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Let X be a Banach space of dimension n > 1 and A ⊂ B(X ) be a standard
operator algebra. In the present paper it is shown that if a mapping d : A→ A
(not necessarily linear) satisfies d([[U, V ],W ]) = [[d(U), V ],W ]+ [[U, d(V )],W ]+
[[U, V ], d(W )] for all U, V,W ∈ A, then d = ψ + τ , where ψ is an additive
derivation of A and τ : A → FI vanishes at second commutator [[U, V ],W ] for
all U, V,W ∈ A. Moreover, if d is linear and satisfies the above relation, then
there exists an operator S ∈ A and a linear mapping τ from A into FI satisfying
τ([[U, V ],W ]) = 0 for all U, V,W ∈ A, such that d(U) = SU − US + τ(U) for
all U ∈ A. Further, this result is extended to the multiplicative Lie triple higher
derivations on A.
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1. INTRODUCTION

Let A be an associative algebra over a field F. Recall that a linear mapping
d : A → A is said to be a derivation if d(UV ) = d(U)V + Ud(V ) holds for
all U, V ∈ A. If the condition of linearity is replaced by additivity in the
above definition, then d is said to be an additive derivation. In particular,
derivation d is called an inner derivation if there exists some X ∈ A such that
d(U) = UX − XU for all U ∈ A. A linear mapping d : A → A is called
a Lie (resp. Lie triple) derivation if d([U, V ]) = [d(U), V ] + [U, d(V )] ( resp.
d([[U, V ],W ]) = [[d(U), V ],W ] + [[U, d(V )],W ] + [[U, V ], d(W )]) holds for all
U, V,W ∈ A, where [U, V ] = UV −V U is the usual Lie product. If the condition
of linearity is dropped from the above definition, then the corresponding Lie
derivation and Lie triple derivation are called multiplicative Lie derivation and
multiplicative Lie triple derivation respectively. Obviously, every derivation is
a Lie derivation and every Lie derivation is a Lie triple derivation. However,
the converse statements are not true in general.
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There has been a great interest in the study of characterization of Lie
derivations and Lie triple derivations for many years. The first quite surpris-
ing result is due to Martindale who proved that every multiplicative bijective
mapping from a prime ring containing a nontrivial idempotent onto an arbi-
trary ring is additive (see [16]). Miers [17] initially established that every Lie
derivation d on a von Neumann algebra A can be uniquely written as the sum
d = δ+ τ where δ is an inner derivation of A and τ is a linear mapping from A
into its center Z(A) vanishing on each commutator. Furthermore, Miers [18]
obtained an analogous decomposition for Lie triple derivations of von Neu-
mann algebras with no abelian summands. Yu and Zhang [25] proved that
every nonlinear Lie derivation of triangular algebras is the sum of an additive
derivation and a map from triangular algebra into its center sending commu-
tators to zero. Ji, Liu and Zhao [9] proved the similar result for nonlinear Lie
triple derivation of triangular algebras. Zhang, Wu and Cao [26] studied Lie
triple derivation on nest algebras. Mathieu and Villena [15] gave the charac-
terizations of Lie derivations on C∗-algebras. In addition, the characterization
of Lie derivations and Lie triple derivations on various algebras are considered
in [1–3,8–10,12,13,21,22,27].

Let us recall some basic facts related to Lie derivations, Lie higher deriva-
tions and Lie triple higher derivation of an associative algebra. Many different
kinds of higher derivations, which consist of a family of some additive map-
pings, have been widely studied in commutative and noncommutative rings.
Let N be the set of non-negative integers and D = {dn}n∈N be a family of
linear mappings dn : A→ A such that d0 = idA, the identity map on A. Then
D is called

(i) a higher derivation on A if for every n ∈ N, dn(UV ) =
∑

i+j=n
di(U)dj(V )

for all U, V ∈ A.

(ii) a Lie higher derivation on A if for every n ∈ N,
dn([U, V ]) =

∑
i+j=n

[di(U), dj(V )] for all U, V ∈ A.

(iii) a Lie triple higher derivation on A if for every n ∈ N,
dn([[U, V ],W ]) =

∑
i+j+k=n

[[di(U), dj(V )], dk(W )] for all U, V,W ∈ A.

(iv) an inner higher derivation on A if there exist two sequences {Xn}n∈N and
{Yn}n∈N in A satisfying the conditions X0 = Y0 = 1 and

∑n
i=0XiYn−i =

δn0 =
∑n

i=0 YiXn−i such that dn(U) =
∑n

i=0XiUYn−i, for all U ∈ A and
for every n ∈ N, where δn0 is the Kronecker sign.
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If we assume D = {dn}n∈N be a family of mappings dn : A→ A (not necessarily
linear) in the above definitions then the corresponding higher derivation, Lie
higher derivation and Lie triple higher derivation is said to be multiplicative
higher derivation, multiplicative Lie higher derivation and multiplicative Lie
triple higher derivation respectively. Moreover, if D = {dn}n∈N is assumed
to be the family of additive mappings, then in the above definition higher
derivation, Lie higher derivation and Lie triple higher derivation is said to
be additive higher derivation, additive Lie higher derivation and additive Lie
triple higher derivation respectively. Note that d1 is always a derivation, Lie
derivation and Lie triple derivation if D = {dn}n∈N is a higher derivation, Lie
higher derivation and Lie triple higher derivation respectively.

It is the objective of this article is to investigate multiplicative Lie triple
derivations and multiplicative Lie triple higher derivation on Banach space
standard operator algebras. Many researchers have made important contribu-
tions to the related topics (see [5], [7], [23]). Xiao [24] proved that every multi-
plicative Lie higher derivation of triangular algebras is the sum of an additive
higher derivation and a multiplicative functional vanishing on all commuta-
tors. Qi and Hou [20] gave a characterization of Lie higher derivations on nest
algebras. Motivated by the work of F. Lu and B. Liu [14], in Section 2, we
study the characterization of multiplicative Lie triple derivations on standard
operator algebras and in the subsequent Section 3, we extend the result to the
multiplicative Lie triple higher derivations on standard operator algebras.

2. MULTIPLICATIVE LIE TRIPLE DERIVATIONS

Throughout this paper, X represents a Banach space over F, where F
is the real field R or the complex field C. By X ∗ and B(X ) we denote the
topological dual space of X and the algebra of all linear bounded operators
on X , respectively. If x ∈ X and f ∈ X ∗, then rank one operator is x ⊗ f is
defined by y 7→ f(y)x for y ∈ X . A subalgebra A ⊂ B(X ) is called a standard
operator algebra if all the bounded finite rank operators are contained in A.
An algebra A is said to be prime if AAB = 0 implies either A = 0 or B = 0.
It is to be noted that every standard operator algebra is prime. Motivated by
the work of Jing [14], we have obtained the following main result.

Theorem 2.1. Let X be a Banach space of dimension n > 1 and A ⊂
B(X ) be a standard operator algebra. Suppose that a map d : A→ A satisfies

d([[U, V ],W ]) = [[d(U), V ],W ] + [[U, d(V )],W ] + [[U, V ], d(W )],(2.1)

for all U, V,W ∈ A. Then d = ψ + τ , where ψ is an additive derivation and τ
is a mapping from A into FI satisfying τ([[U, V ],W ]) = 0 for all U, V,W ∈ A.
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In particular, if d is linear and satisfies equation (2.1), then there exist an
operator S ∈ A and a linear mapping τ from A into FI that vanishes at second
commutators [[U, V ],W ], such that d(U) = SU − US + τ(U) for all U ∈ A.

