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In this paper, we show that every analytic extension of totally polynomially
posinormal operator has a scalar extension. As a consequence, we obtain that
analytic extension of totally polynomially posinormal operator with thick spectra
has nontrivial invariant subspace. We show that if T is an analytic extension of
totally polynomially posinormal operator, then f(T ) satisfies generalized Weyl’s
theorem for every analytic functions f which are defined on an open neighbor-
hood of the spectrum of T .
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1. INTRODUCTION

Let B(H) be the algebra of all bounded linear operators acting on infinite
dimensional separable complex Hilbert space H. Let C denote the set of com-
plex numbers. Throughout this paper R(T ), For T ∈ B(H), let R(T ), N (T ),
σ(T ), σp(T ) and iso σ(T ) mean the range, null space, spectrum, the point spec-
trum and the set of isolated points of σ(T ) of T , respectively. Recall that an
operator T ∈ B(H) is said to be hyponormal if T ∗T ≥ TT ∗. Investigating new
generalizations of hyponormal operators is one of recent interest in operator
theory. An operator is said to be M -hyponormal(M ≥ 1) if ||(T − z)∗x|| ≤
M ||(T − z)x|| for each x ∈ H and z ∈ C, dominant if to each z ∈ C there
corresponds a real number M(z) such that ||(T − z)∗x|| ≤M(z)||(T − z)x|| for
each x ∈ H [25], and posinormal if TT ∗ ≤ λ2T ∗T for some λ ≥ 0[24]. Kos-
tov and Todorov [23] introduced and studied totally polynomially posinormal
operators. Let P (z) = zn +

∑n−1
m=1 amz

m be a polynomial, am ∈ C. As usual
P (z) = zn +

∑n−1
m=1 amz

m. An operator T ∈ B(H) is said to be polynomially
posinormal if there exist a constant M > 0 such that ||P (T ∗)x|| ≤M ||Tx|| for
each x ∈ H [23]. Note that every posinormal operator is polynomially posinor-
mal with P (z) = z. An operator T ∈ B(H) is said to be totally polynomially
posinormal if

||P (T − z)∗x|| ≤M(z)||(T − z)x||
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for each x ∈ H, where M(z) is bounded on the compacts of C [23].
In general, the following inclusion relations hold:

hyponormal ⊂ M -hyponormal⊂ dominant
M -hyponormal ⊂ polynomially posinormal
M -hyponormal ⊂ totally polynomially posinormal

As it is shown in [23, Corollary 5.4], the class of totally polynomially-
posinormal operators includes all finite dimensional and nilpotent operators.
Thus it is much larger than the class of M-hyponormal operators, since for such
operators these properties yield normality (see [26]). For another example of
totally polynomially posinormal operator (see [23, Example 5.3]).

We say that an operator T ∈ B(H) is analytic if there exists a nonconstant
analytic function F on a neighborhood of σ(T ) such that F (T ) = 0. If there
is a nonconstant polynomial p such that p(T ) = 0, we call T is algebraic. If an
operator T ∈ B(H) is analytic, then F (T ) = 0 for some nonconstant analytic
function F on a neighborhood U of σ(T ). Since F cannot have infinitely many
zeros in U , we write F (z) = G(z)p(z) where the function G is analytic and does
not vanish on U and p is a nonconstant polynomial with zeros in U . By Riesz-
Dunford calculus, G(T ) is invertible and the invertibility of G(T ) induces that
p(T ) = 0, which means that T is algebraic (See [7]). Throughout this paper, we
say that T is analytic with order k when p has degree k. In order to generalize
totally polynomially posinormal and totally k-quasi-polynomially posinormal
operators we introduce the class of analytic extension of totally polynomially
posinormal operator as follows:

Definition 1.1. An operator T ∈ B(H1 ⊕ H2) is said to be an analytic

extension of totally polynomially posinormal operator if T =

(
T1 T2

0 T3

)
∈

B(H1⊕H2), where T1 is totally polynomially posinormal and T3 is analytic of
order k, where k is a positive integer.

