)ds,
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(54) B2v2 = ε2v
′
2 + a2v2 + b2v2, F2 =

∫ 1

.
f2(s)ds,

B1v1,i = ε1
v1,i − v1,i−1

hi
+ σ1,ia1,iv1,i + (1− σ1,i)a1,i−1v1,i−1,

F1,σ1,i−1/2 =
N−1∑
j=i

~σ1,i−1/2f1,σ1,i−1/2,

B2v2,i = ε2
v2,i − v2,i−1

hi
+ σ2,ia1,iv2,i + (1− σ2,i)a2,i−1v2,i−1

+ σ2,ib1,iv1,i + (1− σ2,i)b1,i−1v1,i−1,

F2,σ2,i−1/2 =
N−1∑
j=i

~σ2,i−1/2f2,σ2,i−1/2.

Note that Lkvk = −(Bkvk)′ and fk = F ′k and Lkvk = −D(Bkvk) and fk = DFk
on ΩN .

Thus Bku − Fk = ξ and BkŨ − Fk = ζ on ΩN with constant ξ and ζ.
Applying the stability inequality, we have

(55) ‖u−U‖ ≤ C min
c∈R
‖Bk(u−U) + c‖.

Taking c = ζ − ξ, where ζ and ξ are constants, we get

(56) ‖u−U‖ ≤ C‖Bku− Bku− Fk + Fk‖,

Here, we have two cases for σk,i.

Case 1. For σk,i = 1/2, we have

max
i
|B1u1,i − (B1u1)(xσ1,i)|

≤ 3ε1

2

∣∣∣∣ ∫ xi

xi−1

u′′′1 (x)(x− xi−1)dx

∣∣∣∣+ C1

∣∣∣∣ ∫ xi

xi−1

u′′1(x)(x− xi−1)dx

∣∣∣∣,
≤ C

∫ xi

xi−1

(1 + ε−2
1 exp(−α1x/ε1))(x− xi−1)dx.

and

max
i
|B2u2,i − (B2u2)(xσ2,i)|

≤ 3ε2

2

∣∣∣∣ ∫ xi

xi−1

u′′′2 (x)(x− xi−1)dx

∣∣∣∣+ C2

∣∣∣∣ ∫ xi

xi−1

u′′2(x)(x− xi−1)dx

∣∣∣∣
+ C3

∣∣∣∣ ∫ xi

xi−1

u′′1(x)(x− xi−1)dx

∣∣∣∣,



21 Monotone hybrid scheme for convection diffusion problems 345

≤ C
∫ xi

xi−1

(1 + ε−2
1 exp(−α1x/ε1) + ε−2

2 exp(−α2x/ε2))(x− xi−1)dx.

Case 2. If σk,i = 1, then

max
i
|Bkuk,i − (Bkuk)(xσk,i)| ≤

C4εk
(xi − xi−1)

∣∣∣∣ ∫ xi

xi−1

u′′k(x)(x− xi−1)dx

∣∣∣∣
From the choice of σk,i = 1, we know that

εk
(xi − xi−1)

≤
α∗k
2

. Thus

max
i
|Bkuk,i − (Bkuk)(xσk,i)|

≤ C4εk
(xi − xi−1)

∣∣∣∣ ∫ xi

xi−1

u′′k(x)(x− xi−1)dx

∣∣∣∣
≤ C

∫ xi

xi−1

(1 + ε−2
1 exp(−α1x/ε1) + ε−2

2 exp(−α2x/ε2))(x− xi−1)dx

By using the inequality,
∫ b
a g(x)(x−a)k−1dx ≤ 1

k

[ ∫ b
a g(x)1/kdx

]k
, which holds

true for any positive monotonically decreasing function g on [a, b].

max
i
|Bkuk,i − (Bkuk)(xσk,i)

≤ C
[ ∫ xi

xi−1

(1 + ε−1
1 exp(−α1x/2ε1) + ε−1

1 exp(−α2x/2ε2))dx

]2

.(57)

And for all i, we have

|Fk,σk,i−1/2 −F(xσk,i)| =

∣∣∣∣N−1∑
i=1

{∫ xσk,i+1

xσk,i

fk(x)dx− ~σ2,ifk,σk,i−1/2

}∣∣∣∣
= O(~2

σk
)(58)

Thus we get the desired estimate.

