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In this paper, we generalize the chaotic characteristic of the logistic function Fµ
for µ ≥ 4 on its invariant subset to an arbitrary real function. In fact, we describe
sufficient conditions for a real arbitrary function to be chaotic on an invariant
subset. Then we present some functions that satisfy these sufficient conditions,
although these functions have some differences with the logistic function.

AMS 2010 Subject Classification: 37E05.

Key words: Chaotic, invariant set, Schwarzian derivative, generalized logistic
function.

1. INTRODUCTION

The logistic family Fµ(x) = µx(1−x) is a well-known family of polynomi-
als in one dimensional discrete dynamical systems. Although Fµ is expressed
with a simple formula, however many different dynamical behaviors are ob-
served in this family as the parameter µ increases. Specially, when µ ≥ 4, Fµ
is chaotic on the invariant set Λµ = ∩∞n=1F

−n
µ ([0, 1]). The study of this chaotic

behavior is done in several ways. A well known theorem from complex dynam-
ics shows that when the orbit of each critical point of a polynomial tends to
infinity, then the Julia set of the polynomial is totally disconnected. Thus Λµ
that is the Julia set of Fµ for µ > 4 is totally disconnected (see [4, Theorem
9.8.1]). Henry in [11] proves that for µ > 4, the Lebesgue measure of Λµ is
zero, therefore Λµ does not contain any interval. The totally disconnectedness
of Λµ for µ > 4 can be proved by using [10, Proposition 2.8] and negativeness
of the Schwarzian derivative of Λµ. In [13] Robinson shows, by using Schwarz
Lemma from complex analysis, that for µ > 4, Λµ is a Cantor set. In [12] it is
shown that when µ > 4, Λµ is a Cantor set and Fµ|Λµ is chaotic by employing
the negative Schwarzian derivative and the Return Lemma. Glendinning [9],
by conjugating Fµ, gives an estimate of the expansion rate of the function on
the invariant set by employing mathematical techniques of elementary calcu-
lus. In [3] Aulbach and Kieninger give an elementary and self-contained proof
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of the hyperbolicity of Λµ for µ > 4. They also prove that Fµ is chaotic on
Λµ. In [7] it is proved, when µ = 4, for each interval J ⊆ [0, 1] there is some
n ∈ N such that Fn4 (J) ⊇ [0, 1] and it is deduced that F4 is chaotic on [0, 1]. In
this method the first return map and the negative Schwarzian derivative play
essential roles.

In this paper we recognize the main features that cause the logistic func-
tion Fµ to be chaotic on Λµ, and based on them we introduce some sufficient
conditions for a real function f in order to be chaotic on an invariant subset
of its domain. We call this function a generalized logistic function since the
dynamics of f restricted to this invariant subset is similar to Fµ|Λµ when µ ≥ 4.
Although, for µ > 1, the logistic function Fµ is concave downward and 0 is a re-
pelling fixed point, we show that for a generalized logistic function f , f ′(0) = 1
is possible and there is no such restriction on the concavity of f (see Section
4, Example 2). Also, we do not consider the behavior of f on the complement
of the invariant subset (see Section 4, Examples 2 and 3). We introduce these
conditions and their conclusions in Section 2. We show in Section 3, Theorem
1, that for a generalized logistic function there is some invariant subset on
which it is chaotic. The method that is used has been adapted from [7] where
it is employed for F4. In Section 4 some examples of the generalized logistic
functions are presented.

We next describe our terminology and notations. Let I be an interval and
f : I → I be a C1 function. By fn we mean f ◦ fn−1, where f0 is the identity
function. A point x0 ∈ I is called a fixed point of f if f(x0) = x0 and it is
called a periodic point of f of period n, if n is the least natural number that
fn(x0) = x0. In this case, the set {x0, f(x0), f2(x0), · · · , fn−1(x0)} is called
a cycle of period n. The basin of this cycle is ∪n−1

i=0 {x : limk→∞ f
kn(x) =

f i(x0)}. The immediate basin of this cycle is the union of the connected
components of its basin which contain a point of the cycle. A cycle {f i(x0) :
0 ≤ i ≤ n− 1} is called an attracting cycle, repelling cycle, or neutral cycle if
|(fn)′(x0)| < 1, |(fn)′(x0)| > 1, or |(fn)′(x0)| = 1, respectively.

Let f be a C3 function such that f
′
(x) 6= 0. The Schwarzian derivative

of f at x is defined by:

Sf(x) =
f
′′′

(x)

f ′(x)
− 3

2

(
f
′′
(x)

f ′(x)

)2

.