Let 0 ≤ m ≤ ∞ and let Cm0 (C) be the space of all compactly supported
functions on complex plane C with continuous derivative of order m. Recall
that an operator T ∈ B(H) is said to be scalar operator of order m if it
possess a spectral distribution of order m, i.e., there exist a continuous unital
morphism of topological algebras

Φ : Cm0 (C)→ B(H)

such that Φ(z) = T , where z stands for the identity function on C. An operator
T is said to be subscalar of order m if T is similar to the restriction of a scalar
operator of order m to an invariant subspace (See [16]).

Recall that operator T ∈ B(H) has the single valued extension prop-
erty(SVEP) at λ0 ∈ C, if for every open disk Dλ0 centered at λ0 the only
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analytic function f : Dλ0 → H which satisfies (T − λ)f(λ) = 0 for all λ ∈ Dλ0

is the function f ≡ 0. We say that T has SVEP if it has SVEP at every λ ∈ C.
The local resolvent set of T ∈ B(H) at x ∈ H, denoted by ρT (x), is the set
of elements λ0 ∈ C such that there exists an analytic function f(λ) defined
in a neighborhood of λ0, with values in H, which verifies (T − λ)f(λ) ≡ x.
The set σT (x), the compliment of ρT (x) is called the local spectrum of T at
x. For each subset U of C, the local spectral subspace of T denoted by HT (U)
is the set HT (U) = {x ∈ H : σT (x) ⊂ U}. An operator T ∈ B(H) is said to
have Bishop’s property (β) if, for every open subset U of C and every sequence
fn : U −→ H of analytic functions such that (T −λ)fn(λ) converges uniformly
to 0 in norm on compact subsets of U , it follows that fn(λ) converges uniformly
to 0 in norm on compact subsets of U( See [1, 15]). It is well known from [1, 15]
that every subscalar operators has Bishop’s property (β) and

Bishop’s property (β) ⇒ SVEP.

There are many outstanding problems which are still open for hyponormal
operators, for example, the invariant subspace problem. The invariant subspace
problem poses the question: does every operator have a nontrivial invariant
subspace? In [22], M. Putinar proved subscalarity for hyponormal opeators. S.
Brown [6] proved if T is hyponormal operator with thick spectra then T has
non trivial invariant subspace. In [9], Eschmeier proved that a Banach space
operator T has a nontrivial invariant subspace if T has the property (β) with
thick spectra. The study of subscalarity for non hyponormal operators have
been attracted a lot of attention of researchers; see for instance [13, 14, 18, 20,
22] and the references therein.

The aim of this paper is to study subscalarity and Weyl type theorems
for analytic extension of totally polynomially posinormal operators. In section
three, we prove analytic extension of totally polynomially posinormal operators
are subscalar. As a corollary of this result we obtain that such class of operators
with thick spectra has a nontrivial invariant subspace. In section four, we show
that f(T ) satisfies generalized Weyl’s theorem for every analytic functions f
which are defined on an open neighborhood of the spectrum of an analytic
extension of totally polynomially posinormal operator T .

2. PRELIMINARIES

Let D be a bounded open disk in C. The space L2(D,H) defined as
follows is a Hilbert space

L2(D,H)=

{
f :D → H :f is measurable, ‖f‖2,D=

(∫
D
‖f(z)‖2dµ(z)

) 1
2

<∞
}
,
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where dµ(z) be the planar Lebesgue measure. The Bergman space for D,
denoted by A2(D,H), is a subspace of L2(D,H) in which each function is
analytic in D (ie., ∂f

∂z̄ = 0). Let O(D,H) be the Fréchet space of H-valued
analytic functions on D with respect to the uniform topology. Note that

A2(D,H) = L2(D,H) ∩ O(D,H)

is a Hilbert space. The following functional space Wm(D,H) is a Sobolev type
space with respect to ∂̄ and of order m

Wm(D,H) = {f ∈ L2(D,H) : ∂̄if ∈ L2(D,H), for i = 1, 2, ...,m}.

