REMARKS ON THE RESTRICTED PARTITION FUNCTION

MIRCEA CIMPOEAŞ

Communicated by Lucian Beznea

Let $\mathbf{a}=\left(a_{1}, \ldots, a_{r}\right)$ be a vector of positive integers. In continuation of a previous paper we present other formulas for the restricted partition function $p_{\mathbf{a}}(n):=$ the number of integer solutions $\left(x_{1}, \ldots, x_{r}\right)$ to $\sum_{j=1}^{r} a_{j} x_{j}=n$ with $x_{1} \geq 0, \ldots, x_{r} \geq 0$. AMS 2010 Subject Classification: restricted partition function, Sylvester waves, quasi-polynomial.

Key words: Primary 05A17, 11P83; Secondary 05A15, 11P82.

1. INTRODUCTION

Let $\mathbf{a}:=\left(a_{1}, a_{2}, \ldots, a_{r}\right)$ be a sequence of positive integers, $r \geq 1$. The restricted partition function associated to \mathbf{a} is $p_{\mathbf{a}}: \mathbb{N} \rightarrow \mathbb{N}, p_{\mathbf{a}}(n):=$ the number of integer solutions $\left(x_{1}, \ldots, x_{r}\right)$ of $\sum_{i=1}^{r} a_{i} x_{i}=n$ with $x_{i} \geq 0$. Let D be a common multiple of a_{1}, \ldots, a_{r}.

Sylvester [15],[16] decomposed the restricted partition in a sum of "waves":

$$
p_{\mathbf{a}}(n)=\sum_{j \geq 1} W_{j}(n, \mathbf{a}),
$$

where the sum is taken over all distinct divisors j of the components of a and showed that for each such $j, W_{j}(n, \mathbf{a})$ is the coefficient of t^{-1} in

$$
\sum_{0 \leq \nu<j, \operatorname{gcd}(\nu, j)=1} \frac{\rho_{j}^{-\nu n} e^{n t}}{\left(1-\rho_{j}^{\nu a_{1}} e^{-a_{1} t}\right) \cdots\left(1-\rho_{j}^{\nu a_{r}} e^{-a_{r} t}\right)},
$$

where $\rho_{j}=e^{\frac{2 \pi i}{j}}$ and $\operatorname{gcd}(0,0)=1$ by convention.
Note that $W_{j}(n, \mathbf{a})$'s are quasi-polynomials of period j. (A quasi-polynomial of period j is a numerical function $f(n)$ such that there exists j polynomials $P_{1}(n), P_{2}(n), \ldots, P_{j}(n)$ such that $f(n)=P_{i}(n)$ if $n \equiv i(\bmod j)$.) The first wave $P_{\mathbf{a}}(n):=W_{1}(\mathbf{a}, n)$ is called the polynomial part of $p_{\mathbf{a}}(n)$.

Glaisher [7] made computations of the Sylvester waves in particular cases. Fel and Rubinstein [13] proved formulas for the Sylvester waves using Bernoulli

The author was supported by a grant of the Romanian National Authority for Scientific Research, CNCS - UEFISCDI, project number PN-II-ID-PCE-2011-1023.
and Euler polynomials of higher order. Rubinstein [12] showed that all Sylvester waves can be expressed in terms of Bernoulli polynomials only. Bayad and Beck [2, Theorem 3.1] proved an explicit expression of the partition function $p_{\mathbf{a}}(n)$ in terms of Bernoulli-Barnes polynomials and the Fourier Dedekind sums, in the case that a_{1}, \ldots, a_{r} are pairwise coprime. Beck, Gessler and Komatsu [1, page 2], Dilcher and Vignat [6, Theorem 1.1] proved explicit formulas for the polynomial part of $p_{\mathbf{a}}(n)$.

As a continuation of [4] we present here other formulas for $p_{\mathbf{a}}(n)$ and for the Sylvester waves. Also, we reprove, using our method, several results. In Proposition 3.2 we prove that

$$
p_{\mathbf{a}}(n)=\sum_{j=0}^{\left\lfloor\frac{n}{D}\right\rfloor}\binom{r+j-1}{j} f_{\mathbf{a}}(n-j D),
$$

where $f_{\mathbf{a}}(n)=\#\left\{\left(j_{1}, \ldots, j_{r}\right): a_{1} j_{1}+\cdots+a_{r} j_{r}=n, 0 \leq j_{k} \leq \frac{D}{a_{k}}-1,1 \leq\right.$ $k \leq r\}$. This result is similar to Theorem 1 of Rodseth and Seller [11].