Every function f : I → I with negative Schwarzian derivative has the following
properties (see [7, 6] for details):

1. The Schwarzian derivative of fn is negative.

2. f
′

does not have a positive local minimum or a negative local maximum.
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3. The immediate basin of a neutral cycle of f contains some intervals.

4. The immediate basin of any attracting (neutral) cycle contains either a
critical point of f or a boundary point of the interval I.

5. If f has finitely many critical points then it has finitely many periodic
points of period m for each m ∈ N.

For Λ ⊆ I, a function f : Λ → Λ is called chaotic on Λ if the following
three conditions hold (see [7] for more details):

1. The set of the periodic points of f is dense in Λ.

2. f is topologically transitive (i.e., for every pair of open subsets U and V
of Λ, there exists some k > 0 such that fk(U) ∩ V 6= ∅).

3. f has sensitive dependence on initial conditions (i.e., there exists δ > 0
such that for any x ∈ Λ and any open subset U of Λ containing x, there
exist y ∈ U and n ≥ 0 such that |fn(x)− fn(y)| > δ).

2. PROPERTIES OF A GENERALIZED LOGISTIC FUNCTION

In this section we introduce a real function f on an interval I that satisfies
some conditions which make f to be chaotic on an invariant subset of I. We
introduce these conditions in several steps and in each step we derive the
properties of f .

Let I be an interval, f : I → I be a continuous function, and [0, 1] ⊆ I.
In the first step we suppose that f satisfies the following conditions.

(c1) f |[0,1] is a C3 function.

(c2) f(0) = f(1) = 0.

(c3) f has just one critical point c in the interval (0, 1) and f(c) ≥ 1.

Note that under these conditions, f(x) > 0 , for x ∈ (0, 1) and the critical point
c is the maximum point of f on the interval [0, 1], consequently f is strictly
increasing on [0, c] and strictly decreasing on [c, 1], as well. Therefore f has
only one non zero fixed point p in the interval (c, 1), since f(1) − 1 < 0 and
f(c)− c ≥ 1− c > 0.

The following conditions guarantee that f has no fixed point in interval
(0, c).

(c4) f(x) > x for every positive x that is close enough to 0.

(c5) f |(0,1) has negative Schwarzian derivative.
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Suppose that now f satisfies conditions (c1)-(c5). Since f |(0,1) has negative
Schwarzian derivative, the number of fixed points of f is finite in [0, 1]. If f
has some fixed points in interval (0, c), then we call the least fixed point in
interval (0, c) by x0. Now, condition (c4) guarantees f(x) > x, for x ∈ (0, x0).
Thus x0 is attracting from the left and there must be a critical point in the
immediate basin of x0, that is a contradiction. Therefore, f has no fixed point
on the interval (0, c).

Also, under the conditions (c1)-(c3) the equation f(x) = a with 0 ≤ a <
f(c) has exactly two solutions in the interval [0, 1]. Let q̂ ≤ q be the solutions
of f(x) = 1 in the interval [0, 1], and 0 < p̂ < p be such that f(p̂) = f(p) = p.
Note that if f(c) = 1, then q̂ = q = c, also note that p̂ < q̂ ≤ q < p. Let

Λ = {x ∈ [0, 1] : fn(x) ∈ [0, 1] for all n ∈ N}.(1)

It can be shown that f(Λ) = Λ. Thus Λ is an invariant subset of [0, 1] under
f . In order to prove that f is chaotic on Λ, we need further assumptions to
guarantee that for each x ∈ (p̂, q̂)∪ (q, p) there is some n such that |(fn)′(x)| >
1. Hence we suppose f satisfies the following conditions as well.

(c6) f ′(p̂) ≥ 1, where 0 < p̂ < 1 is the preimage of the non-zero fixed point p.

(c7) p̂ ≥ max{p− q, q̂ − p̂}, where 0 < q̂ ≤ q < 1 are the preimages of 1.

We call a function f that satisfies conditions (c1)-(c7) a generalized logistic
function. In the next section, we study the dynamics of f |Λ.

Remark 1. Note that in this section by some modifications in the condi-
tions, we can choose any other interval [x0, x1] instead of interval [0, 1]. More
precisely, in conditions (c1)-(c5) we should replace 0 with x0 and 1 with x1, in
(c6) we should replace 0 < p̂ < 1 with x0 < p̂ < x1, and also in condition (c7)
we should replace p̂ ≥ max{p− q, q̂ − p̂} with p̂− x0 ≥ max{p− q, q̂ − p̂}.