Note that W 2(D,H) is a Hilbert space with respect to the norm

||f ||2Wm =
m∑
i=0

||∂if ||22,U ,

Wm(U,H) becomes a Hilbert space contained continuously in L2(U,H). A
bounded linear operator S on H is called scalar of order m if it possesses a
spectral distribution of order m, i.e., if there is a continuous unital morphism
of topological algebras

Φ : Cm0 (C)→ B(H)
such that Φ(z) = S, where z is the identity function on C, and Cm0 (C) is
the space of compactly supported functions on C, continuously differentiable
of order m, where 0 ≤ m ≤ ∞. An operator is subscalar if it is similar
to the restriction of a scalar operator to an invariant subspace. Let U be a
(connected) bounded open subset of C, and let m be a nonnegative integer.
The linear operator Mf of multiplication by f on Wm(U,H) is continuous, has
a spectral distribution of order m, and is defined by the functional calculus

ΦM : Cm0 (C)→ B(Wm(U,H)), ΦM (f) = Mf .

Therefore, M is a scalar operator of order m. Let

V : Wm(U,H)→ ⊕∞0 L2(U,H)

be the operator V (f) = (f, ∂f, ..., ∂
m
f). Then V is an isometry such that

VMz = (⊕m0 Mz)V . Therefore, Mz is a subnormal operator.
Let α(T ) and β(T ) denote the nullity and the deficiency of T ∈ B(H),

defined by α(T )= dim(N (T ) and β(T )=dim(N (T ∗). An operator T is said to
be upper semi-Fredholm (resp., lower semi- Fredholm) if R(T ) of T ∈ B(H) is
closed and α(T ) <∞ (resp., β(T ) <∞). Let SF+(H) (resp., SF−(H)) denote
the semigroup of upper semi-Fredholm (resp., lower semi-Fredholm) operators
on H. An operator T ∈ B(H) is said to be semi-Fredhom, T ∈ SF (H), if
T ∈ SF+(H) ∪ SF−(H) and Fredholm, T ∈ F (H), if T ∈ SF+(H) ∩ SF−(H).
The index of semi-Fredholm operator T is defined by ind (T ) = α(T )− β(T ).
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Recall[11], the ascent of an operator T ∈ B(H), a(T ), is the smallest non
negative integer p:=p(T ) such that N (T p) = N (T (p+1)). Such p does not exist,
then p(T ) = ∞. The descent of T ∈ B(H), d(T ), is defined as the smallest
non negative integer q := q(T ) such that R(T q) = R(T (q+1)). An operator
T ∈ B(H) is Weyl, T ∈ W (H) it is Fredholm of index zero and Browder if T
is Fredholm of finite ascent and descent. The Weyl spectrum of T , denoted by
σW (T ), is given by

σW (T ) = {λ ∈ C : T − λ /∈W (H)}.
We say that T ∈ B(H) satisfies Weyl’s theorem if

σ(T ) \ σW (T ) = E0(T ).

where E0(T ) denote the set of eigenvalues of T of finite geometric multiplicity.
Let SF−+ (H) = {T ∈ SF+(H) : ind(T) ≤ 0}. The essential approximate point
spectrum σSF−

+
(T ) of T is defined by

σSF−
+

(T ) = {λ ∈ C : T − λ /∈ SF−+ (H)}.

Let σa(T ) denote the approximate point spectrum of T ∈ B(H). An operator
T ∈ B(H) holds a-Weyl’s theorem if,

σSF−
+

(T ) = σa(T ) \ Ea0 (T ),

where Ea0 (T ) = {λ ∈ C : λ ∈ iso σa(T ) and 0 < α(T − λ) < ∞}. We say that
an operator T ∈ B(H) satisfies a-Browder’s theorem if

σSF−
+

(T ) = σa(T ) \Πa
0(T ),

where Πa
0(T ) denote the set the left poles of T of finite rank. An operator

T ∈ B(H) is called B-Fredholm, T ∈ BF (H) if there exist a non negative
integer n for which the induced operator

T[n] : R(T[n])→ R(T[n])( in particular T[0] = T ).

is Fredholm in the usual sense (see [4]). An operator T ∈ B(H) is called
B-Weyl, T ∈ BW (H), if it is B-Fredholm with ind(T[n]) = 0. The B-Weyl
spectrum σBW (T ) is defined by

σBW (T ) = {λ ∈ C : T − λ /∈ BW (H)}
(see [4]). Let E(T ) is the set of all eigenvalues of T which are isolated in σ(T ).
We say that T satisfies generalized Weyl’s theorem if

σBW (T ) = σ(T ) \ E(T ).