For the convenience, in the sequel, take x0 ∈ X , f0 ∈ X ∗ satisfying
f0(x0) = 1. Let P = x0 ⊗ f0 and Q = I − P be idempotent of A, it is obvious
that PQ = QP = 0. Then A = A11 + A12 + A21 + A22, where A11 = PAP ,
A12 = PAQ, A21 = QAP and A22 = QAQ. We facilitate our discussion with
the following known results.

Lemma 2.1 ( [6, Problem 230]). Suppose A is a Banach algebra with the
identity I. If A,B ∈ A and λ ∈ F are such that [A,B] = λI, then λ = 0.

Lemma 2.2 ( [11, Lemma 2 (ii)]). For U = U11 + U12 + U21 + U22 ∈ A.
If UijVjk = 0 for every Uij ∈ Aij, 1 ≤ i, j, k ≤ 2, then Vjk = 0. Dually, if
VkiUij = 0 for every Uij ∈ Aij, 1 ≤ i, j, k ≤ 2, then Vki = 0.

Now we shall use the hypothesis of Theorem 2.1 freely without any specific
mention in proving the following lemmas.

Lemma 2.3. Let Uii ∈ Aii, i = 1, 2. If U11V12 = V12U22 for all V12 ∈ A12,
then U11 + U22 ∈ FI.

Proof. For any V11 ∈ A11 and V12 ∈ A12, we get U11V11V12 = V11V12U22 =
V11U11V12 for all V12 ∈ A12. As A is prime, we have U11V11 = V11U11.

For any V12 ∈ A12 and V22 ∈ A22, we get V12V22U22 = U11V12V22 =
V12U22V22 for all V12 ∈ A12. It follows by the primeness of A that V22U22 =
U22V22.

For any V12 ∈ A12 and V21 ∈ A21, we get U22V21V12 = V21V12U22 =
V21U11V12 for all V12 ∈ A12. It follows that U22V21 = V21U22.

For any V ∈ A, we have

(U11 + U22)V = (U11 + U22)(V11 + V12 + V21 + V22)

= U11V11 + U11V12 + U22V21 + U22V22

= V11U11 + V12U11 + V21U22 + V22U22

= (V11 + V12 + V21 + V22)(U11 + U22)

= V (U11 + U22).

Hence it follows that U11 + U22 ∈ FI.

Lemma 2.4. d(0) = 0.

Proof. d(0)=d([[0, 0], 0])=[[d(0), 0], 0]+[[0, d(0)], 0]+[[0, 0], d(0)]=0.

Lemma 2.5. Pd(P )P +Qd(P )Q ∈ FI.
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Proof. Let x ∈ X , f ∈ X ∗. Then

d(Px⊗Q∗f) = d([[Px⊗Q∗f, P ], P ]) = [[d(Px⊗Q∗f), P ], P ]

+[[Px⊗Q∗f, d(P )], P ] + [[Px⊗Q∗f, P ], d(P )]

= Qd(Px⊗Q∗f)P + Pd(Px⊗Q∗f)Q− Px⊗Q∗fd(P )Q

+Pd(P )Px⊗Q∗f − Px⊗Q∗fd(P ) + d(P )Px⊗Q∗f.

Multiplying the above identity from the left by P and from the right by Q, we
arrive at

Px⊗Q∗fd(P )Q = Pd(P )Px⊗Q∗f.

Equivalently,

Px⊗ fQd(P )Q = Pd(P )Px⊗ fQ.

It follows that Pd(P )P = λP and Qd(P )Q = λQ for some λ ∈ C. Hence
Pd(P )P +Qd(P )Q = λI.

In the sequel, we define φ : A→ A by

φ(U) = d(U) + dPd(P )Q−Qd(P )P (U) for all U ∈ A

where dPd(P )Q−Qd(P )P is the inner derivation determined by Pd(P )Q−Qd(P )P .
It is easy to verify that

φ([[U, V ],W ]) = [[φ(U), V ],W ] + [[U, φ(V )],W ] + [[U, V ], φ(W )]

holds for all U, V,W ∈ A. Moreover, by Lemma 2.5, we have

φ(P ) = d(P )− Pd(P )Q−Qd(P )P

= d(P )P + d(P )Q− Pd(P )Q−Qd(P )P

= Pd(P )P +Qd(P )Q

= λI.

Thus φ(P ) ∈ FI.

Lemma 2.6. φ(PUQ+QUP ) = Pφ(U)Q+Qφ(U)P for all U ∈ A.

Proof. Since [[U,P ], P ] = PU − 2PUP + UP = PUQ+QUP , it follows
that

φ(PUQ+QUP ) = φ([[U,P ], P ]) = [[φ(U), P ], P ]

= Pφ(U)Q+Qφ(U)P.

Lemma 2.7. φ(Q) ∈ FI.
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Proof. Using arguments similar to those used in the proof of Lemma 2.5,
we get

Pφ(Q)P +Qφ(Q)Q ∈ FI.

Since φ(Q) = Pφ(Q)P + Pφ(Q)Q + Qφ(Q)P + Qφ(Q)Q, by Lemma 2.6, we
have

Pφ(Q)Q+Qφ(Q)P = φ(PQQ+QQP ) = 0.

Consequently, we get φ(Q) = Pφ(Q)P +Qφ(Q)Q ∈ FI.

Lemma 2.8. If [U, V ] ∈ FI for any U, V ∈ A, then [φ(U), V ]+[U, φ(V )] ∈
FI.

Proof. For [U, V ] ∈ FI, we have [[U, V ],W ] = 0 for all W ∈ A.

0 = φ(0) = φ[[U, V ],W ] = [[φ(U), V ],W ] + [[U, φ(V )],W ]

= [[φ(U), V ] + [U, φ(V )],W ]

for all W ∈ A. Thus [φ(U), V ] + [U, φ(V )] ∈ FI.

Lemma 2.9. φ(Uij) ⊆ Aij , 1 ≤ i 6= j ≤ 2.

Proof. For U12 ∈ A12, we have U12 = [[U12, P ], P ]. Thus

φ(U12) = φ([[U12, P ], P ]) = [[φ(U12), P ], P ] = Pφ(U12)Q+Qφ(U12)P,

and hence we see that Pφ(U12)P = Qφ(U12)Q = 0. Now for U12, V12 ∈ A12, by
Lemma 2.8, we have

[φ(U12), V12] + [U12, φ(V12)] = λI ∈ FI.(2.2)

Since U12 = [P,U12], by using (2.2), we find that

[φ(U12), V12] = [φ([P,U12]), V12] = λI − [[P,U12], φ(V12)]

= λI − φ([[P,U12], V12]) + [[φ(P ), U12], V12] + [[P, φ(U12)], V12]

= λI + [[P, φ(U12)], V12].

This implies that

[Pφ(U12)Q+Qφ(U12)P, V12] = λI + [[P, Pφ(U12)Q+Qφ(U12)P ], V12]

= λI + [Pφ(U12)Q−Qφ(U12)P, V12].

Hence [Qφ(U12)P, V12] = 1
2λI ∈ FI. It follows from Lemma 2.1 that

[Qφ(U12)P, V12] = 0. Thus Qφ(U12)V12 = 0 and hence by Lemma 2.2, we have
Qφ(U12)P = 0. So φ(U12) = Pφ(U12)Q ∈ A12 for each U12 ∈ A12. This implies
that φ(A12) ⊆ A12.

Similarly, φ(U21) = Qφ(U21)P ∈ A21 for each U21 ∈ A21 and therefore
φ(A21) ⊆ A21.
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Lemma 2.10. There exists a functional fi : Aii → FI such that φ(Uii) −
fi(Uii)I ∈ Aii for all Uii ∈ Aii, i = 1, 2.

Proof. For U11 ∈ A11, by Lemma 2.6, we have

Pφ(U11)Q+Qφ(U11)P = φ(PU11Q+QU11P ) = 0.