Remark 2. Note that under the conditions (c2) and (c3) when f(c) > 1,
there exists a compact set X ⊆ I such that f(X) = X and f : X → X is
semi-conjugate to σ : Σ2 → Σ2 (see [5, Proposition 15. page 35] for details),
and when f(c) > 1 and f ′(0) > 1, for each neighborhood U of 0, there is an
integer n > 0 such that fn has a hyperbolic invariant subset in U on which
fn is topologically conjugate to σ : Σ2 → Σ2 (see [7, Theorem 16.5] for details).

3. CHAOS IN A GENERALIZED LOGISTIC FUNCTION

Our aim in this section is to prove the following theorem.
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Theorem 1. Suppose that f is a generalized logistic function. Let Λ be
as defined in (1). Then f is chaotic on Λ.

We use the following lemmas to prove Theorem 1. In these lemmas we suppose
that f is a generalized logistic function and Λ is as defined in (1).

Lemma 2. Suppose U is an open interval in [0, 1] and 0 ∈ U . Then
there are some closed interval U ′ ⊆ U and some n ≥ 1 such that 0 ∈ U ′,
fn(U ′) = [0, 1] and fk(U ′) ⊆ [0, q̂] for k = 0, 1, · · · , n− 1.

Proof. Note that f : [0, q̂]→ [0, 1] is increasing and by (c4) the fixed point
0 is an attracting fixed point from the right of (f |[0,q̂])−1. Thus there is the
decreasing sequence (q̂−n)n∈N such that f(q̂−n) = q̂−n+1 and limn→∞ q̂−n = 0
where q̂0 = q̂. Therefore there are some closed interval U ′ ⊆ U and some n ≥ 1
such that 0 ∈ U ′, fn(U ′) = [0, 1] and fk(U ′) ⊆ [0, q̂] for k = 0, 1, · · · , n−1.

Remark 3. Note that by (c5) and this fact that f is strictly increasing on
[0, c] and strictly decreasing on [c, 1], we can conclude that f ′(p) < −1.

Lemma 3. Suppose U ⊆ [0, 1] is an open interval that contains p. Then
there are some closed interval U ′ ⊆ U and some n ≥ 1 such that p ∈ U ′,
fn(U ′) ⊇ [0, 1] and fk(U ′) ⊆ [0, 1] for k = 0, 1, · · · , n− 1

Proof. Let x ∈ U ∩ (p, 1) such that for all t ∈ (f(x), x), f ′(t) < −1. Since
f is strictly decreasing on [c, 1] and Sf < 0, there is the least n0 such that
f2n0+1(x) ≤ q, otherwise f has an attracting (neutral) 2-cycle in (q, 1) which
is a contradiction.

Next note that q < fk(x) < 1, for k = 0, 1, · · · , 2n0. Therefore, there is
z ∈ (p, x) such that f2n0+1(z) = q. Let U ′ = [p, z]. Then f2n0+4(U ′) ⊇ [0, 1]
and fk(U ′) ⊆ [0, 1], for k = 0, 1, · · · , 2n0 + 3. Therefore there are some closed
interval U ′ ⊆ U and some n ≥ 1 such that p ∈ U ′, fn(U ′) ⊇ [0, 1] and
fk(U ′) ⊆ [0, 1], for k = 0, 1, · · · , n− 1.

Here we use the method of [7] in partitioning the set (p̂, q̂) ∪ (q, p). Note
that f(q, p) = (p, 1) and f(p, 1) = (0, p), thus there is an interval A2 =
[a2, b2) ⊂ (q, p) such that f2(A2) = [p̂, p). Let the subset whose image under
f2 is (0, p̂) be W2 = (q, a2). Moreover, f(0, p̂) = (0, p), therefore there is an
interval A3 ⊆ W2 such that f3(A3) = [p̂, p). By continuing this process we
construct subsets An and Wn for n ≥ 2 such that

q < · · · < bn < · · · < b3 < b2 = p, bn+1 = an,

Wn = (q, an), An = [an, bn),

fn(An) = [p̂, p), fn(Wn) = (0, p̂)
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and

∪An = (q, p).

Note that bn − an → 0 as n→∞.

Since fn([an, bn)) = [p̂, p), we have

| fn(an)− fn(bn) |
| an − bn |

>
p− p̂
p− q

> 1,

also, fn((q, an)) = (0, p̂) and by condition (c7),

| fn(an)− fn(q) |
| an − q |

>
p̂

p− q
≥ 1.

By the Mean Value Theorem we have | (fn)′(cn) |> 1 and | (fn)′(dn) |> 1 for
some cn ∈ (an, bn) and dn ∈ (q, an). Since the Schwarzian derivative of f |(0,1)

is negative, we conclude that | (fn)′(an) |> 1. Since bn = an−1, for n ≥ 3, we
obtain

|(fn)′(bn)| = |f ′(fn−1(bn))||(fn−1)′(bn)|
= |f ′(fn−1(an−1))||(fn−1)′(an−1)|
= |f ′(p̂)||(fn−1)′(an−1)| > 1.