A bounded operator T ∈ B(H) is said to satisfy generalized Browders’s theorem
if

σ(T ) \ σBW (T ) = Π(T ),
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where Π(T ) is the set of poles of T . See [5] for more information. From [5],
it is known that an operator T ∈ B(H) satisfying a-Weyl’s theorem theorem
satisfies generalized a-Browders’s theorem. It is known from [5] that an op-
erator T ∈ B(H) satisfying generalized Weyl’s theorem satisfies generalized
Browders’s theorem . It is well known that that if T ∈ B(H) obeys generalized
Weyl’s theorem, then it is also obeys Weyl’s theorem and if T obeys generalized
Browders’s theorem, then it obeys Browders’s theorem (see [4]).

3. SUBSCALARITY

In this section we shall prove that every analytic extension of totally
polynomially posinormal operator is subscalar. We start with the following
Lemmas.

Lemma 3.1 (See [22, Proposition 2.1]). For a bounded open disk D in the
complex plane C, there is a constant CD such that for an arbitrary operator
T ∈ B(H) and f ∈W 2(D,H) we have

||(I − P )f ||2,D ≤ CD(||(T − z)∂̄f ||2,D + ||(T − z)∂̄2f ||2,D)

where P denote the orthogonal projection of L2(D,H) on to the Bergman space
A2(D,H)

Lemma 3.2. Let T ∈ B(H) be a totally polynomially posinormal operator
and let {fj} is a sequence in Wm(D,H) (m ≥ 2n) such that

lim
j→∞

||(T − z)∂̄ifj ||2,D = 0

for i = 1, 2, ....,m, where D be bounded disc in C and n is the degree of poly-
nomial. Then,

lim
j→∞

||(I −Q)∂̄ifj ||2,D1 = 0

for i = 1, 2, ....,m − 2n, where D1 $ D and Q : L2(D,H) → A2(D,H) is
orthogonal projection. Furthermore, if m > 2n then we have

lim
j→∞

||∂̄ifj ||2,D2 = 0

for i = 1, 2, ....,m− 2n, where D2 $ D1 $ D.

Proof. Suppose T ∈ B(H) be a totally polynomially posinormal. From
[20, Corollary 1], there exist a constant CD such that
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||(I −Q)∂̄ifj ||2,D ≤ CD
n∑
k=0

||(T − z)∂̄i+n+kfj ||2,D(3.1)

for i = 1, 2, ....,m− 2n. From (3.1), we have

lim
j→∞

||(I −Q)∂̄ifj ||2,D1 = 0(3.2)

for i = 1, 2, ....,m− 2n, where D1 $ D. Thus we have,

lim
j→∞

||(T − z)Q∂̄ifj ||2,D1 = 0(3.3)

for i = 1, 2, ....,m − 2n. From [20, Proposition 1], totally polynomially posi-
normal operators satisfies Bishop’s property (β). Then from (3.3), we have

lim
j→∞

||Q∂̄ifj ||2,D2 = 0(3.4)

for i = 1, 2, ....,m− 2n, where D2 $ D1 $ D. From (3.2) and (3.4), we get

lim
j→∞

||∂̄ifj ||2,D2 = 0

for i = 1, 2, ....,m− 2n, where D2 $ D1 $ D.