Thus, it can be assumed that φ(U11) = A11 + A22 and φ(U22) = B11 + B22,
here Aii, Bii ∈ Aii, i = 1, 2. Since [U11, U22] = 0, then by Lemma 2.1, we have
[φ(U11), U22]+ [U11, φ(U22)] = λI ∈ FI. Multiplying both sides by Q, we arrive
at [Qφ(U11)Q,U22] = λQ. Consequently, by Lemma 2.1, [Qφ(U11)Q,U22] = 0
for all U22 ∈ A22. Similarly [U11, Pφ(U22)P ] = 0 for all U11 ∈ A11.

Equivalently, [A22, U22] = 0 for all U22 ∈ A22 and [U11, B11] = 0 for
all U11 ∈ A11. Therefore, there exist scalars f1(U11) and f2(U22) such that
A22 = f1(U11)Q and B11 = f2(U22)P . Hence φ(U11) − f1(U11)I ∈ A11 and
φ(U22)− f2(U22)I ∈ A22.

Our next aim is to show that φ is additive on A12 and A21.

Lemma 2.11. Let Uii ∈ Aii and Uij ∈ Aij, 1 ≤ i 6= j ≤ 2. Then φ(Uii +
Uij)− φ(Uii)− φ(Uij) ∈ FI.

Proof. Let U11 ∈ A11, U12 ∈ A12. We have

φ([[U11 + U12, P ], P ]) = [[φ(U11 + U12), P ], P ] + [[U11 + U12, φ(P )], P ]

+[[U11 + U12, φ(P )], φ(P )]

= [[φ(U11 + U12), P ], P ].

On the other hand, we have

φ([[U11 + U12, P ], P ]) = φ([[U11, P ], P ]) + φ([[U12, P ], P ])

= [[φ(U12), P ], P ] + [[φ(U12), P ], P ].

Combining the above two identities, we get
[[φ(U11 + U12)− φ(U12)− φ(U12), P ], P ] = 0, that is

0 = P (φ(U11 + U12)− φ(U12)− φ(U12))Q(2.3)

+Q(φ(U11 + U12)− φ(U12)− φ(U12))P.

Now, for any V12 ∈ A12 and by Lemma 2.5, we have

φ([[U11 + U12, V12], P ]) = [[φ(U11 + U12), V12], P ] + [[U11 + U12, φ(V12)], P ].

On the other hand, we have

φ([[U11 + U12, V12], P ]) = φ([[U11, V12], P ]) + φ([[U12, V12], P ])

= [[φ(U11), V12], P ] + [[U11, φ(V12)], P ]
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+[[φ(U12), V12], P ] + [[U12, φ(V12)], P ].

Combining the above two identities, we arrive at

[[φ(U11 + U12)− φ(U11)− φ(U12), V12], P ] = 0.

In other words,

Pφ(U11 + U12)− φ(U11)− φ(U12)PV12(2.4)

= V12Qφ(U11 + U12)− φ(U11)− φ(U12)Q.

Equations (2.3) and (2.4), together with Lemma 2.3, gives that φ(U11 +
U12)−φ(U11)−φ(U12) ∈ FI. Similarly, one can easily prove the other part.

Lemma 2.12. φ is additive on A12 and A21.

Proof. Let U12, V12 ∈ A12. By Lemmas 2.5, 2.7 and 2.11, we see that

φ(U12 + V12) = φ([[P + U12, Q+ V12], Q])

= [[φ(P + U12), Q+ V12], Q] + [[P + U12, φ(Q+ V12)], Q]

+[[P + U12, Q+ V12], φ(Q)]

= [[φ(P ) + φ(U12), Q+ V12], Q] + [[P + U12, φ(Q) + φ(V12)], Q]

= φ(U12) + φ(V12).

Hence φ is additive on A12. Similarly φ is additive on A21.

Now for any U ∈ A, define ∆(U) = φ(PUP ) + φ(PUQ) + φ(QUP ) +
φ(QUQ)− (f1(PUP ) + f2(QUQ))I. By Lemmas 2.9 and 2.10, we have

Lemma 2.13. Let Uij ∈ Aij, 1 ≤ i 6= j ≤ 2. Then

(i) ∆(Uij) ∈ Aij, 1 ≤ i 6= j ≤ 2,

(ii) ∆(U12) = φ(U12) and ∆(U21) = φ(U21),

(iii) ∆(U11 + U12 + U21 + U22) = ∆(U11) + ∆(U12) + ∆(U21) + ∆(U22).

Now, we shall show that ∆ is an additive derivation. First, we shall prove
the additivity of ∆.

By Lemma 2.12 and (ii) part of Lemma 2.13, we immediately get the
following result.

Lemma 2.14. ∆ is additive on A12 and A21.

Lemma 2.15. Let Uii ∈ Aii, Uij ∈ Aij, 1 ≤ i 6= j ≤ 2. Then

(i) ∆(UiiVij) = ∆(Uii)Vij + Uii∆(Vij),



9 Multiplicative Lie triple higher derivations on standard operator algebras 405

(ii) ∆(VijUjj) = ∆(Vij)Ujj + Vij∆(Ujj).

Proof. Since U11V12 = [[U11, V12], Q], by Lemmas 2.7 & 2.13, we have

∆(U11V12) = φ(U11V12) = φ([[U11, V12], Q])

= [[φ(U11), V12], Q] + [[U11, φ(V12)], Q] + [[U11, V12], φ(Q)]

= [[∆(U11), V12], Q] + [[U11,∆(V12)], Q]

= ∆(U11)V12 + U11∆(V12).

Similarly, it is easy to prove the other identities.

Lemma 2.16. ∆ is additive on A11 and A22.

Proof. Let U11, V11 ∈ A11. For any W12 ∈ A12, by Lemma 2.15, we have

∆((U11 + V11)W12) = ∆(U11 + V11)W12 + (U11 + V11)∆(W12).

On the other hand, by Lemmas 2.14 & 2.15, we have

∆((U11 + V11)W12) = ∆(U11W12 + V11W12) = ∆(U11W12) + ∆(V11W12)

= ∆(U11)W12 + U11∆(W12) + ∆(V11)W12 + V11∆(W12).

Comparing the above two identities, we get (∆(U11 + V11) − ∆(U11) −
∆(V11))W12 = 0. In other words (∆(U11 + V11)−∆(U11)−∆(V11))PAQ = 0.
Since A is prime, it follows that (∆(U11+V11)−∆(U11)−∆(V11))P = 0. Hence,
∆(U11 + V11) = ∆(U11) + ∆(V11) as ∆(A11) ⊆ A11. Similarly, ∆ is additive on
A22.

Lemma 2.17. ∆ is additive.

Proof. Let U =
∑2

i,j=1 Uij , V =
∑2

i,j=1 Vij be in A. By Lemmas, 2.13,
2.14 & 2.16, we have

∆(U + V ) = ∆

{ 2∑
i,j=1

(Uij + Vij)

}

=

2∑
i,j=1

∆(Uij + Vij) =

2∑
i,j=1

(∆(Uij) + ∆(Vij))

= ∆(
2∑

i,j=1

Uij) + ∆(
2∑

i,j=1

Vij) = ∆(U) + ∆(V ).

In the sequel, we shall prove that ∆ is a derivation.

Lemma 2.18. Let Uii, Vii ∈ Aii, i = 1, 2. Then ∆(UiiVii) = ∆(Uii)Vii +
Uii∆(Vii)
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Proof. For any U11, V11 ∈ A11 and W12 ∈ A12, we have by Lemma 2.15
that

∆(U11V11W12) = ∆(U11V11)W12 + U11V11∆(W12).

On the other hand we have,

∆(U11V11W12) = ∆(U11)V11W12 + U11∆(V11W12)

= ∆(U11)V11W12 + U11∆(V11)W12 + U11V11∆(W12).