In Corollary 3.4 (compare [11, Theorem 2]) we prove the congruence

$$
(r-1)!p_{\mathbf{a}}(n) \equiv 0 \bmod (j+k+1)(j+k+2) \cdot \ldots \cdot(j+r-1)
$$

where $k=\left\lfloor\frac{n}{D}\right\rfloor-\left\lceil\frac{n+a_{1}+\cdots+a_{r}}{D}\right\rceil+r$.
In Proposition 5.2 we prove that

$$
\begin{gathered}
W_{j}(n, \mathbf{a})=\frac{1}{D(r-1)!} \sum_{m=1}^{r} \sum_{\ell=1}^{j} \rho_{j}^{\ell} \sum_{k=m-1}^{r-1}\left[\begin{array}{c}
r \\
k+1
\end{array}\right](-1)^{k-m+1}\binom{k}{m-1} . \\
\quad \sum_{\substack{0 \leq j_{1} \leq \frac{D}{a_{1}}-1, \ldots, 0 \leq j_{r} \leq \frac{D}{a_{r}}-1 \\
a_{1} j_{1}+\cdots+a_{r} j_{r} \equiv \ell(\bmod j)}} D^{-k}\left(a_{1} j_{1}+\cdots+a_{r} j_{r}\right)^{k-m+1} n^{m-1}
\end{gathered}
$$

where $\left[\begin{array}{l}r \\ k\end{array}\right]$ are the unsigned Stirling numbers of the first kind.
The Bernoulli numbers are defined by the identity

$$
\frac{t}{e^{t}-1}=\sum_{\ell=0}^{\infty} \frac{t^{\ell}}{\ell!} B_{\ell}
$$

If $\operatorname{gcd}\left(a_{i}, a_{j}\right)=1$ for all $i \neq j$ we prove in Proposition 5.3 that

$$
\begin{aligned}
& p_{\mathbf{a}}(n)=\sum_{m=1}^{r} \frac{(-1)^{r-m}}{\left(a_{1} \cdots a_{r}\right)(m-1)!} \sum_{i_{1}+\cdots+i_{r}=r-m} \frac{B_{i_{1}} \cdots B_{i_{r}}}{i_{1}!\cdots i_{r}!} a_{1}^{i_{1}} \cdots a_{r}^{i_{r}} n^{m-1}+\frac{1}{D(r-1)!} \times \\
& \sum_{j \neq 1} \sum_{\ell=1}^{j} \rho_{j}^{\ell} \sum_{k=0}^{r-1} \frac{1}{D^{k}}\left[\begin{array}{c}
r \\
k+1
\end{array}\right](-1)^{k} \sum_{\substack{0 \leq j_{1} \leq \frac{D}{a_{1}}-1, \ldots, 0 \leq j_{r} \leq \frac{D}{a_{r}}-1 \\
a_{1} j_{1}+\cdots+a_{r} j_{r} \equiv \ell(\bmod j)}} D^{-k}\left(a_{1} j_{1}+\cdots+a_{r} j_{r}\right)^{k},
\end{aligned}
$$

where $j \mid a_{i}$ for some $1 \leq i \leq r$. Another formulas for $p_{\mathbf{a}}(n)$ in the case that a_{1}, \ldots, a_{r} are pairwise coprimes were proved in [5, Theorem C, pag 113], [2, Theorem 3.1] and [8].

Let

$$
\sum_{n=0}^{\infty} p_{\mathbf{a}}(n) z^{n}=\frac{1}{\left(1-z^{a_{1}}\right) \ldots\left(1-z^{a_{r}}\right)}=\sum_{\lambda^{D}=1} \sum_{\ell=1}^{m(\lambda)} \frac{c_{\lambda, \ell}}{(\lambda-z)^{\ell}}
$$

where $m(\lambda)$ is the multiplicity of λ as a root of $\left(1-z^{a_{1}}\right) \ldots\left(1-z^{a_{r}}\right)$.
In Proposition 5.4 we prove that

$$
\begin{gathered}
c_{\rho_{j}, m}=\frac{\rho_{j}^{m}(m-1)!}{D} \sum_{t=m}^{m\left(\rho_{j}\right)}(-1)^{t-m}\left\{\begin{array}{c}
t \\
m
\end{array}\right\} \sum_{\ell=1}^{j} \rho_{j}^{\ell} \sum_{k=m-1}^{r-1}\left[\begin{array}{c}
r \\
k+1
\end{array}\right] \times \\
(-1)^{k-m+1}\binom{k}{m-1} \\
\substack{0 \leq j_{1} \leq \frac{D}{a_{1}}-1, \ldots, 0 \leq j_{r} \leq \frac{D}{a_{r}}-1 \\
a_{1} j_{1}+\cdots+a_{r} j_{r} \equiv \ell(\bmod j)}
\end{gathered} D^{-k}\left(a_{1} j_{1}+\cdots+a_{r} j_{r}\right)^{k-m+1},
$$

where $\left\{\begin{array}{c}t \\ m\end{array}\right\}$ are Stirling numbers of the second kind.
In Proposition 5.5 we prove that

$$
c_{1, m}=\frac{(m-1)!}{a_{1} \cdots a_{r}} \sum_{\ell=m}^{r}(-1)^{\ell-m} \frac{\left\{\begin{array}{l}
\ell \\
m
\end{array}\right\}}{(\ell-1)!} \sum_{i_{1}+\cdots+i_{r}=r-\ell} \frac{B_{i_{1}} \cdots B_{i_{r}}}{i_{1}!\cdots i_{r}!} a_{1}^{i_{1}} \cdots a_{r}^{i_{r}} .
$$

In the case $\mathbf{a}=(1,2, \ldots, r)$ we reprove O'Sullivan's formulas [9] for Rademacher's coefficients $c_{01 m}$, see Corollary 5.6.