Lemma 3.3. Let T ∈ B(H1 ⊕ H2) be an analytic extension of a totally

polynomially posinormal operator, ie., T =

(
T1 T2

0 T3

)
∈ B(H1 ⊕ H2), where

T1 is totally polynomially posinormal and T3 is analytic with order k. For any
bounded disk D which contains σ(T ), define the map A : H1 ⊕H2 → K(D) by

Ax = 1⊗ x+ (T − z)W 2k+4n(D,H1)⊕W 2k+4n(D,H2)(= 1̃⊗ x),

where

K(D) =
W 2k+4n(D,H1)⊕W 2k+4n(D,H2)

(T − z)W 2k+4n(D,H1)⊕W 2k+4n(D,H2)

and 1 ⊗ x denotes the constant function sending any z ∈ D to x ∈ H1 ⊕ H2.
Then, A is injective with closed range.

Proof. Let fj = fj,1 ⊕ fj,2 ∈ W 2k+4n(D,H1)⊕W 2k+4n(D,H2) and xj =
xj,1 ⊕ xj,2 ∈ H1 ⊕H2 be sequences such that

lim
j→∞

||(T − z)fj + 1⊗ xj ||W 2k+4n(D,H1)⊕W 2k+4n)(D,H2) = 0(3.5)

From (3.5), we write

lim
j→∞

||(T1 − z)fj,1 + T2fj,2 + 1⊗ xj,1||W 2k+4n = 0,(3.6)
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lim
j→∞

||(T3 − z)fj,2 + 1⊗ xj,2||W 2k+4n = 0(3.7)

Then from the definition of the norm of Sobolev space, (3.6) and (3.7) yields

lim
j→∞

||(T1 − z)∂̄ifj,1 + T2∂̄
ifj,2||2,D = 0(3.8)

and

lim
j→∞

||(T3 − z)∂̄ifj,2||2,D = 0(3.9)

for i = 1, 2, ...., 2k + 4n.
Since T3 is analytic of order k, there exists a nonconstant analytic function F
on a neighborhood of σ(T3) such that F (T3) = 0. We write F (z) = G(z)p(z),
where G is non vanishing analytic function on a neighborhood of σ(T ) and
nonconstant polynomial p(z) = (z − z1)(z − z2)......(z − zk). Set qj = (z −
zj+1)....(z − zk) for j = 0, 1, 2, .., k − 1 and qk(z) = 1.
Now we need to provethat for all s = 0, 1, 2, ...., k the following equation

lim
j→∞

||qs(T3)∂̄ifj,2||2,Ds = 0(3.10)

holds for i = 1, 2, ...., 2k+4n−2s, where σ(T ) $ Dk $ Dk−1 $ ....... $ D1 ⊂ D.
We use induction on s for the proof (3.10). Since T3 is analytic, 0 = F (T3) =
G(T3)p(T3). Since G(T3) is invertible, we have q0(T3) = p(T3) = 0 . That is,
(3.10) is true for s = 0. Suppose that

lim
j→∞

||qs(T3)∂̄ifj,2||2,Ds = 0

holds for 0 < s < k and holds for i = 1, 2, ...., 2k + 4n − 2s. From (3.9) and
(3.10), we obtain that

0 = lim
j→∞

‖qs+1(T3 − z)∂̄ifj,2‖2,Ds = lim
j→∞

‖(zs+1 − z)qs+1(T3)∂̄ifj,2‖2,Ds(3.11)

holds for i = 1, 2, ...., 2k+4n−2s. Then by applying [13, lemma 3.2], it follows
that

lim
j→∞

||qs+1(T3)∂̄ifj,2||2,Ds+1 = 0(3.12)

holds for i = 1, 2, ...., 2(k − s − 1) + 4n, where σ(T ) $ Ds+1 $ Ds. Which
completes the proof of (3.10). Now consider s = k in (3.10), we get

lim
j→∞

||∂̄ifj,2||2,Dk
= 0(3.13)

for i = 1, 2, 3...., 4n. then by (3.8) and (3.9), we have

lim
j→∞

||(T1 − z)∂̄ifj,1||2,Dk
= 0
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for i = 1, 2, 3..., 4n. Since T1 is totally polynomially posinormal operator, from
Lemma 3.2, we have