Comparing the above two identities, we get
(
∆(U11V11) − ∆(U11)V11 −

U11∆(V11)
)
W12 = 0. In other words, we have

(
∆(U11V11) − ∆(U11)V11 −

U11∆(V11)
)
PAQ = 0. Since A is prime, we get that

(
∆(U11V11)−∆(U11)V11−

U11∆(V11)
)
P = 0. Hence, ∆(U11V11) = ∆(U11)V11 + U11∆(V11) as ∆(A11) ⊆

A11. Similarly, ∆(U22V22) = ∆(U22)V22 + U22∆(V22).

Lemma 2.19. Let U11 ∈ A11 and V22 ∈ A22. Then φ(U11+V22)−∆(U11)−
∆(V22) ∈ FI.

Proof. For any U11 ∈ A11 and V22 ∈ A22, we have

φ([[U11 + V22, Q], Q]) = [[φ(U11 + V22), Q], Q]

On the other hand, we have

φ([[U11 + V22, Q], Q]) = φ([[U11, Q], Q]) + φ([[V22, Q], Q])

= [[φ(U11), Q], Q] + [[φ(V22), Q], Q

= [[∆(U11) + f1(U11), Q], Q] + [[∆(V22) + f2(U22), Q], Q]

= [[∆(U11), Q], Q] + [[∆(V22), Q], Q].

On combining the above two identities, we get [[φ(U11 + V22) − ∆(U11) −
∆(V22), Q], Q] = 0, that is

0 = P (φ(U11 + V22)−∆(U11)−∆(V22))Q(2.5)

+Q(φ(U11 + V22)−∆(U11)−∆(V22))P.

Now for any W12 ∈ A12, we have

φ([U11 + V22,W12]) = φ(U11W12 −W12V22)

= φ(U11W12)− φ(W12V22) = ∆(U11W12)−∆(W12V22)

= ∆([[U11,W12], Q])−∆([[W12, V22], Q])

= [[∆(U11),W12], Q] + [[U11,∆(W12)], Q]

− [[∆(W12), V22], Q]− [[W12,∆(V22)], Q]

= [[∆(U11),W12], Q] + [U11,∆(W12)]

+ [V22,∆(W12)] + [[∆(V22),W12], Q].
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On the other hand, we see that

φ([U11+V22,W12]) = φ([[U11 + V22,W12], Q])

= [[φ(U11 + V22),W12], Q] + [[U11 + V22,∆(W12)], Q]

= [[φ(U11 + V22),W12], Q] + [U11,∆(W12)] + [V22,∆(W12)].

Comparing the above two identities, we obtain

[[φ(U11 + V22)−∆(U11)−∆(V22),W12], Q] = 0.

In other words, we get

P
(
φ(U11 + V22)−∆(U11)−∆(V22)

)
W12(2.6)

= W12

(
φ(U11 + V22)−∆(U11)−∆(V22)

)
Q.

Equations (2.5) and (2.6), together with Lemma 2.3, yield that φ(U11 +U22)−
∆(U11)−∆(U22) ∈ FI.

Lemma 2.20. Let U12 ∈ A12 and V21 ∈ A21. Then ∆(U12V21)=∆(U12)V21
+ U12∆(V21) and ∆(U21V12) = ∆(U21)V12 + U21∆(V12).

Proof. For any U12 ∈ A12 and V21 ∈ A21,compute

φ([U12, V21])−∆([U12, V21]) = φ([[P,U12], V21])−∆(U12V21 − V21U12)

= [[P, φ(U12)], V21] + [[P,U12], φ(V21)]

−∆(U12V21) + ∆(V21U12)

= ∆(U12)V21 + U12∆(V21)−∆(U12V21)

−∆(V21)U12 − V21∆(U12) + ∆(V21U12).

Since φ([U12, V21])−∆([U12, V21]) = φ(U12V21−V21U12)−∆(U12V21−V21U12),
by Lemma 2.19, we have

∆(U12)V21 + U12∆(V21)−∆(U12V21)−∆(V21)U12 − V21∆(U12)

+∆(V21U12) = λI ∈ FI.

From the later relation we obtain the two identities

∆(U12V21) = ∆(U12)V21 + U12∆(V21)− λP,(2.7)

and

∆(V21U12) = ∆(V21)U12 + V21∆(U12) + λQ.(2.8)

Now it is sufficient to show that λ = 0. Assume λ 6= 0. Then by using equations
(2.7) and (2.8) together with Lemma 2.15, we have

∆(U12V21U12) = ∆(U12)V21U12 + U12∆(V21U12)

= ∆(U12)V21U12 + U12∆(V21)U12 + U12V21∆(U12) + λU12,
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and

∆(U12V21U12) = ∆(U12V21)U12 + U12V21∆(U12)

= ∆(U12)V21U12 + U12∆(V21)U12 + U12V21∆(U12)− λU12.

Comparing the above two identities, we obtain λU12 = 0. Since F is a field,
we have U12 = 0, a contradiction. Consequently, ∆(U12V21) = ∆(U12)V21 +
U12∆(V21) and ∆(U21V12) = ∆(U21)V12 + U21∆(V12).

Thus, we have shown that ∆ is an additive derivation.

Proof of Theorem 2.1. Let us define τ : A → A by τ(U) = φ(U)−∆(U)
for U ∈ A. For i = j , τ(Uij) = fi(Uij)I; otherwise τ(Uij) = 0. We shall show
that τ(U) ∈ FI for all U ∈ A. For T12 ∈ A12 and U ∈ A. Since

[[U, T12], P ] = [UT12 − T12U,P ] = T12QUQ− PUPT12,
it follows

φ(T12QUQ− PUPT12) = φ([[U, T12], P ])

= [[φ(U), T12], P ] + [[U, φ(T12)], P ]

= φ(T12)QUQ− PUPφ(T12) + T12Qφ(U)Q

− Pφ(U)PT12.

On the other hand by Lemma 2.12, we have

φ(T12QUQ− PUPT12) = φ(T12QUQ)− φ(PUPT12)

= φ([[P, T12], QUQ])− φ([[T12, P ], PUP ])

= [[P, φ(T12)], QUQ] + [[P, T12], φ(QUQ)]

− [[φ(T12), P ], PUP ]− [[T12, P ], φ(PUP )]

= φ(T12)QUQ+ T12φ(QUQ)− φ(QUQ)T12

− φ(PUP )T12 + T12φ(PUP )− PUPφ(T12).

Comparing the above two identities, we obtain(
Pφ(U)P − φ(PUP )− φ(QUQ)

)
T12 = T12

(
Qφ(U)Q− φ(PUP )− φ(QUQ)

)
.

Hence for all T12 ∈ A12,(
Pφ(U)P −Qφ(U)Q− φ(PUP )− φ(QUQ)

)
T12

= T12
(
Qφ(U)Q+Qφ(U)Q− φ(PUP )− φ(QUQ)

By using the Lemma 2.3, we get the desired result.

Pφ(U)P +Qφ(U)Q− φ(PUP )− φ(QUQ) ∈ FI.(2.9)

Now by Lemmas 2.9 & 2.12, we have

Pφ(U)Q+Qφ(U)P = φ(PUQ+QUP ) = φ(PUQ) + φ(QUP ),
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and hence

φ(U)− φ(PUP ) + φ(PUQ) + φ(QUP ) + φ(QUQ)

= Pφ(U)P +Qφ(U)Q+ Pφ(U)Q+Qφ(U)P

−φ(PUP )− φ(QUQ)− φ(PUQ)− φ(QUP )

= Pφ(U)P +Qφ(U)Q− φ(PUP )− φ(QUQ) ∈ FI.