The following theorem sates the main result of the proposed method.

Theorem 5.9. Let u be the solution of the system (6) and U be the
numerical solution of the corresponding discretized problem (23), on the mesh
piecewise uniform Shishkin mesh ΩN . Then

‖u−U‖ ≤ CN−2 ln2N.

Proof. Combining the estimates given in Theorem (29) and (5.8), we
obtain the desired estimate.
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Theorem 5.10. There exists a constant C such that

(59) ‖u−U‖ ≤ C
{

max
i

max
x∈[xi−1,xi]

2∑
k=1

h2
i εk|u′′′k (x)|+

max
i

max
x∈[xi−1,xi]

h2
i [1 +

2∑
k=1

|u′′k(x)|]
}
.

Proof. For σk,i = 1
2 ,

B1u1,i − (B1u1)(xσ1,i) =
ε1h

2
i

24
u′′′1 (ξ1,i) +

h2
i

4
u′′1(η1,i),

B2u2,i − (B2u2)(xσ2,i) =
ε2h

2
i

24
u′′′2 (ξ2,i) +

h2
i

4
u′′1(η21,i) +

h2
i

4
u′′2(η22,i).

On the other hand if σk,i = 1,

Bkuk,i − (Bkuk)(xσk,i) =
εk
hi

(
h2
i

2
u′′k(χk,i)

)
, for k = 1, 2,

where ξ1,i, ξ2,i, η1,i, η21,i, χ1,i, χ2,i ∈ [xi−1, xi]. Now, we apply these relation
and (58) to the stability inequality (56) and the desired result follows.

Remark 5.11. The estimate (59) equivalently can be written as

‖u−U‖ ≤ C max
i
h2
i

[
1 +

2∑
k=1

(
ε

1/2
k |u

′′′
k (x)|1/2 + |u′′k(x)|1/2

)]2

.

Furthermore, differentiating (6) and taking the boundedness of a1(x), a2(x)
and b1(x), we obtain,

‖u−U‖ ≤ C max
i
h2
i

[
1 +

2∑
k=1

Ck|u′′k(x)|1/2
]2

.

By choosing sufficient large ‘C’, we have

‖u−U‖ ≤ C max
i
h2
i

[
1 +

2∑
k=1

|u′′k(x)|1/2
]2

.

Further, we make the reasonable assumption that the discrete analogues of
the above inequality holds true and gives sharp bounds on the error in the
computed solution. So,

(60) ‖uk − Uk‖ ≤ C max
i

h2
i

[
1 +

2∑
k=1

|δ2uk,i|1/2
]2

,
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where δ2Uk,i =
2

hi+1 + hi

[
Uk,i+1 − Uk,i

hi+1
−
Uk,i − Uk,i−1

hi

]
. Thus, it is clear

that which monitor function is needed to be taken into consideration. Also,
from the equidistribution principle we achieve a second order accuracy on the
adaptive grid. This provide the optimal rate of convergence for the proposed
scheme. For computational purpose, we have chosen the monitor function as

Mi = 1 +
2∑

k=1

|δ2uk,i|1/2.

6. NUMERICAL RESULTS

In this section, we present the numerical results to illustrate the efficiency
and accuracy of the proposed method described in this paper. We have verified
the proposed scheme on three test problems. The maximum pointwise errors
and the corresponding rates of convergence are presented through tables and
figures.

Example 6.1. Consider the following SPP:

(61)

{
−εu′′− u′ = ( επ

2x
2 −2) cos(πx2 )+π(2ε+x) sin(πx2 ), x ∈ Ω = (0, 1) ,

u(0) = 1, u(1) = 0.

The exact solution is u(x) =
exp(−x/ε)− exp(−1/ε)

1− exp(−1/ε)
+ 2x cos(πx/2).

Now, we calculate the maximum pointwise error and the corresponding rate of
convergence by

ENε = max
i
|u(xi)− UNi |, rNε = log2

(
ENε
E2N
ε

)
,

where u(xi) and UNi denotes the exact and numerical solution obtained on
the mesh ΩN with N number of mesh subintervals. Similarly, we can define
the scaled error associated with normalized flux and the corresponding rate of
convergence as:

DN
ε = max

i
ε|D−UNi − u′i−1/2|, pNε = log2

(
DN
ε

D2N
ε

)
.