Given a sequence of positive integers $\mathbf{a}=\left(a_{1}, \ldots, a_{r}\right)$ with $\operatorname{gcd}\left(a_{1}, \ldots, a_{r}\right)=$ 1, the Frobenius number of \mathbf{a}, denoted by $F(\mathbf{a})=F\left(a_{1}, \ldots, a_{r}\right)$ is the largest integer n with the property that $p_{\mathbf{a}}(n)=0$. If $\operatorname{gcd}\left(a_{i}, a_{j}\right)=1$ for all $i \neq j$, we prove in Corollary 6.2 that $F\left(A_{1}, \ldots, A_{r}\right)=D(r-1)-A_{1}-\cdots-A_{r}$, where $A_{1}:=\frac{D}{a_{1}}, \ldots, A_{r}:=\frac{D}{a_{r}}$. This is a particular case of [10, Theorem 2.7] and appears also in [17, Theorem 1(a)].

2. PRELIMINARIES

Let $\mathbf{a}:=\left(a_{1}, a_{2}, \ldots, a_{r}\right)$ be a sequence of positive integers, $r \geq 1$. The restricted partition function associated to \mathbf{a} is $p_{\mathbf{a}}: \mathbb{N} \rightarrow \mathbb{N}, p_{\mathbf{a}}(n):=$ the number of integer solutions $\left(x_{1}, \ldots, x_{r}\right)$ of $\sum_{i=1}^{r} a_{i} x_{i}=n$ with $x_{i} \geq 0$.

Let D be a common multiple of $a_{1}, a_{2}, \ldots, a_{r}$. Bell [3] has proved that $p_{\mathbf{a}}(n)$ is a quasi-polynomial of degree $r-1$, with the period D, i.e.

$$
p_{\mathbf{a}}(n)=d_{\mathbf{a}, r-1}(n) n^{r-1}+\cdots+d_{\mathbf{a}, 1}(n) n+d_{\mathbf{a}, 0}(n),
$$

where $d_{\mathbf{a}, m}(n+D)=d_{\mathbf{a}, m}(n)$ for $0 \leq m \leq r-1$ and $n \geq 0$, and $d_{\mathbf{a}, r-1}(n)$ is not identically zero. In the following, we recall several results from our previous paper [4].

Theorem 2.1 ([4, Theorem 2.8(1)]). For $0 \leq m \leq r-1$ and $n \geq 0$ we have

$$
\begin{aligned}
d_{\mathbf{a}, m}(n)=\frac{1}{(r-1)!} & \sum_{\substack{0 \leq j_{1} \leq \frac{D}{a_{1}}-1, \ldots, 0 \leq j_{r} \leq \frac{D}{a_{r}}-1 \\
a_{1} j_{1}+\cdots+a_{r} j_{r} \equiv n(\bmod D)}}
\end{aligned} \sum_{k=m}^{r-1}\left[\begin{array}{c}
r \\
k+1
\end{array}\right](-1)^{k-m}\binom{k}{m} \times .
$$

Corollary 2.2 ([4, Corollary 2.10]). We have

$$
p_{\mathbf{a}}(n)=\frac{1}{(r-1)!} \sum_{\substack{0 \leq j_{1} \leq \frac{D}{a_{1}}-1, \ldots, 0 \leq j_{r} \leq \frac{D}{a_{r}-1} \\ a_{1} j_{1}+\cdots+a_{r} j_{r} \equiv n(\bmod D)}} \prod_{\ell=1}^{r-1}\left(\frac{n-a_{1} j_{1}-\cdots-a_{r} j_{r}}{D}+\ell\right) .
$$

Corollary 2.3 ([4, Corollary 2.12]). For $n \geq 0$ we have $p_{\mathbf{a}}(n)=0$ if and only if $n<a_{1} j_{1}+\cdots+a_{r} j_{r}$ for all $0 \leq j_{1} \leq \frac{\bar{D}}{a_{1}}-1, \ldots, 0 \leq j_{r} \leq \frac{D}{a_{r}}-1$ with $a_{1} j_{1}+\cdots+a_{r} j_{r} \equiv n(\bmod D)$.

We also recall the following result of Beck, Gessler and Komatsu [1, page 2]. See also [4, Corollary 2.11].