By equation (2.9) and by the definition of ∆ and τ , we see that τ(U) ∈ FI for
all U ∈ A. Since ∆ is an additive Lie triple derivation, it follows that for all
U, V,W ∈ A

τ([[U, V ],W ]) = φ([[U, V ],W ])−∆([[U, V ],W ])

= [[φ(U), V ],W ] + [[U, φ(V )],W ] + [[U, V ], φ(W )]

−∆([[U, V ],W ])

= [[∆(U), V ],W ] + [[U,∆(V )],W ] + [[U, V ],∆(W )]

−∆([[U, V ],W ])

= 0.

Finally, let us define ψ(U) = ∆(U) − (TU − UT ) for all U ∈ A, where T =
Pd(P )Q−Qd(P )P . It is easy to check that ψ is an additive derivation on A.
By the definitions of ∆ and φ, we have d(U) = ψ(U) + τ(U) for all U ∈ A.

Furthermore, if d is linear , then ψ and τ are also linear. As any linear
derivation on A is inner, then there exists an operator S ∈ A such that ψ(U) =
SU − US for all U ∈ A. Hence d(U) = SU − US + τ(U). This completes the
proof.

3. MULTIPLICATIVE LIE TRIPLE HIGHER DERIVATION

This section of the paper is devoted to the study of characterization of
multiplicative Lie triple higher derivations on some classical operator algebras.
To the best of our knowledge, much less attention is paid on the character-
ization of Lie higher derivations and Lie triple higher derivation on operator
algebras. There are no other articles dealing with Lie higher derivations of
operator algebras except for [4] and [20]. The objective of this section is to
describe the characterization of multiplicative Lie triple higher derivations on
Banach space standard operator algebras. In particular, we have obtained the
following result.

Theorem 3.1. Let X be a Banach space of dimension n > 1 and A ⊂
B(X ) be a standard operator algebra. Suppose D = {dn}n∈N be the sequence of
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mappings dn : A→ A such that

dn([[U, V ],W ]) =
∑

i+j+k=n

[[di(U), dj(V )], dk(W )],(3.1)

for all U, V,W ∈ A and for each n ∈ N. Then there exists an additive higher
derivation ∆ = {ψn}n∈N and a mapping τn from A into FI vanishing at second
commutators [[U, V ],W ] for all U, V,W ∈ A such that dn = ψn + τn for each
n ∈ N.

In particular, if {dn}n∈N is a sequence of linear mappings satisfying the
equation (3.1), then dn(U) =

∑n
i=0XiUYn−i + τn(U) for all U ∈ A and for

every n ∈ N, where {Xn}n∈N and {Yn}n∈N are two sequences in A satisfy-
ing the conditions X0 = Y0 = 1 and

∑n
i=0XiYn−i = δn0 =

∑n
i=0 YiXn−i,

δn0 is the Kronecker sign and τn : A → FI is a linear mapping satisfying
τn([[U, V ],W ]) = 0 for all U, V,W ∈ A.

In the proof, it is assumed that D = {dn}n∈N is a multiplicative Lie triple
higher derivation on A.

For n = 1, the expression of dn([[U, V ],W ]) reduces to d1([[U, V ],W ]) =
[[d1(U), V ],W ]
+ [[U, d1(V )],W ] + [[U, V ], d1(W )] for all U, V,W ∈ A. We proceed by in-
duction on n ∈ N. In view of Theorem 2.1, it is clear that d1 = ψ1 + τ1,
where ψ1 is an additive derivation, τ1 is a mapping from A into FI satisfying
τ1([[U, V ],W ]) = 0 for all U, V,W ∈ A. i.e.; Theorem 3.1 is true for n = 1.

By Lemmas 2.5-2.12 of Theorem 2.1, we have

B1



Pd1(P )P +Qd1(P )Q ∈ FI;

Pd1(Q)P +Qd1(Q)Q ∈ FI;

φ1(PUQ+QUP ) = Pφ1(U)Q+Qφ1(U)P where

φ1(U) = d1(U) + dPd(P )Q−Qd(P )P (U);

φ1(P ) ∈ FI, φ1(Q) ∈ FI;

φ1(Uij) ⊆ Aij , 1 ≤ i 6= j ≤ 2;

φ1(Uii)− fi(Uii)I ∈ Aii;

φ1(Uii + Uij)− φ1(Uii)− φ1(Uij) ∈ FI.

We now assume that dm(U) = ψm(U)+τm(U) for all U ∈ A and for all m < n,
where τm : A → FI such that τm([[U, V ],W ]) = 0 for all U, V,W ∈ A and dm
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satisfies equation (3.1). Thus we have the following properties;

Bm



Pdm(P )P +Qdm(P )Q ∈ FI;

Pdm(Q)P +Qdm(Q)Q ∈ FI;

φm(PUQ+QUP ) = Pφm(U)Q+Qφm(U)P where

φm(U) = dm(U) + dm(Pdm(P )Q−Qdm(P )P )(U);

φm(P ) ∈ FI, φm(Q) ∈ FI;

φm(Uij) ⊆ Aij , 1 ≤ i 6= j ≤ 2;

φm(Uii)− fmi(Uii)I ∈ Aii;

φm(Uii + Uij)− φm(Uii)− φm(Uij) ∈ FI.

Our aim is to show that dn also satisfies the similar properties and dn(U) =
ψn(U) + τn(U) for all U ∈ A, where τn : A→ FI such that τn([[U, V ],W ]) = 0
for all U, V,W ∈ A. Now we shall prove the following Lemmas to obtain our
main result.

Lemma 3.1. Pdn(P )P +Qdn(P )Q ∈ FI.

Proof. Let x ∈ X , f ∈ X ∗. Then

dn(Px⊗Q∗f) = dn([[Px⊗Q∗f, P ], P ]) = [[dn(Px⊗Q∗f), P ], P ]

+[[Px⊗Q∗f, dn(P )], P ] + [[Px⊗Q∗f, P ], dn(P )]

+
∑

r+s+t=n
0≤r,s,t≤n−1

[[dr(Px⊗Q∗f), ds(P )], dt(P )]

= Qd(Px⊗Q∗f)P + Pd(Px⊗Q∗f)Q− Px⊗Q∗fd(P )Q

+Pd(P )Px⊗Q∗f − Px⊗Q∗fd(P ) + d(P )Px⊗Q∗f
+

∑
r+s+t=n

0≤r,s,t≤n−1

[[dr(Px⊗Q∗f), ds(P )], dt(P )].

On multiplying the above equation from the left by P and from the right by
Q, we have

Px⊗ fQdn(P )Q = Pdn(P )Px⊗ fQ

+ P

( ∑
r+s+t=n

0≤r,s,t≤n−1

[[dr(Px⊗Q∗f), ds(P )], dt(P )]

)
Q.

By applying Bm, it follows that

P

( ∑
r+s+t=n

0≤r,s,t≤n−1

[[dr(Px⊗Q∗f), ds(P )], dt(P )]

)
Q = 0.
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Thus, we have Pdn(P )P = λP and Qdn(P )Q = λQ for some λ ∈ C. Hence
Pdn(P )P+Qdn(P )Q = λI. Similarly, we can prove Pdn(Q)P+Qdn(Q)Q = λI.
Now for all U ∈ A, we define

φn(U) = dn(U) + dn(Pdn(P )Q−Qdn(P )P )(U),

where dn(Pdn(P )Q−Qdn(P )P ) is an inner derivation determined by Pdn(P )Q −
Qdn(P )P . It is easy to verify that

φn([[U, V ],W ]) =
∑

i+j+k=n

[[φi(U), φj(V )], φk(W )]

for all U, V,W ∈ A.

Lemma 3.2. φn(P ) ∈ FI.