Example 6.2. Consider the following test problem:

(62)

{
εu′′ + (1 + x(1− x))u′ = exp(x), x ∈ Ω = (0, 1) ,

u(0) = 0, u(1) = 1.

The exact solution is not available for BVP (63). In order to calculate
the maximum pointwise error, the scaled error and the corresponding rate of
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convergence, we use the idea of interpolation. Define U
2N
i as the piecewise

linear interpolate to UNi in ΩN . For any value of N , the maximum pointwise

error E
N
ε of the numerical solution and the scaled error D

N
ε of the normalized

flux is calculated by E
N
ε = maxi |UNi − U

2N
i | and D

N
ε = maxi ε|D−UNi −

D−U
2N
i |. To verify the accuracy, the convergence rate of the numerical solution

and the numerical derivative is computed by rNε = log2

(
E
N
ε

E
2N
ε

)
and pNε =

log2

(
D
N
ε

D
2N
ε

)
.

In order to show the efficiency of the proposed method, we have solved
Example 6.1 and Example 6.2 both on S-type meshes and on the adaptive grid.
The corresponding computational results are given in Table 1 and Table 2 re-
spectively for different value of ε and N . One can easily compare the results
and observe that the parameter uniform second order convergence of the pro-
posed method. Further, to compare the theoretical estimates with numerical
order of convergence, we have plotted the maximum pointwise errors in log-log
scale for Example 6.2 in Figure 1, obtained by proposed method on adaptive
grid along with the results on S-type meshes. This ensures the effectiveness of
the proposed scheme on the adaptive grid over S-type meshes. We have also
presented the numerical results of the normalized flux by the proposed method
on the adaptive grid for Example 6.1 and 6.2 in Table 3 and 4 respectively.
The errors on adaptive grid and B-S-mesh are second order convergent while
on S-mesh it is less than second order convergent due to the logarithmic factor.
The error behaviour of the computational results within layer and outer region
of the numerical solution and the normalized flux on adaptive grid along with
on S-type mesh for ε = 1e− 3 with N = 32 are shown in Figure 2.

Our next problem is a system of convection diffusion problem, which is a
well discussed example (refer [4]).

Example 6.3. Consider the following system of singularly perturbed prob-
lems:
(63){

ε1u
′′
1(x) + 3u′1(x) = 15x4, u1(0) = 0, u1(1) = 0,

ε2u
′′
2(x) + 2u′2(x) + 2.75u′2(x) = 0.6 exp(x), u2(0) = 0, u2(1) = 0.

Note that u1(x) ≈ x5 − 1, u2(x) ≈ 0.3(exp(x) − exp(1)) − 1.375(x5 − 1)
and hence ‖u1‖ ≈ 1 and ‖u2‖ ≈ 1. We calculate the exact maximum pointwise
errors ENεk,uk for the solution component uk, k = 1, 2 by

ENεk,uk = max
0≤i≤N

|uk(xi)− UNk,i|,
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where uk(xi) is the exact solution and UNk,i is the numerical solution at the mesh

point xi obtained by using N number of mesh intervals in the domain ΩN .
The corresponding rates of convergence is calculated by the formula rNεk,uk =

log2

(
ENεk,uk
E2N
εk,uk

)
.

For all our experiment shown in tables and figures, we take various val-
ues of ε1, and fixed value of ε2 = 10−4 as done usually. In Tables 5 and 6, we
present the maximum pointwise error and the corresponding rate of conver-
gence for the solution components u1 and u2 of Example 6.3 respectively on
Shishkin mesh. This clearly indicates that the proposed method is ε-uniform
convergent and almost second order accurate. The maximum pointwise error
and corresponding rate of convergence for the solution components u1 and u2

of Example 6.3 on adaptive grid is shown in Tables 7 and 8. From these tables
one can clearly visualize the second order accuracy of the proposed method on
adaptive grid which produces more accuracy than error produced on Shishkin
mesh. In Figures 3 and 4, the maximum pointwise errors versus number of
mesh intervals for Example 6.3 is plotted in logarithmic scale for ε1 = 2−35 for
solution component u1 and u2 respectively. These figures also suggest that the
computed errors are decreasing with rate O(N−2 ln2N) on Shishkin mesh and
O(N−2) on the adaptive grid as the number of interval N increases. In Figure
5, we display the error plot for Example 6.3 which shows that the maximum
error occurs only in the boundary layer region.