lim
j→∞

||(I −QH1)fj,1||2,Dk
= 0,(3.14)

where QH1 denotes the orthogonal projection of L2(Dk,H1) onto A2(Dk,H1).
From (3.13) and Lemma 3.1, it follows that

lim
j→∞

||(I −QH2)fj,2||2,Dk
= 0,(3.15)

where QH2 denotes the orthogonal projection of L2(Dk,H2) onto A2(Dk,H2).
Set Qfj := QH1fj,1 ⊕QH2fj,2. Then from (3.5), (3.14) and (3.15), we have

lim
j→∞

||(T − z)Qfj + 1⊗ xj ||2,Dk
= 0.

Let γ be a closed curve in Dk surrounding σ(T ). Then,

lim
j→∞

||Qfj + (T − z)−1(1⊗ xj)(z)|| = 0

uniformly for all z ∈ γ. Then by Riesz-Dunford functional calculus, we get

lim
j→∞

|| 1

2πi

∫
γ
Qfj(z)dz + xj || = 0.

Then by Cauchy’s theorem, we have 1
2πi

∫
γ Qfj(z)dz = 0. Thus we have

lim
j→∞

||xj || = 0.

This completes the proof.

Now we are ready to show that every analytic extension of totally poly-
nomially posinormal operator has scalar extension of order 2k + 4n.

Theorem 3.4. Let T ∈ B(H1⊕H2) be an analytic extension of a totally

polynomially posinormal operator, ie., T =

(
T1 T2

0 T3

)
∈ B(H1 ⊕ H2), where

T1 is totally polynomially posinormal and T3 is analytic with order k. Then T
is subscalar of order 2k + 4n.

Proof. Suppose that T ∈ B(H1⊕H2) is an analytic extension of a totally
polynomially posinormal operator. For any bounded disk D which contains
σ(T ), the map

A : H1 ⊕H2 →
W 2k+4n(D,H1)⊕W 2k+4n(D,H2)

(T − z)W 2k+4n(D,H1)⊕W 2k+4n(D,H2)

by

Ax = 1⊗ x+ (T − z)W 2k+4n(D,H1)⊕W 2k+4n(D,H2)(= 1̃⊗ x),
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where 1 ⊗ x denotes the constant function sending any z ∈ D to x ∈ H1 ⊕
H2 is injective with closed range by Lemma 3.3. Let x and Ũ denotes the

class of vector and operator on W 2k+4n(D,H1)⊕W 2k+4n(D,H2))

(T−z)W 2k+4n(D,H1)⊕W 2k+4n(D,H2))
respectively.

Consider M , which is the operator of multiplication by z on W 2k+4n(D,H1)⊕
W 2k+4n(D,H2). Then M is scalar operator of order 2k + 4n and has spectral
distribution

Φ : C2k+4n
0 (C)→ B(W 2k+4n(D,H1)⊕W 2k+4n(D,H2))

defined by Φ(ν)x = νx for x ∈ W 2k+4n(D,H1) ⊕ W 2k+4n(D,H2) and ν ∈
C2k+4n

0 (C). Since (T − z)W 2k+4n(D,H1)⊕W 2k+4n(D,H2) is invariant under
M , M̃ is scalar operator of order 2k + 4n with Φ̃ as a spectral distribution.
From the definition of map A, we have AT = M̃A. In particular R(A) is
an invariant subspace for M̃ . By Lemma 3.3, A is one-to-one and has closed
range. Since T is similar to the restriction M̃ |R(A) and M̃ is scalar of order
2k + 4n, T is subscalar of order 2k + 4n.

We give some important facts which follow from subscalarity of analytic
extension of totally polynomially posinormal operators.

Corollary 3.5. Let T be an analytic extension of totally polynomially
posinormal operator. Then T satisfies Bishop’s property(β).