Theorem 2.4. The polynomial part of $p_{\mathbf{a}}(n)$ is

$$
P_{\mathbf{a}}(n):=\frac{1}{a_{1} \cdots a_{r}} \sum_{u=0}^{r-1} \frac{(-1)^{u}}{(r-1-u)!} \sum_{i_{1}+\cdots+i_{r}=u} \frac{B_{i_{1}} \cdots B_{i_{r}}}{i_{1}!\cdots i_{r}!} a_{1}^{i_{1}} \cdots a_{r}^{i_{r}} n^{r-1-u} .
$$

3. A FORMULA AND A CONGRUENCE FOR $p_{\mathrm{a}}(\boldsymbol{n})$

Let $\mathbf{a}:=\left(a_{1}, a_{2}, \ldots, a_{r}\right)$ be a sequence of positive integers, $r \geq 1$. It holds that

$$
\sum_{n=0}^{\infty} p_{\mathbf{a}}(n) z^{n}=\frac{1}{\left(1-z^{a_{1}}\right) \cdots\left(1-z^{a_{r}}\right)},|z|<1
$$

Let D be a common multiple of a_{1}, \ldots, a_{r}. Let

$$
F_{\mathbf{a}}(z):=\frac{\left(1-z^{D}\right)^{r}}{\left(1-z^{a_{1}}\right) \cdots\left(1-z^{a_{r}}\right)}=\prod_{i=1}^{r}\left(1+z^{a_{i}}+\cdots+z^{a_{i}\left(\frac{D}{a_{i}}-1\right)}\right)
$$

Let $d:=r D-a_{1}-\cdots-a_{r}$. Since $F_{\mathbf{a}}(z)=z^{d} F_{\mathbf{a}}\left(\frac{1}{z}\right)$, it follows that

$$
F_{\mathbf{a}}(z)=: f_{\mathbf{a}}(d) z^{d}+\cdots+f_{\mathbf{a}}(1) z+f_{\mathbf{a}}(0)
$$

is a reciprocal polynomial, that is $f_{\mathbf{a}}(d-n)=f_{\mathbf{a}}(n)$ for $0 \leq n \leq d$. Let $f_{\mathbf{a}}(n):=0$ for $n \geq d+1$. It holds that

$$
f_{\mathbf{a}}(n)=\#\left\{\left(j_{1}, \ldots, j_{r}\right): a_{1} j_{1}+\cdots+a_{r} j_{r}=n, 0 \leq j_{k} \leq \frac{D}{a_{k}}-1,1 \leq k \leq r\right\}
$$

From the power series identity
$\sum_{n=0}^{\infty} f_{\mathbf{a}}(n) z^{n}=F_{\mathbf{a}}(z)=\left(1-z^{D}\right)^{r} \sum_{n=0}^{\infty} p_{\mathbf{a}}(n) z^{n}=\sum_{n=0}^{\infty} p_{\mathbf{a}}(n) \sum_{j=0}^{r}\binom{r}{j}(-1)^{j} z^{n+j D}$
it follows that

$$
\begin{equation*}
f_{\mathbf{a}}(n)=\sum_{j=0}^{\left\lfloor\frac{n}{D}\right\rfloor}\binom{r}{j}(-1)^{j} p_{\mathbf{a}}(n-j D), n \geq 0 \tag{3.1}
\end{equation*}
$$

Proposition 3.1. For $n \geq 0$ we have that

$$
f_{\mathbf{a}}(n)=
$$

$$
\frac{1}{(r-1)!} \sum_{j=0}^{\left\lfloor\frac{n}{D}\right\rfloor}\binom{r}{j}(-1)^{j} \sum_{\substack{0 \leq j_{1} \leq \frac{D}{a_{1}}-1, \ldots, 0 \leq j_{r} \leq \frac{D}{a_{r}}-1 \\ a_{1} j_{1}+\cdots+a_{r} j_{r} \equiv n(\bmod D)}} \prod_{\ell=1}^{r-1}\left(\frac{n-a_{1} j_{1}-\cdots-a_{r} j_{r}}{D}+\ell-j\right)
$$

Proof. It follows from Corollary 2.2 and (3.1).
Proposition 3.2 (compare [11, Theorem 1]). It holds that

$$
p_{\mathbf{a}}(n)=\sum_{j=0}^{\left\lfloor\frac{n}{D}\right\rfloor}\binom{r+j-1}{j} f_{\mathbf{a}}(n-j D), n \geq 0
$$

Proof. Denote $k:=\left\lfloor\frac{n}{D}\right\rfloor$. From (3.1) we get the following system of linear equations in the indeterminates $p_{\mathbf{a}}(n-j D), 0 \leq j \leq k$

$$
\begin{equation*}
\sum_{j=t}^{k}\binom{r}{j-t}(-1)^{j-t} p_{\mathbf{a}}(n-j D)=f_{\mathbf{a}}(n-t D), 0 \leq t \leq k \tag{3.2}
\end{equation*}
$$