7. CONCLUDING REMARKS

In this article, we present an analysis of the discretization of singularly
perturbed convection-diffusion problems by using a monotone hybrid scheme
with variable weights on layer adapted meshes. The numerical solution is ob-
tained on various nonuniform meshes viz Shishkin type meshes and the adaptive
grid. To generate Shishkin mesh, one should have aprior information of the
width and location of the boundary layer. While the advantage of the mesh
generated by the adaptive technique using the equidistribution principle does
not require any such apriori knowledge about the location and width of the
layer. Also from the analysis it is shown both theoretically and computation-
ally that the adaptive grid technique leads to an optimal parameter uniform
convergence corresponding to the monotone hybrid discretization. Numerical
results shown confirm the effectiveness of the proposed scheme and support
the theoretical error estimates.
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Table 1 – EN
ε and the corresponding rNε for Example 6.1

Method N ε = 1e− 6 ε = 1e− 8 ε = 1e− 10
EN

ε rNε EN
ε rNε EN

ε rNε
16 5.9522e-3 1.7698 5.9523e-3 1.7688 5.9523e-3 1.7688
32 1.7455e-3 1.8815 1.7455e-3 1.8815 1.7455e-3 1.8815

S-mesh 64 4.7373e-4 1.9439 4.7374e-4 1.9439 4.7374e-4 1.9439
128 1.2313e-4 1.6727 1.2313e-4 1.6727 1.2313e-4 1.6727
256 3.8623e-5 1.5267 3.8623e-5 1.5267 3.8623e-5 1.5267
512 1.3405e-5 1.6051 1.3405e-5 1.6051 1.3405e-5 1.6051
16 5.8052e-3 1.7338 5.8054e-3 1.7338 5.8054e-3 1.7338
32 1.7454e-3 1.8815 1.7455e-3 1.8815 1.7455e-3 1.8815

B-S-mesh 64 4.7372e-4 1.9440 4.7374e-4 1.9439 4.7374e-4 1.9439
128 1.2312e-4 1.9727 1.2313e-4 1.9727 1.2313e-4 1.9727
256 3.1368e-5 1.9865 3.1370e-5 1.9865 3.1370e-5 1.9865
512 7.9155e-6 1.9933 1.9882e-6 1.9933 1.9882e-6 1.9933
16 9.7642e-3 2.0713 9.8051e-3 2.0769 9.8056e-3 2.0769
32 2.3234e-3 2.0238 2.3241e-3 2.0239 2.3241e-3 2.0240

Adaptive grid 64 5.7135e-4 1.9670 5.7146e-4 1.9669 5.7143e-4 1.9668
128 1.4614e-4 1.9867 1.4618e-4 1.9846 1.4618e-4 1.9853
256 3.6874e-5 2.0096 3.6936e-5 2.0249 3.6919e-5 2.0043
512 9.1573e-6 1.9883 9.0757e-6 1.9749 9.2025e-6 1.9949

Table 2 – E
N
ε and the corresponding rNε for Example 6.2

N ε = 1e− 4 ε = 1e− 8
S-Mesh B-S-mesh Adaptive grid S-mesh B-S-mesh Adaptive grid

16 5.9169e-3 3.9954e-4 1.0054e-2 5.9113e-3 3.8138e-4 1.0502e-2
1.4664 1.8614 2.0691 1.4677 1.9325 2.1454

32 2.1413e-3 1.0996e-4 2.3960e-3 2.1373e-3 9.9912e-5 2.3738e-3
1.5359 1.8322 2.1091 1.5932 1.9654 2.0879

64 7.3845e-4 3.0881e-5 5.5537e-4 7.3618e-4 2.5585e-5 5.5837e-4
1.5903 1.7479 2.0149 1.5932 1.9824 2.0167

128 2.4524e-4 9.1945e-6 1.3742e-4 2.4399e-4 2.5585e-5 1.3799e-4
1.6344 1.6124 1.9997 1.6389 1.9911 2.0206

256 7.8994e-5 3.0072e-6 3.4362e-5 7.8346e-5 1.6287e-6 3.4008e-5
1.6694 1.4478 1.9738 1.6767 1.9954 2.0023

512 2.4835e-5 1.1024e-6 8.7482e-6 2.4506e-5 4.0848e-7 8.4885e-6
1.6953 1.2912 1.9531 1.7079 1.9976 2.0055

1024 7.6688e-6 4.5044e-7 2.2593e-6 7.5015e-6 1.0229e-7 2.1141e-6
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Fig. 1 – loglog plot of maximum point-wise errors for Example 6.2.