Proof. Using Lemma 3.1, we have

φn(P ) = dn(P )− Pdn(P )Q−Qdn(P )P

= dn(P )P + dn(P )Q− Pdn(P )Q−Qdn(P )P

= Pdn(P )P +Qdn(P )Q = λI.

Thus φn(P ) ∈ FI.

Lemma 3.3. For U ∈ A, we have φn(PUQ + QUP ) = Pφn(U)Q +
Qφn(U)P .

Proof. For any U ∈ A, we have

φn(PUQ+QUP ) = φn([[U,P ], P ])

= [[φn(U), P ], P ] + [[U, φn(P )], P ] + [[U,P ], φn(P )]

+
∑

r+s+t=n
0≤r,s,t≤n−1

[[φr(U), φs(P )], φt(P )]

= Pφn(U)Q+Qφn(U)P +
∑

r+s+t=n
0≤r,s,t≤n−1

[[φr(U), φs(P )], φt(P )].

By Lemma 3.2, φn(P ) ∈ FI for all n ∈ N, we see that

φn(PUQ+QUP ) = Pφn(U)Q+Qφn(U)P.

Lemma 3.4. φn(Q) ∈ FI.

Proof. The proof is same as that of Lemma 2.7.
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Lemma 3.5. φn(Uij) ⊆ Aij , 1 ≤ i 6= j ≤ 2.

Proof. For any U12 ∈ A12 by Lemma 3.2, we have

φn(U12) = φn([[U12, P ], P ]) = [[φn(U12), P ], P ](3.2)

+
∑

r+s+t=n
0≤r,s,t≤n−1

[[φr(U12), φs(P )], φt(P )]

= Pφn(U12)Q+Qφn(U12)P,

from this we see that Pφn(U12)P = Qφn(U12)Q = 0. Now if U12, V12 ∈ A12,
then [U12, V12] = 0. Thus for any W ∈ A, we have

0 = φn([[U12, V12],W ]) = [[φn(U12), V12],W ] + [[U12, φn(V12)],W ]

+
∑

r+s+t=n
0≤r,s,t≤n−1

[[φr(U12), φs(V12)], φt(W )].

By applying Bm, i.e.; φm(Uij) ⊆ Aij , 1 ≤ i 6= j ≤ 2,m < n, we have

[[φn(U12), V12],W ] + [[U12, φn(V12)],W ] = 0 for all W ∈ A.

Thus, we get

[φn(U12), V12] + [U12, φn(V12)] ∈ FI.(3.3)

Since U12 = [P,U12], by using equation (3.3) and Bm again, we have

[φn(U12), V12] = [φn([P,U12]), V12] = λI − [[P,U12], φn(V12)]

= λI − φn([[P,U12], V12]) + [[φn(P ), U12], V12]

+[[P, φn(U12)], V12] +
∑

r+s+t=n
0≤r,s,t≤n−1

[[φr(P ), φr(U12)], φs(V12)]

= λI + [[P, φn(U12)], V12].

Using equation (3.2), we see that

[Pφn(U12)Q+Qφn(U12)P, V12] = λI + [[P, Pφn(U12)Q+Qφn(U12)P ], V12]

= λI + [Pφn(U12)Q−Qφn(U12)P, V12].

Applying the same arguments as used in Lemma 2.9, we obtain φn(A12) ⊆ A12.

Similarly, φn(U21) = Qφn(U21)P ∈ A21 for each U21 ∈ A21 and therefore
φn(A21) ⊆ A21.

Lemma 3.6. There is a functional fni : Aii → FI such that φn(Uii) −
fni(Uii)I ∈ Aii for all Uii ∈ Aii, i = 1, 2.
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Proof. For U11 ∈ A11, by Lemma 3.3, we have

Pφn(U11)Q+Qφn(U11)P = φn(PU11Q+QU11P ) = 0.

Therefore, it can be assumed that φn(U11) = A11 + A22 and φn(U22) =
B11 + B22, where Aii, Bii ∈ Aii, i = 1, 2. Since [U11, U22] = 0, by Bm, i.e.;
[φr(U11), φs(U22)] = 0 for r, s < n and for any W ∈ A, we have

0 = φn([[U11, U22],W ]) = [[φn(U11), U22],W ] + [[U11, φn(U22)],W ]

+
∑

r+s+t=n
0≤r,s,t≤n−1

[[φr(U11), φs(U22)], φt(W )].

By simple calculation, it is easy to see that [φn(U11), U22] + [U11, φn(U22)] =
λI ∈ FI. Multiplying both sides by Q, we arrive at [Qφn(U11)Q,U22] = λQ.
Consequently, by Lemma 2.1, [Qφn(U11)Q,U22] = 0 for all U22 ∈ A22. Similarly
[U11, Pφn(U22)P ] = 0 for all U11 ∈ A11. Equivalently, [A22, U22] = 0 for all
U22 ∈ A22 and [U11, B11] = 0 for all U11 ∈ A11. Therefore, there exist scalars
fn1(U11) and fn2(U22) such that A22 = fn1(U11)Q and B11 = fn2(U22)P . Hence
φn(U11)− fn1(U11)I ∈ A11 and φn(U22)− fn2(U22)I ∈ A22.

Our next goal is to show that φn is additive on A12 and A21.

Lemma 3.7. Let Uii ∈ Aii and Uij ∈ Aij, 1 ≤ i 6= j ≤ 2. Then φn(Uii +
Uij)− φn(Uii)− φn(Uij) ∈ FI.

Proof. For U11 ∈ A11 and U12 ∈ A12, by Lemma 3.6, we find that

φn([[U11 + U12, P ], P ]) = [[φn(U11 + U12), P ], P ] + [[U11 + U12, φn(P )], P ]

+[[U11 + U12, P ], φn(P )]

+
∑

r+s+t=n
0≤r,s,t≤n−1

[[φr(U11 + U12), φs(P )], φt(P )]

= [[φn(U11 + U12), P ], P ]

+
∑

r+s+t=n
0≤r,s,t≤n−1

[[φr(U11) + φr(U12), φs(P )], φt(P )]

= [[φn(U11 + U12), P ], P ].

On the other hand, we have

φn([[U11 + U12, P ], P ]) = φn([[U11, P ], P ]) + φn([[U12, P ], P ])

= [[φn(U11), P ], P ] +
∑

r+s+t=n
0≤r,s,t≤n−1

[[φr(U11), φs(P )], φt(P )]
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+ [[φn(U12), P ], P ] +
∑

r+s+t=n
0≤r,s,t≤n−1

[[φr(U12), φs(P )], φt(P )]

= [[φn(U11), P ], P ] + [[φn(U12), P ], P ].

By combining the above two identities, we get

[[φn(U11 + U12)− φn(U12)− φn(U12), P ], P ] = 0,

that is

0 = P (φn(U11 + U12)− φn(U12)− φn(U12))Q(3.4)

+Q(φn(U11 + U12)− φn(U12)− φn(U12))P.

Now, for any V12 ∈ A12 , by Bm, we have

φn([[U11 + U12, V12], P ]) = [[φn(U11 + U12), V12], P ] + [[U11 + U12, φn(V12)], P ]

+
∑

r+s+t=n
0≤r,s,t≤n−1

[[φr(U11 + U12), φs(V12)], φt(P )]

= [[φn(U11 + U12), V12], P ] + [[U11 + U12, φn(V12)], P ]

+
∑

r+s+t=n
0≤r,s,t≤n−1

[[φr(U11) + φr(U12), φs(V12)], φt(P )].