It follows that

$$
p_{\mathbf{a}}(n)=\sum_{j=0}^{k}(-1)^{j} \Delta_{j} f_{\mathbf{a}}(n-j D)
$$

where $\Delta_{0}=1$ and $\Delta_{j}=-\sum_{i=0}^{j-1}\binom{j=0}{j-i} \Delta_{i}$. Using induction on $j \geq 0$ it follows that $\Delta_{j}=(-1)^{j}\binom{r+j-1}{j}$ for all $0 \leq j \leq k$. Hence

$$
p_{\mathbf{a}}(n)=\sum_{j=0}^{k}\binom{r+j-1}{j} f_{\mathbf{a}}(n-j D) .
$$

Corollary 3.3. For $n \geq 0$ it holds that

$$
(r-1)!p_{\mathbf{a}}(n)=\sum_{j=\left\lceil\frac{n+\sigma}{D}\right\rceil-r}^{\left\lfloor\frac{n}{D}\right\rfloor}(j+1) \cdots(j+r-1) f_{\mathbf{a}}(n-j D)
$$

where $\sigma=a_{1}+\cdots+a_{r}$.
Proof. For $n-j D>r D-\sigma$ it holds that $f_{\mathbf{a}}(n-j D)=0$. From Proposition 3.2 it follows that

$$
\begin{aligned}
(r-1)!p_{\mathbf{a}}(n) & =\sum_{j=0}^{\left\lfloor\frac{n}{D}\right\rfloor}(r-1)!\binom{r+j-1}{j} f_{\mathbf{a}}(n-j D) \\
& =\sum_{j=\left\lceil\frac{n+\sigma}{D}\right\rceil-r}^{\left\lfloor\frac{n}{D}\right\rfloor}(j+1) \cdots(j+r-1) f_{\mathbf{a}}(n-j D) .
\end{aligned}
$$

Corollary 3.4 (compare [11, Theorem 2]). For $n \geq 0$ it holds that

$$
(r-1)!p_{\mathbf{a}}(n) \equiv 0 \bmod (j+k+1)(j+k+2) \cdot \ldots \cdot(j+r-1)
$$

where $k=\left\lfloor\frac{n}{D}\right\rfloor-\left\lceil\frac{n+\sigma}{D}\right\rceil+r, \sigma=a_{1}+\ldots+a_{r}$.
Proof. For $\left\lceil\frac{n+\sigma}{D}\right\rceil-r \leq j \leq\left\lfloor\frac{n}{D}\right\rfloor$ it holds that

$$
(j+1) \cdots(j+r-1) \equiv 0 \bmod (j+k+1) \cdots(j+r-1)
$$

Apply now Corollary 3.3.

4. QUASI-POLYNOMIALS

Let $p: \mathbb{N} \rightarrow \mathbb{C}$ be a quasi-polynomial of degree $r-1 \geq 0$,

$$
p(n):=d_{r-1}(n) n^{r-1}+\cdots+d_{1}(n) n+d_{0}(n)
$$

where $d_{m}(n)$'s are periodic functions with integral period $D>0$ and $d_{r-1}(n)$ is not identically zero.

According to [14, Proposition 4.4.1], we have

$$
\sum_{n=0}^{\infty} p(n) z^{n}=\frac{L(z)}{M(z)}
$$

where $L(z), M(z) \in \mathbb{C}[z]$, every zero λ of $M(z)$ satisfies $\lambda^{D}=1$ (provided $\frac{L(z)}{M(z)}$ has been reduced to lowest terms), and $\operatorname{deg} L(z)<\operatorname{deg} M(z)$. Moreover,

$$
p(n)=\sum_{\lambda^{D}=1} P_{\lambda}(n) \lambda^{-n}
$$

where each $P_{\lambda}(n)$ is a polynomial function with $\operatorname{deg} P_{\lambda}(n) \leq m(\lambda)-1$, where $m(\lambda)$ is the multiplicity of λ as a root of $M(z)$. We define the polynomial part of $p(n)$ to be the polynomial function $P(n):=P_{1}(n)$.

Let $\gamma \in \mathbb{C}$ with $\gamma^{D}=1$. It holds that

$$
p_{\gamma}(n):=\gamma^{n} p(n)=\sum_{\lambda^{D}=1} P_{\lambda}(n)\left(\gamma \cdot \lambda^{-1}\right)^{n}
$$

hence $P_{\gamma}(n)$ is the polynomial part of $p_{\gamma}(n)$.
Proposition 4.1 ([4, Proposition 3.5]). It holds that

$$
P_{\gamma}(n)=R_{\gamma, m(\gamma)} n^{r-1}+\cdots+R_{\gamma, 2} n+R_{\gamma, 1}
$$

where $R_{\gamma, m}=\frac{1}{D} \sum_{v=0}^{D-1} \gamma^{v} d_{m-1}(v), 1 \leq m \leq m(\gamma)$.
Consider the decomposition

$$
\begin{equation*}
\sum_{n=0}^{\infty} p(n) z^{n}=\frac{L(z)}{M(z)}=\sum_{M(\lambda)=0} \sum_{\ell=1}^{m(\lambda)} \frac{c_{\lambda, \ell}}{(\lambda-z)^{\ell}} \tag{4.1}
\end{equation*}
$$