Corollary 3.6. Let T be an analytic extension of totally polynomially
posinormal operator. Then T satisfies single valued extension property (SVEP)

LetH∞(U) denote the space of all bounded analytic functions on bounded
open set U in C . A subset σ of C is dominating in U if ‖f‖ = supx∈σ∩U |f(x)|
holds for each function f ∈ H∞(U). Recall [6], a subset σ is thick if there is a
bounded open set U in C such that σ is dominating in U .

Corollary 3.7. Let T be an analytic extension of totally polynomially
posinormal operator with thick spectra. Then T has a nontrivial invariant
subspace.

Proof. Suppose T is an analytic extension of totally polynomially posi-
normal operator. Then by corollary 3.5, T satisfies Bishop’s property (β).
Hence the required result follows from [9].

Recall that a closed subspace M of H is said to be hyperinvariant for T
if M is invariant under every operator in the commutant {T}′ of T .

Corollary 3.8. Let T be an analytic extension of totally polynomially
posinormal. If there exists a nonzero x ∈ H1 ⊕ H2 such that σT (x) $ σ(T ),
then T has a nontrivial hyperinvariant subspace.
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Proof. Suppose T is an analytic extension of totally polynomially posi-
normal operator such that there exists a nonzero x ∈ H1 ⊕ H2 such that
σT (x) $ σ(T ). From corollary 3.5, T satisfies Bishop’s property (β). Ap-
plying [18, Theorem 5.1], we obtain that T has a nontrivial hyperinvariant
subspace.

Theorem 3.9. Let T ∈ B(H1 ⊕ H2) be an analytic extension of totally
polynomially posinormal operator, i.e.,

T =

(
T1 T2

0 T3

)
,

is an operator matrix on H1⊕H2, where T1 is totally polynomially posinormal
operator and F (T3) = 0 for a nonconstant analytic function F on a neighbor-
hood D of σ(T3). Then the following statements hold

(i) HT (E) ⊆ HT1(E)⊕ {0} for every subset E of C.
(ii) σT1(x1) = σT (x1 ⊕ 0) and σT3(x2) ⊂ σT (x1 ⊕ x2) where x1 ⊕ x2 ∈

H1 ⊕H2.
(iii) RT1(F ) ⊕ 0 ⊂ HT (F ) where RT1(F ) := {y ∈ H1 : σT1(y) ⊂ F} for

any subset F ∈ C.

Proof. (i) Let x1 ∈ HT1(E), where E be any subset of C. Since T is
analytic extension of totally polynomially posinormal operator, T has single
valued extension property by Corollary 3.6. Then there exists an H-valued
analytic function f1 on C \ E such that (T1 − z)f1(z) ≡ x1 on C \ E. Hence

(T − z)(f1(z)⊕ 0) ≡ x1 ⊕ 0 on C \ E.
Thus, x1 ⊕ 0 ∈ HT (E).
(ii) Let x1 ⊕ x2 ∈ H1 ⊕H2. Suppose that z0 ∈ ρT (x1 ⊕ 0). Then there exists
an H- valued analytic function f defined on a neighborhood U of z0 such
that (T − λ)f(λ) = x1 ⊕ 0 for all λ ∈ U . We can write f = f1 ⊕ f2 where
f1 ∈ O(U ;H1) and f2 ∈ O(U ;H2). Then we get

T =

(
T1 − λ T2

0 T3 − λ

)(
f1(λ)
f2(λ)

)
≡
(
x1

0

)
.

Thus,

(T1 − λ)f1(λ) + T2f2(λ) ≡ x1 and (T3 − λ)f2(λ) ≡ 0.

Since T3 is analytic of order k, T3 has single valued extension property. Hence
we have f2(λ) ≡ 0. Thus (T1 − λ)f1(λ) ≡ x1, and so z0 ∈ ρT1(x1). Conversely
suppose z0 ∈ ρT1(x1). Then there exists a function f1 ∈ O(U ;H1) for some
neighborhood U of λ0 such that (T1 − λ)f1(λ) ≡ x1. Then

(T − λ)f1(λ⊕ 0) ≡ x1 ⊕ 0.
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Hence z0 ∈ ρT (x1 ⊕ 0). On the other hand, If z0 ∈ ρT (x1 ⊕ x2), then there
exists an H-valued analytic function g defined on a neighborhood U of z0 such
that (T − λ)g(λ) = x1 ⊕ x2 for all λ ∈ U . We can write g = g1 ⊕ g2 where
g1 ∈ O(U ;H1) and g2 ∈ O(U ;H2). Then we get

T =

(
T1 − λ T2

0 T3 − λ

)(
g1(λ)
g2(λ)

)
≡
(
x1

x2

)
.