On the other hand, we have

φn([[U11 + U12, V12], P ]) = φn([[U11, V12], P ]) + φn([[U12, V12], P ])

= [[φn(U11), V12], P ] + [[U11, φn(V12)], P ]

+
∑

r+s+t=n
0≤r,s,t≤n−1

[[φr(U11), φs(V12)], φt(P )]

+[[φn(U12), V12], P ] + [[U12, φn(V12)], P ]

+
∑

r+s+t=n
0≤r,s,t≤n−1

[[φr(U12), φs(V12)], φt(P )].

Combining the above two identities, we arrive at

[[φn(U11 + U12)− φn(U11)− φn(U12), V12], P ] = 0.

In other words,

Pφn(U11 + U12)− φn(U11)− φn(U12)PV12(3.5)

= V12Qφn(U11 + U12)− φn(U11)− φn(U12)Q

Equations (3.4) and (3.5), together with Lemma 2.3, gives that φn(U11 +
U12)− φn(U11)− φn(U12) ∈ FI. Similarly, one can easily prove the other part.
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Lemma 3.8. φn is additive on A12 and A21.

Proof. Let U12, V12 ∈ A12. By Lemmas 3.1, 3.4 & 3.7, we have

φn(U12 + V12) = φn([[P + U12, Q+ V12], Q])

= [[φn(P + U12), Q+ V12], Q] + [[P + U12, φn(Q+ V12)], Q]

+[[P + U12, Q+ V12], φn(Q)]

+
∑

r+s+t=n
0≤r,s,t≤n−1

[[φr(P + U12), φs(Q+ V12)], φt(Q)]

= [[φ(P ) + φ(U12), Q+ V12], Q] + [[P + U12, φ(Q) + φ(V12)], Q]

+
∑

r+s+t=n
0≤r,s,t≤n−1

[[φr(P ) + φr(U12), φs(Q) + φs(V12)], φt(Q)].

Since
∑

r+s+t=n
0≤r,s,t≤n−1

[[φr(P )+φr(U12), φs(Q)+φs(V12)], φt(Q)] = 0, the above iden-

tity gives that φn(U12 +V12) = φn(U12)+φn(V12). Hence φn is additive on A12.
Similarly φn is additive on A21.

Now for any U ∈ A, define δn(U) = φn(PUP ) + φn(PUQ) + φn(QUP ) +
φn(QUQ)− (fn1(PUP ) + fn2(QUQ))I. By Lemmas 3.5 and 3.6, we have

Lemma 3.9. For Uij ∈ Aij, 1 ≤ i 6= j ≤ 2, we have

(i) δn(Uij) ∈ Aij, 1 ≤ i 6= j ≤ 2,

(ii) δn(U12) = φn(U12) and δn(U21) = φn(U21),

(iii) δn(U11 + U12 + U21 + U22) = δn(U11) + δn(U12) + δn(U21) + δn(U22).

The following lemma immediately follows from Lemma 3.8 and Lemma
3.9.

Lemma 3.10. δn is additive on A12 and A21.

Lemma 3.11. Let Uii ∈ Aii, Uij ∈ Aij, 1 ≤ i 6= j ≤ 2. Then

(i) δn(UiiVij) =
∑

r+s=n
δr(Uii)δs(Vij),

(ii) δn(VijUjj) =
∑

r+s=n
δr(Uij)δs(Vjj).

Proof. By Lemmas 3.4 & 3.9, we have

δn(U11V12) = φn(U11V12) = φn([[U11, V12], Q])
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= [[φn(U11), V12], Q] + [[U11, φn(V12)], Q] + [[U11, V12], φn(Q)]

+
∑

r+s+t=n
0≤r,s,t≤n−1

[[φr(U11), φs(V12)], φt(Q)]

= [[φn(U11), V12], Q] + [[U11, φn(V12)], Q]

+
∑

r+s+t=n
0≤r,s,t≤n−1

[[δr(U11) + fr1(U11), δs(V12)], φt(Q)].

Here it is to be noted that t runs from 0 and n ∈ N, so using φ0(Q) = Q, we
have

δn(U11V12) = [[δn(U11), V12], Q] + [[U11, δn(V12)], Q]

+
∑

r+s=n
0≤r,s≤n−1

[[δr(U11), δs(V12)], Q]

= [[δn(U11), V12], Q] + [[U11, δn(V12)], Q]

+
∑

r+s=n
0≤r,s≤n−1

δr(U11)δs(V12)

=
∑

r+s=n

δr(U11)δs(V12).

Similarly, it is easy to prove the other three identities.

Lemma 3.12. δn is additive on A11 and A22.

Proof. By Lemma 3.11, for any U11, V11 ∈ A11 and W12 ∈ A12 we have

δn((U11 + V11)W12) =
∑

r+s=n

δr(U11 + V11)δs(W12)

= δn(U11 + V11)W12 + (U11 + V11)δn(W12)

+
∑

r+s=n
0<r,s≤n−1

δr(U11 + V11)δs(W12)

= δn(U11 + V11)W12 + (U11 + V11)δn(W12)

+
∑

r+s=n
0<r,s≤n−1

δr(U11)δs(W12) + δr(V11)δs(W12).

On the other hand, by Lemmas 3.10 & 3.11, we have

δn((U11 + V11)W12) = δn(U11W12 + V11W12) = δn(U11W12) + δn(V11W12)

=
∑

r+s=n

δr(U11)δs(W12) +
∑

r+s=n

δr(V11)δs(W12)
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= δn(U11)W12 + U11δn(W12) +
∑

r+s=n
0<r,s≤n−1

δr(U11)δs(W12)

+δn(V11)W12 + V11δn(W12) +
∑

r+s=n
0<r,s≤n−1

δr(V11)δs(W12).

Comparing the above two equations , we get

(δn(U11 + V11)− δn(U11)− δn(V11))W12 = 0.

In other words(δn(U11+V11)−δn(U11)−δn(V11))PAQ = 0. Since A is prime, it
follows that (δn(U11 + V11)− δn(U11)− δn(V11))P = 0. Hence, δn(U11 + V11) =
δn(U11) + δn(V11) as δn(A11) ⊆ A11. Similarly, δn is additive on A22.

Lemma 3.13. δn is additive.

Proof. The proof is same as that of Lemma 2.17.

In the sequel, we shall show that {δn}n∈N is a higher derivation.

Lemma 3.14. Let Uii, Vii ∈ Aii, i = 1, 2. Then

δn(UiiVii) =
∑

r+s=n

δr(Uii)δs(Vii).

Proof. For any W12 ∈ A12, by Lemma 3.11, we have

δn(U11V11W12) =
∑

r+s=n

δr(U11V11)δs(W12).

On the other hand we have,

δn(U11V11W12) =
∑

r+s=n

δr(U11)δs(V11W12)

=
∑

r+s=n

δr(U11)
∑

i+j=s

δi(V11)δj(W12)

=
∑

r+l+m=n

δr(U11)δj(V11)δj(W12).

Comparing the above two identities and noting that

δm(U11V11) =
∑

r+s=m

δr(U11)δs(V11),

for all m < n, one can obtain that

δn(U11V11)W12 =

( ∑
r+s=n

δr(U11)δs(V11)

)
W12.
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In other words
(
δn(U11V11)−

∑
r+s=n

δr(U11)δs(V11)
)
PAQ = 0. Since A is prime,

it follows that (
δn(U11V11)−

∑
r+s=n

δr(U11)δs(V11)
)
P = 0.

Hence, δn(U11V11) =
∑

r+s=n
δr(U11)δs(V11) as δn(A11) ⊆ A11. Similarly,

δn(U22V22) =
∑

r+s=n
δr(U22)δs(V22).

Lemma 3.15. Let U11 ∈ A11, V22 ∈ A22. Then φn(U11 + V22)− δn(U11)−
δn(V22) ∈ FI.