Let γ be a root of $M(z)$. Since the decomposition (4.1) is unique, it follows that

$$
\begin{aligned}
\sum_{n=0}^{\infty} P_{\gamma}(n) \gamma^{-n} z^{n} & =\sum_{\ell=1}^{m(\gamma)} \frac{c_{\gamma, \ell}}{(\gamma-z)^{\ell}}=\sum_{\ell=1}^{m(\gamma)} \frac{c_{\gamma, \ell}}{\gamma^{\ell}}\left(\sum_{n=0}^{\infty} \gamma^{-n} z^{n}\right)^{\ell} \\
& =\sum_{\ell=1}^{m(\gamma)} \frac{c_{\gamma, \ell}}{\gamma^{\ell}} \sum_{n=0}^{\infty}\binom{n+\ell-1}{\ell-1} \gamma^{-n} z^{n}
\end{aligned}
$$

It follows that

$$
\begin{equation*}
P_{\gamma}(n)=\sum_{\ell=1}^{m(\gamma)} \frac{c_{\gamma, \ell}}{\gamma^{\ell}}\binom{n+\ell-1}{\ell-1} \tag{4.2}
\end{equation*}
$$

The Stirling numbers of the second kind, denoted by $\left\{\begin{array}{l}n \\ k\end{array}\right\}$, count the number of ways to partition a set of n labelled objects into k nonempty unlabelled subsets. They are related with the unsigned Stirling numbers of the first kind by

$$
\sum_{k=0}^{n}\left\{\begin{array}{l}
n \tag{4.3}\\
k
\end{array}\right\} \sum_{\ell=0}^{k}(-1)^{\ell}\left[\begin{array}{l}
k \\
\ell
\end{array}\right]=(-1)^{n}
$$

Proposition 4.2. For each $1 \leq m \leq m(\gamma)$ it holds that

$$
c_{\gamma, m}=\gamma^{m}(m-1)!\sum_{\ell=m}^{m(\gamma)}(-1)^{\ell-m}\left\{\begin{array}{c}
\ell \\
m
\end{array}\right\} \frac{1}{D} \sum_{v=0}^{D-1} \gamma^{v} d_{\ell-1}(v)
$$

Proof. From Proposition 4.1 and (4.2) it follows that $R_{\gamma, m}=0$ for all $m>m(\gamma)$ and

$$
R_{\gamma, m}=\sum_{\ell=1}^{m(\gamma)} \frac{c_{\gamma, \ell}}{\gamma^{\ell}(\ell-1)!}\left[\begin{array}{c}
\ell \tag{4.4}\\
m
\end{array}\right], 1 \leq m \leq m(\gamma)
$$

From (4.3) and (4.4) it follows that

$$
c_{\gamma, m}=\gamma^{m}(m-1)!\sum_{\ell=m}^{m(\gamma)}(-1)^{\ell-m}\left\{\begin{array}{c}
\ell \tag{4.5}\\
m
\end{array}\right\} R_{\gamma, \ell}
$$

hence, the conclusion follows from Proposition 4.1.

5. SYLVESTER WAVES AND THE PARTIAL FRACTION DECOMPOSITION OF $\sum_{n=0}^{\infty} p_{\mathrm{a}}(n) z^{n}$

Let $\mathbf{a}=\left(a_{1}, \ldots, a_{r}\right)$ a sequence of positive integers. We write $p_{\mathbf{a}}(n)$ as a sum of waves

$$
p_{\mathbf{a}}(n)=\sum_{j} W_{j}(n, \mathbf{a})
$$

where the sum is taken over the $j \geq 1$ with $j \mid a_{i}$ for some $1 \leq i \leq r$. We have that

$$
\begin{equation*}
W_{j}(n, \mathbf{a})=P_{\mathbf{a}, \rho_{j}}(n) \rho_{j}^{-n}, \tag{5.1}
\end{equation*}
$$

where $\rho_{j}:=e^{\frac{2 \pi i}{j}}$ and $P_{\mathbf{a}, \rho_{j}}(n)$ is the polynomial part of the quasi-polynomial $\rho_{j}^{n} p_{\mathbf{a}}(n)$.

Proposition 5.1. We have that

$$
W_{j}(n, \mathbf{a})=\rho_{j}^{-n}\left(R_{j, m(j)} \cdot n^{m(j)-1}+\cdots+R_{j, 2} \cdot n+R_{j, 1}\right),
$$

where $m(j)=\#\left\{i: j \mid a_{i}\right\}$ and $R_{j, m}=\frac{1}{D} \sum_{v=0}^{D-1} \rho_{j}^{v} d_{\mathbf{a}, m-1}(v)$ for $1 \leq m \leq m(j)$.
Proof. It follows from Proposition 4.1 and (5.1).
Proposition 5.2. For any positive integer j with $j \mid a_{i}$ for some $1 \leq i \leq r$, we have that:

$$
\begin{gathered}
W_{j}(n, \mathbf{a})=\frac{1}{D(r-1)!} \sum_{m=1}^{r} \sum_{\ell=1}^{j} \rho_{j}^{\ell} \sum_{k=m-1}^{r-1}\left[\begin{array}{c}
r \\
k+1
\end{array}\right](-1)^{k-m+1}\binom{k}{m-1} . \\
\quad \sum_{\substack{0 \leq j_{1} \leq \frac{D}{a_{1}}-1, \ldots, 0 \leq j_{r} \leq \frac{D}{a_{r}}-1 \\
a_{1} j_{1}+\cdots+a_{r} j_{r} \equiv \ell(\bmod j)}} D^{-k}\left(a_{1} j_{1}+\cdots+a_{r} j_{r}\right)^{k-m+1} n^{m-1} .
\end{gathered}
$$