Table 3 – DN
ε and the corresponding pNε for Example 6.1 for ε = 10−8

N S-mesh B-S-mesh Adaptive grid
DN

ε pN
ε DN

ε pN
ε DN

ε pN
ε

16 3.1202e-2 1.0023 7.7913e-3 1.9637 1.1057e-2 2.2162
32 1.5576e-2 1.0047 1.9975e-3 1.9826 2.3795e-3 2.0553
64 7.7628e-3 1.0094 5.0543e-4 1.9915 5.7251e-4 1.9703
128 3.8563e-3 1.0189 1.2710e-4 1.9958 1.4610e-4 1.9845
256 1.9031e-3 1.0384 3.1867e-5 1.9979 3.6919e-5 2.0246
512 9.2655e-4 1.0801 7.9781e-6 1.9989 9.0739e-6 1.9747

Table 4 – D
N
ε and the corresponding pNε for Example 6.2 for ε = 10−8

N S-mesh B-S-mesh Adaptive grid
DN

ε pN
ε DN

ε pN
ε DN

ε pN
ε

16 1.0744e-2 1.2652 6.7515e-3 1.8459 1.0462e-2 2.1370
32 4.4701e-3 1.3979 1.8781e-3 1.9210 2.3785e-3 2.0945
64 1.6963e-3 1.5041 4.9595e-4 1.9599 5.5691e-4 2.0007
128 5.9805e-4 1.5839 1.2748e-4 1.9799 1.3916e-4 2.0208
256 1.9949e-4 1.6434 3.2317e-5 1.9906 3.4292e-5 1.9983
512 6.3859e-5 1.6874 8.1319e-6 1.9998 8.5831e-6 2.0138
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Fig. 2 – Error and scaled error for Example 6.2 with ε = 1e− 3.
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Fig. 3 – loglog plot of maximum point-wise errors for u1 for Example 6.3 .
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Table 5 – EN
ε1,u1

and rNε1,u1
for Example 6.3 on Shishkin mesh

ε1 Number of intervals N
32 64 128 256 512 1024

2−15 2.2143e-2 7.2440e-3 2.3163e-3 7.4222e-4 2.3084e-4 7.0540e-5
1.6120 1.6450 1.6419 1.6850 1.7104

2−19 2.2142e-2 7.2434e-3 2.3160e-3 7.4202e-4 2.3072e-4 7.0479e-5
1.6120 1.6450 1.6421 1.6853 1.7109

2−23 2.2142e-2 7.2433e-3 2.3159e-3 7.4200e-4 2.3072e-4 7.0470e-5
1.6121 1.6451 1.6421 1.6853 1.7111

2−27 2.2142e-2 7.2433e-3 2.3159e-3 7.4200e-4 2.3072e-4 7.0479e-5
1.6121 1.6451 1.6421 1.6853 1.7111

2−31 2.2142e-2 7.2433e-3 2.3159e-3 7.4200e-4 2.3072e-4 7.0479e-5
1.6121 1.6451 1.6421 1.6853 1.7111

2−35 2.2142e-2 7.2433e-3 2.3159e-3 7.4200e-4 2.3072e-4 7.0486e-5
1.6121 1.6451 1.6421 1.6853 1.7107

2−39 2.2142e-2 7.2433e-3 2.3159e-3 7.4200e-4 2.3072e-4 7.0470e-5
1.6121 1.6451 1.6421 1.6853 1.7111

Table 6 – EN
ε1,u2

and rNε1,u2
for Example 6.3 on Shishkin mesh

ε1 Number of intervals N
32 64 128 256 512 1024

2−15 1.3619e-2 3.4026e-3 8.8013e-4 2.2139e-4 7.0141e-5 2.1699e-5
2.0009 1.9508 1.9911 1.6583 1.6926