Also note that |(f2)′(b2)| = |(f2)′(p)| > 1. Therefore if x ∈ [an, bn), then
| (fn)′(x) |> 1.
The subintervals Ŵn and Ân in (p̂, q̂) are constructed in a similar way. Note
that condition (c6) guarantees |(f2)′(b̂2)| > 1, as well. See [7] for more details.

Now suppose that the open interval U is a subset of (p̂, q̂) ∪ (q, p) and
U ∩ Λ 6= ∅. In this case we are going to show that there is some n ≥ 2 such
thatfn(U) ⊇ [0, 1]. In the proof of the following lemma,we use the fact that
fn is expanding on [an, bn).

Lemma 4. Let U ⊆ (p̂, q̂)∪ (q, p) be an open interval such that U ∩Λ 6= ∅.
Then there are a closed interval U ′ ⊆ U and an n ≥ 1 such that fn(U ′) ⊇ [0, 1]
and fk(U ′) ⊆ [0, 1] for k = 0, 1, · · · , n− 1.

Proof. Let U ⊆ (q, p). If there exists some m such that fm(U) contains
b̂k or bk for some k ≥ 2, then p ∈ fk+m(U) and the claim holds by Lemma 3.
Otherwise let U0 = U ⊆ (an0 , bn0) and U1 = fn0(U0) ⊆ (b̂n1 , ân1) ∪ (an1 , bn1).
Note that U ∩ Λ 6= ∅, therefore fn(U) * (q̂, q) for all n. By induction on k,
the sequences

(
Uk
)

of open intervals and (nk) of integers are constructed such

that Uk+1 = fnk(Uk) ⊆ (b̂nk+1
, ânk+1

) ∪ (ank+1
, bnk+1

) and bn, b̂n /∈ Uk for all
n and all k.

This is impossible, since fn is expanding on (b̂n, ân) ∪ (an, bn) and the
length of (b̂n, ân) ∪ (an, bn) tends to zero as n→∞.
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Lemma 5. If U is an open interval in [0, 1] such that U ∩ Λ 6= ∅. Then
there are a closed interval U ′ ⊆ U and an n ≥ 1 such that fn(U ′) ⊇ [0, 1] and
fk(U ′) ⊆ [0, 1] for k = 0, 1, · · · , n− 1.

Proof. Note that f(p̂) = f(p) = p and f(1) = 0. Thus, by Lemmas 2-4,
it is enough that we consider the case U ⊆ (0, p̂)∪ (p, 1). Now let x ∈ U ∩Λ ⊆
(0, p̂). The sequence

(
fn(x)

)
n≥0

is increasing, so fn(x) > p̂, for some n ≥ 1.

Thus fn(x) ∈ (p̂, q̂) ∪ (q, p), for some n ≥ 1. Choose an open interval V ⊆ U
containing x such that fn(V ) ⊆ (p̂, q̂) ∪ (q, p) is an open interval and then use
lemma 4 for fn(V ). The case U ⊆ (p, 1) is clear, since f(p, 1) = (0, p).

The following lemma is useful in proving the existence of a fixed point in
a closed interval.

Lemma 6 ([2, Theorem 3.17]). Suppose g : R→ R is a continuous func-
tion and I is a closed interval such that g(I) ⊇ I. Then g has a fixed point in
I.

We use the following lemma to prove that f is transitive and has sensitive
dependence on initial conditions.

Lemma 7. Let A be a bounded closed subset of R and g : A → A be a
continuous function. Suppose for every open subset U ⊆ A, there is some n
such that gn(U) = A. Then g is transitive and has sensitive dependence on
initial conditions.

Proof. Let a = inf A, b = supA and δ = (b−a)/4. Suppose x ∈ A and the
open subset U contains x. Then gn(U) = A for some n. We choose z ∈ A and
y ∈ U such that |gn(x)−z| > δ and z = gn(y). Thus g has sensitive dependence
on initial conditions. Also for every open set V , we have gn(U)∩V 6= ∅. Hence
g is transitive.

We are ready to prove our main result.