Proof. It follows from Proposition 5.1 and Theorem 2.1.
Proposition 5.3. If a_{1}, \ldots, a_{r} are pairwise coprimes then
$p_{\mathbf{a}}(n)=\sum_{m=1}^{r} \frac{(-1)^{r-m}}{\left(a_{1} \cdots a_{r}\right)(m-1)!} \sum_{i_{1}+\cdots+i_{r}=r-m} \frac{B_{i_{1}} \cdots B_{i_{r}}}{i_{1}!\cdots i_{r}!} a_{1}^{i_{1} \cdots a_{r}^{i_{r}} n^{m-1}+\frac{1}{D(r-1)!} .}$
$\cdot \sum_{j \neq 1} \sum_{\ell=1}^{j} \rho_{j}^{\ell} \sum_{k=0}^{r-1} \frac{1}{D^{k}}\left[\begin{array}{c}r \\ k+1\end{array}\right](-1)^{k} \sum_{\substack{0 \leq j_{1} \leq \frac{D}{a_{1}}-1, \ldots, 0 \leq j_{r} \leq \frac{D}{a_{r}}-1 \\ a_{1} j_{1}+\cdots+a_{r} j_{r} \equiv \ell(\bmod j)}} D^{-k}\left(a_{1} j_{1}+\cdots+a_{r} j_{r}\right)^{k}$, where $j \mid a_{i}$ for some $1 \leq i \leq r$.

Proof. Since a_{1}, \ldots, a_{r} are pairwise coprimes, it follows that $W_{j}(\mathbf{a}, n)$ is a quasi-polynomial of degree 0 . Hence, the conclusion follows from Proposition 4.1 and Proposition 4.2.

Another formulas for $p_{\mathbf{a}}(n)$ in the case that a_{1}, \ldots, a_{r} are pairwise coprimes were proved in [5, Theorem C, pag 113], [2, Theorem 3.1] and [8]. We consider the decomposition

$$
\sum_{n=0}^{\infty} p_{\mathbf{a}}(n) z^{n}=\frac{1}{\left(1-z^{a_{1}}\right) \cdots\left(1-z^{a_{r}}\right)}=\sum_{\lambda} \sum_{\ell=1}^{m(\lambda)} \frac{c_{\lambda, \ell}}{(\lambda-z)^{\ell}},
$$

where the sum it taken over the λ 's with $\lambda^{a_{i}}=1$ for some $1 \leq i \leq r$.
Proposition 5.4. Let $j \geq 1$. For $1 \leq m \leq m(j)$ we have that

$$
\begin{gathered}
c_{\rho_{j}, m}=\frac{\rho_{j}^{m}(m-1)!}{D} \sum_{t=m}^{m(j)}(-1)^{t-m}\left\{\begin{array}{c}
t \\
m
\end{array}\right\} \sum_{\ell=1}^{j} \rho_{j}^{\ell} \sum_{k=m-1}^{r-1}\left[\begin{array}{c}
r \\
k+1
\end{array}\right](-1)^{k-m+1}\binom{k}{m-1} . \\
\sum_{\substack{0 \leq j_{1} \leq \frac{D}{a_{1}}-1, \ldots, 0 \leq j_{r} \leq \frac{D}{a_{r}}-1 \\
a_{1} j_{1}+\cdots+a_{r} j_{r} \equiv \ell(\bmod j)}} D^{-k}\left(a_{1} j_{1}+\cdots+a_{r} j_{r}\right)^{k-m+1} .
\end{gathered}
$$

Proof. It follows from Propositions 4.2, 5.1, and 5.2.
Proposition 5.5. For $1 \leq m \leq r$ it holds that

$$
c_{m}=\frac{(m-1)!}{a_{1} \cdots a_{r}} \sum_{\ell=m}^{r}(-1)^{\ell-m} \frac{\left\{\begin{array}{l}
\ell \\
m
\end{array}\right\}}{(\ell-1)!} \sum_{i_{1}+\cdots+i_{r}=r-\ell} \frac{B_{i_{1}} \cdots B_{i_{r}}}{i_{1}!\cdots i_{r}!} a_{1}^{i_{1}} \cdots a_{r}^{i_{r}}
$$

where $c_{m}:=c_{1, m}$.
Proof. It follows from Theorem 2.4, Proposition 4.1 and Proposition 5.4.