Thus (T3 − λ)g2(λ) = x2. Hence z0 ∈ ρT3(x2).
(iii) Let x1 ∈ RT1(F ). Then σT1(x1) ⊂ F . From (ii), we have the equality
σT1(x1) = σT1(x1 ⊕ 0). Therefor, σT1(x1 ⊕ 0) ∈ F . Thus x1 ⊕ 0 ∈ HT (F ), and
hence RT1(F )⊕ 0 ⊂ HT (F ).

4. WEYL TYPE THEOREMS

Recall that an operator T ∈ B(H) is called isoloid if every isolated point
of spectrum of T is an eigenvalue and T ∈ B(H) is said to be polaroid if every
isolated point of spectrum of T is a pole of resolvent of T . Note that if T is
polaroid then T is isoloid. Moreover, T is polaroid if and only if T ∗ is polaroid.

Since T is subscalar, it follows that T is polaroid [18] and hence isoloid.

Theorem 4.1. Let T be an analytic extension of totally polynomially
posinormal operator. Then generalized Weyl’s theorem holds for both T and
T ∗.

Proof. Suppose T is an analytic extension of totally polynomially posi-
normal operator. From Theorem 3.4, T is subscalar. Then by [18, Corollary
2.2], T is polaroid. From Corollary 3.5, T has single valued extension property
(SVEP). Then it follows from [2, Theorem 4.1] that generalized Weyl’s theorem
holds for both T and T ∗.

According to Berkani and Koliha [5], an operator T ∈ B(H) is said to
be Drazin invertible if T has finite ascent and descent. The Drazin spec-
trum of T ∈ B(H), denoted by σD(T ), is defined σD(T ) = {λ ∈ C : T −
λ is not Drazin invertible} (See, [4]). Let H(σ(T )) denote the set of analytic
functions which are defined on an open neighborhood of σ(T ).

Theorem 4.2. Let T be an analytic extension of totally polynomially
posinormal. Then f(T ) satisfies generalized Weyl’s theorem for every f ∈
H(σ(T )).

Proof. Suppose T is an analytic extension of totally polynomially posi-
normal operator. To prove f(T ) satisfies generalized Weyl’s theorem for every
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f ∈ H(σ(T )), it is enough to prove equality σBW (f(T )) = f(σBW (T )) holds
for every f ∈ H(σ(T )). Since T is analytic extension of totally polynomi-
ally posinormal, T has SVEP corollary 3.6. Thus, f(T ) satisfies generalized
Browder’s theorem. Then by [8, Theorem 2.1] we have

σBW (f(T )) = σD(f(T )).

Since σD(f(T )) = f(σD(T )) (See [8, Theorem 2.7]),

σBW (f(T )) = f(σD(T )).

Since T satisfies generalized Weyl’s theorem (see Theorem 4.1), T satisfies
generalized Browder’s theorem. Hence the following equality holds

f(σD(T )) = f(σBW (T )).

Hence, σBW (f(T )) = f(σBW (T )). This completes the proof.

Theorem 4.3. If T ∗ is an analytic extension of totally polynomially posi-
normal operator, then a-Weyl’s theorem holds for T .

Proof. Suppose T ∗ is an analytic extension of totally polynomially posi-
normal operator. Then T ∗ has SVEP by Corollary 3.6. From Theorem 3.4, T ∗

is subscalar. Then by [18, Corollary 2.2], T ∗ is polaroid. Since T ∗ is polaroid,
T is polaroid. By applying [3, theorem 3.19], it follows that a-Weyl’s theorem
holds for T .
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