Proof of Theorem 1. Let U1 be an open subset in Λ, i.e., U1 = U ∩ Λ for
some open interval in [0, 1] . By Lemma 5, there are a closed interval U ′ ⊆ U
and an n ≥ 1 such that fn(U ′) ⊇ [0, 1] and fk(U ′) ⊆ [0, 1] for k = 0, 1, · · · , n−1.
Thus, by Lemma 6, U ′ and hence U1 contains a periodic point of f |Λ. Also,
since f(Λ) = Λ, we have fn(U1) ⊆ Λ. For every y ∈ Λ there is some x ∈ U ′
such that fn(x) = y and f i(x) ∈ [0, 1] for i = 0, 1, · · · , n− 1. Therefore x ∈ Λ
and consequently x ∈ U1. Hence fn(U1) = Λ. Therefore by Lemma 7, f is
transitive and has sensitive dependence on initial conditions on Λ.

Thus f is chaotic on Λ.
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Fig. 1 – The graphs of F5, f−7/2 and S3π/2, respectively from left to right

4. EXAMPLES

In this section we present three examples of the generalized logistic func-
tion. Therefore they are chaotic on Λ as defined in (1). The graphs and
graphical analysis of these examples are shown in Fig. 1 and Fig. 2.

Example 1. Let Fµ(x) = µx(1− x), µ ≥ 4.

Then, Fµ(x) satisfies Conditions (c1)-(c4). Also, we have

1. SFµ(x) = −(3/2)(2/(1− 2x))2 < 0.

2. The non-zero fixed point is p = (µ− 1)/µ.

3. p̂ = 1/µ, q̂ = (µ−
√
µ2 − 4µ)/(2µ) and q = (µ+

√
µ2 − 4µ)/(2µ).

4. F ′µ(p̂) = µ− 2 > 1.

Finally, standard calculation shows that 2p̂ ≥ q̂, for µ ≥ 4. Hence (c7) is
satisfied since p− q = q̂ − p̂. Therefore Fµ is chaotic on Λµ, where Λµ = {x ∈
[0, 1] : Fnµ (x) ∈ [0, 1] for all n ∈ N}.

Note that F ′µ(0) = µ > 1. Thus, 0 is a repelling fixed point. Also, Fµ is
concave downward and if for some n, Fnµ (x) /∈ [0, 1], then Fmµ (x) /∈ [0, 1] for all
m ≥ n, and limm→∞ F

m
µ (x) = −∞.

In the next two examples [0, 1] is replaced with another suitable interval.

Example 2. Let fa(x) = ax2(x− 1) + x, −3.59 ≤ a ≤ −3.42.

The dynamics of the family fa(x), a 6= 0 has been studied in [1]. It
has been shown that fa is chaotic on Λa, for −3.59 ≤ a ≤ −3.42, where
Λa = {x ∈ [0, x1] : fna (x) ∈ [0, x1];∀n ≥ 1}, x1 > 0 and fa(x1) = fa(0) = 0.

In this example 0 is a neutral fixed point of fa and it is repelling from
the right and attracting from the left, thus (c4) is satisfied. The function fa
has only one critical point c1 in [0, x1] and fa(c1) ≥ x1, hence (c3) is satisfied.
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Fig. 2 – Graphical analysis of F4, f−3.42 and Sπ, respectively from left to right.

Also, by [1, Lemma 2.3], condition (c7) is satisfied. The investigation of the
other conditions is straightforward.

In contrary to the logistic function, the concavity of fa changes in [0, x1],
f ′a(0) = 1 and when −3.59 ≤ a ≤ −3.42, the points of interval [0, x1] whose
orbits leave [0, x1] are attracted to 0.

Example 3. Let Sλ(x) = λ sinx, π ≤ λ ≤
√

1 + π2.

One can show that

1. Sλ|[0, π] is a C3 function.

2. Sλ(0) = Sλ(π) = 0.

3. Sλ has just one critical point c = π/2 in interval (0, π), and Sλ(c) ≥ π.

4. 0 is a repelling fixed point.

5. Sλ|(0,π) has negative Schwarzian derivative.

Let p, p̂, q and q̂ have the similar roles that defined in Section 2. Thus
sin p̂ = p/λ. Then for 0 < x < p, we have Sλ(x) > x and for p < x < π, we
have Sλ(x) < x. Now, to verify (c6) and (c7), note that for π ≤ λ ≤

√
1 + π2,

we have Sλ(3π/4) < 3π/4, and thus

p <
3π

4
.(2)

From (2) we conclude p2 < π2 − 1 ≤ λ2 − 1. Hence S′λ(p̂) = λ cos p̂ ≥ 1 Thus
(c6) is satisfied. Also, from (2) we conclude π − p > p − π

2 , thus p̂ = π − p >
p− (π/2) > p− q = q̂ − p̂. Therefore (c7) is satisfied too.

Note that in contrary to the other two examples there are some points in
[0, π] whose orbits leave [0, π] and return to it frequently.
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