Proof. Let U11 ∈ A11, V22 ∈ A12. Since φn(Q) ∈ FI, We have

φn([[U11 + V22, Q], Q]) = [[φn(U11 + V22), Q], Q] + [[U11 + V22, φn(Q)], Q]

+[[U11 + V22, Q], φn(Q)]

+
∑

r+s+t=n
0≤r,s,t≤n−1

[[φr(U11 + V22), φs(Q)], φt(Q)]

= [[δn(U11 + V22), Q], Q].

On the other hand, we have

φn([[U11 + V22, Q], Q]) = φn([[U11, Q], Q]) + φn([[V22, Q], Q])

= [[φn(U11), Q], Q] + [[φn(V22), Q], Q]

+
∑

r+s+t=n
0≤r,s,t≤n−1

[[φr(U11), φs(Q)], φt(Q)]

= [[δn(U11)− fn1(U11), Q], Q]

+[[φn(V22)− fn2(U22), Q], Q]

= [[δn(U11), Q], Q] + [[δn(V22), Q], Q].

On combining the above two identities, we see that

[[φn(U11 + V22)− δn(U11)− δn(V22), Q], Q] = 0,

that is

0 = P (φn(U11 + V22)− δn(U11)− δn(V22))Q(3.6)

+Q(φn(U11 + V22)− δn(U11)− δn(V22))P.

For any W12 ∈ A12, since δn(Q) = φn(Q)− fn2(Q), we have

φn([U11 + V22,W12]) = φn(U11W12 −W12V22)

= φn(U11W12)− φn(W12V22) = δn(U11W12)− δn(W12V22)
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= δn([[U11,W12], Q]) + δn([[V22,W12], Q])

= [[δn(U11),W12], Q] + [[U11, δn(W12)], Q]

+ [[U11,W12], δn(Q)] +
∑

r+s+t=n
0≤r,s,t≤n−1

[[δr(U11), δs(W12)], δt(Q)]

+ [[δn(V22),W12], Q] + [[V22, δn(W12)], Q]

+ [[V22,W12], δn(Q)] +
∑

r+s+t=n
0≤r,s,t≤n−1

[[δr(V22), δs(W12)], δt(Q)]

= [[δn(U11)+δn(V22),W12], Q] + [[U11 + V22, δn(W12)], Q]

+
∑

r+s+t=n
0≤r,s,t≤n−1

[[δr(U11) + δr(V22), δs(W12)], φt(Q)].

On the other hand by Lemma 3.9, we have

φn([U11 + V22,W12]) = φn([[U11 + V22,W12], Q])

= [[φn(U11 + V22),W12], Q] + [[U11 + V22, δn(W12)], Q]

+
∑

r+s+t=n
0≤r,s,t≤n−1

[[φr(U11 + V22), δs(W12)], φt(Q)].

Comparing the above two identities, we obtain

[[φn(U11 + V22)− δn(U11)− δn(V22),W12], Q] = 0.

In other words, we get

P
(
φn(U11 + V22)− δn(U11)− δn(V22)

)
W12(3.7)

= W12

(
φn(U11 + V22)− δn(U11)− δn(V22)

)
Q.

Equations (3.6) and (3.7), together with Lemma 2.3, yields that

φn(U11 + U22)− δn(U11)− δn(U22) ∈ FI.

Lemma 3.16. Let U12 ∈ A12, V21 ∈ A21. Then

(i) δn(U12V21) =
∑

r+s=n
δr(U12)δs(V21),

(ii) δn(U21V12) =
∑

r+s=n
δr(Uii)δs(Vij)

Proof. By using Lemma 3.13, we compute

φn([U12, V21])− δn([U12, V21]) = φn([[P,U12], V21])− δn(U12V21 − V21U12)

= [[P, φ(U12)], V21] + [[P,U12], φ(V21)]
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+
∑

r+s+t=n
0≤r,s,t≤n−1

[[φr(P ), φs(U12)], φt(V21)]

−δn(U12V21) + δn(V21U12)

= δn(U12)V21 + U12δn(V21)

+
∑

r+s=n
0≤r,s≤n−1

δr(U12)δs(V21)

−δn(U12V21)− δn(V21)U12 − V21δn(U12)

−
∑

r+s=n
0≤r,s≤n−1

δr(V21)δs(U12) + δn(V21U12)

=
∑

r+s=n

δr(U12)δs(V21)− δn(U12V21)

−
∑

r+s=n

δr(V21)δs(U12) + δn(V21U12).

Since
φn([U12, V21])− δn([U12, V21]) = φn(U12V21 − V21U12)− δn(U12V21 − V21U12),
by Lemma 3.15, we have
δn(V21U12)−

∑
r+s=n

δr(V21)δs(U12)+
∑

r+s=n
δr(U12)δs(V21)−δn(U12V21) = λI ∈ FI.

Thus we obtain the two identities

δn(U12V21) =
∑

r+s=n

δr(U12)δs(V21)− λP,

and

δn(V21U12) =
∑

r+s=n

δr(V21)δs(U12) + λQ.

Following the same arguments as used in the Lemma 2.20, we get the desired
result.

Thus we have shown that ∆ = {δn}n∈N is an additive higher derivation.

Proof of Theorem 3.1. Let us define τn : A → A by τn(U) = φn(U) −
δn(U) for U ∈ A. For i = j , τn(Uij) = fni(Uij)I; otherwise τn(Uij) = 0. We
shall show that τn(U) ∈ FI for all U ∈ A. By following the same procedure as
used in the proof of Theorem 2.1, it can be easily shown that

Pφn(U)P +Qφn(U)Q− φn(PUP )− φn(QUQ) ∈ FI(3.8)

Now by using Lemmas 3.4 & 3.8, we have

Pφn(U)Q+Qφn(U)P = φn(PUQ+QUP ) = φn(PUQ) + φn(QUP ).
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So,

φn(U)− φn(PUP ) + φn(PUQ) + φn(QUP ) + φn(QUQ)

= Pφn(U)P +Qφn(U)Q+ Pφn(U)Q+Qφn(U)P

−φn(PUP )− φn(QUQ)− φn(PUQ)− φn(QUP )

= Pφn(U)P +Qφn(U)Q− φn(PUP )− φn(QUQ) ∈ FI.

By equation (3.8) and by the definition of δn and τn, we see that τn(U) ∈ FI
for all U ∈ A. Since δn is an additive Lie triple higher derivation, it follows
that for all U, V,W ∈ A

τn([[U, V ],W ]) = φn([[U, V ],W ])− δn([[U, V ],W ])

=
∑

r+s+t=n
0≤r,s,t≤n−1

[[φr(U), φs(V )], φt(W )]− δn([[U, V ],W ])

=
∑

r+s+t=n
0≤r,s,t≤n−1

[[δr(U), δs(V )], δt(W )]− δn([[U, V ],W ])

= 0.

Finally, let us define ψn(U) = δn(U) − (TU − UT ) for all U ∈ A and n ∈ N,
where T = Pdn(P )Q − Qdn(P )P . It is easy to check that {ψn}n∈N is an
additive higher derivation on A. By the definitions of ∆n and φn, we have
dn(U) = ψn(U) + τn(U) for all U ∈ A.

Furthermore, if dn is linear , then ψn and τn are also linear. It is to be
noted that any linear derivation is an inner derivation (see [21]). Nowicki [19]
proved that if every linear derivation of A is inner, then every linear higher
derivation of A is also inner. So by Theorem 2.1, {ψn}n∈N is an inner higher
derivation, i.e., ψn(U) =

∑n
i=0XiUYn−i for all U ∈ A and for every n ∈ N,

where {Xn}n∈N and {Yn}n∈N are two sequences in A satisfying the conditions
X0 = Y0 = 1 and

∑n
i=0XiYn−i = δn0 =

∑n
i=0 YiXn−i and δn0 is the Kronecker

sign. This completes the proof.
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