2−19 3.3769e-2 9.8367e-3 3.1685e-3 9.9009e-4 3.0421e-4 9.1379e-5
1.7795 1.6344 1.6782 1.7025 1.7351

2−23 3.6184e-2 1.0666e-2 3.5005e-3 1.1135e-3 3.4839e-4 1.0645e-4
1.7623 1.6074 1.6525 1.6763 1.7105

2−27 3.6342e-2 1.0721e-2 3.5225e-3 1.1219e-3 3.5137e-4 1.0748e-4
1.7612 1.6058 1.6507 1.6749 1.7089

2−31 3.6352e-2 1.0724e-2 3.5239e-3 1.1225e-3 3.5156e-4 1.0753e-4
1.7612 1.6056 1.6505 1.6749 1.7090

2−35 3.6352e-2 1.0724e-2 3.5240e-3 1.1225e-3 3.5157e-4 1.0755e-4
1.7612 1.6056 1.6505 1.6748 1.7088

2−39 3.6352e-2 1.0724e-2 3.5240e-3 1.1225e-3 3.5157e-4 1.0755e-4
1.7612 1.6056 1.6505 1.6748 1.7088
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Table 7 – EN
ε1,u1

and rNε1,u1
for Example 6.3 on the adaptive grid

ε1 Number of intervals N
32 64 128 256 512 1024

2−15 6.0084e-3 1.6095e-3 3.7411e-4 9.3682e-5 2.3528e-5 5.8957e-6
1.9004 2.1051 1.9976 1.9934 1.9966

2−19 6.9210e-3 1.6870e-3 4.4737e-4 1.1174e-4 2.8219e-5 7.0664e-6
2.0365 1.9149 2.0013 1.9854 1.9976

2−23 7.7973e-3 1.8895e-3 4.5605e-4 1.1626e-4 2.8776e-5 7.2563e-6
2.0450 2.0507 1.9718 2.0144 1.9876

2−27 7.8616e-3 1.9751e-3 4.9034e-4 1.2031e-4 2.9619e-5 7.3950e-6
1.9929 2.0101 2.0270 2.0222 2.0019

2−31 8.4431e-3 1.9843e-3 4.8957e-4 1.1963e-4 2.9888e-5 7.4846e-6
2.0891 2.0190 2.0329 2.0009 1.9976

2−35 8.3261e-3 1.8603e-3 4.9311e-4 1.1982e-4 2.9880e-5 7.4306e-6
2.1621 1.9156 2.0410 2.0036 2.0036

2−39 8.5866e-3 2.0234e-3 4.9095e-4 1.2094e-4 2.9917e-5 7.3802e-6
2.0853 2.0431 2.0213 2.0153 2.0192

Table 8 – EN
ε1,u2

and rNε1,u2
for Example 6.3 on the adaptive grid

ε1 Number of intervals N
32 64 128 256 512 1024

2−15 8.3425e-3 2.1910e-3 9.2903e-4 2.5668e-4 3.8537e-5 1.7623e-5
1.9289 1.2378 1.8558 2.7357 1.1288

2−19 1.0756e-2 2.4750e-3 6.9615e-4 1.4355e-4 3.5799e-5 1.0415e-5
2.119 1.8300 2.2778 2.0036 1.7813

2−23 1.0801e-2 2.4359e-3 6.2368e-4 1.5075e-4 3.6726e-5 1.0835e-5
2.1486 1.9656 2.0486 2.0373 1.7611

2−27 1.3771e-2 2.1071e-3 5.8202e-4 1.9104e-4 4.8948e-5 1.0597e-5
2.7083 1.8561 1.6072 1.9646 2.2076

2−31 9.6603e-3 2.3335e-3 5.2983e-4 1.4130e-4 3.6486e-5 1.5473e-5
2.0496 2.1389 1.9068 1.9533 1.2376

2−35 1.1367e-2 3.0807e-3 6.5591e-4 1.4718e-4 4.2349e-5 9.4081e-6
1.8835 2.2317 2.1559 1.7972 2.1704

2−39 1.1189e-2 2.7038e-3 5.4815e-4 2.0544e-4 6.5958e-5 3.2931e-5
2.0490 2.3023 1.4159 1.6391 1.0021
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