Let $r \geq 1, \mathbf{r}:=(1,2, \ldots, r)$. Rademacher's coefficients $c_{h k \ell}(r)$ are defined by

$$
\sum_{n=0}^{\infty} p_{\mathbf{r}}(n) z^{n}=\frac{1}{(1-z)\left(1-z^{2}\right) \cdots\left(1-z^{r}\right)}=\sum_{0 \leq h<k \leq r,(h, k)=1} \sum_{\ell=1}^{\left\lfloor\frac{r}{k}\right\rfloor} \frac{c_{h k \ell}(r)}{\left(z-\omega_{h k}\right)^{\ell}}
$$

where $\omega_{h k}:=e^{2 \pi i \frac{h}{k}}$. In the previous notations $c_{h k \ell}(r)=(-1)^{\ell} c_{\omega_{h k}, \ell}$. As a direct consequence of Proposition 5.5 we get the following result of C. O'Sullivan [9]:

Corollary 5.6 ([9, Proposition 2.3]). For $1 \leq m \leq r$ it holds that

$$
c_{01 m}(r)=\frac{(-1)^{r}(m-1)!}{r!} \sum_{\ell=m}^{r} \frac{\left\{\begin{array}{l}
\ell \\
m
\end{array}\right\}}{(\ell-1)!} \sum_{i_{1}+\cdots+i_{r}=r-\ell} \frac{B_{i_{1}} \cdots B_{i_{r}}}{i_{1}!\cdots i_{r}!} 1^{i_{1}} 2^{i_{2}} \cdots r^{i_{r}}
$$

6. FROBENIUS NUMBER

Given a sequence of positive integers $\mathbf{a}=\left(a_{1}, \ldots, a_{r}\right)$ that satisfy $\operatorname{gcd}\left(a_{1}, \ldots, a_{r}\right)=1$, the Frobenius number of \mathbf{a}, denoted by $F(\mathbf{a})=F\left(a_{1}, \ldots, a_{r}\right)$, is the largest integer n with the property that $p_{\mathbf{a}}(n)=0$.

Proposition 6.1. Let $\mathbf{a}=\left(a_{1}, \ldots, a_{r}\right)$ with $\operatorname{gcd}\left(a_{1}, \ldots, a_{r}\right)=1$ and $D=$ $\operatorname{lcm}\left(a_{1}, \ldots, a_{r}\right)$. We have that

$$
F\left(a_{1}, \ldots, a_{r}\right) \leq D(r-1)-a_{1}-\cdots-a_{r} .
$$

Proof. Let n be an integer with $p_{\mathbf{a}}(n)=0$. Since the map

$$
\varphi: \mathbb{Z} / a_{1} \mathbb{Z} \times \cdots \times \mathbb{Z} / a_{r} \mathbb{Z} \rightarrow \mathbb{Z} / D \mathbb{Z}, \varphi\left(\hat{j}_{1}, \ldots, \hat{j}_{r}\right):=\overline{a_{1} j_{1}+\cdots+a_{r} j_{r}}
$$

is a surjective morphism, it follows that there exists some integers $0 \leq j_{1} \leq$ $\frac{D}{a_{1}}-1, \ldots, 0 \leq j_{r} \leq \frac{D}{a_{r}}-1$ such that $a_{1} j_{1}+\cdots+a_{r} j_{r} \equiv n(\bmod D)$.

From Corollary 2.3 it follows that $n<a_{1} j_{1}+\cdot+a_{r} j_{r}$, hence $n \leq a_{1} j_{1}+\cdots+a_{r} j_{r}-D \leq(D-1) r-a_{1}-\cdots-a_{r}$.

The following corollary is a particular case of [10, Theorem 2.7] and appears also in [17, Theorem 1(a)].

Corollary 6.2. Let $\mathbf{a}=\left(a_{1}, \ldots, a_{r}\right)$ such that $\operatorname{gcd}\left(a_{i}, a_{j}\right)=1$ for all $i \neq j, D=\operatorname{lcm}\left(a_{1}, \ldots, a_{r}\right)=a_{1} \cdots a_{r}, A_{i}:=\frac{D}{a_{i}}, 1 \leq i \leq r$. It holds that

$$
F\left(A_{1}, \ldots, A_{r}\right)=D(r-1)-A_{1}-\cdots-A_{r} .
$$

Proof. It holds that $D=\operatorname{lcm}\left(A_{1}, \ldots, A_{r}\right)$. From Lemma 6.1 it follows that

$$
F\left(A_{1}, \ldots, A_{r}\right) \leq D(r-1)-A_{1}-\cdots-A_{r}
$$

Suppose that $D(r-1)-A_{1}-\cdots-A_{r}=A_{1} j_{1}+\cdots+A_{r} j_{r}$ with $j_{k} \geq 0$ for $1 \leq k \leq r$, hence

$$
D(r-1)=A_{1}\left(j_{1}+1\right)+\cdots+A_{r}\left(j_{r}+1\right), r-1=\frac{j_{1}+1}{a_{1}}+\cdots+\frac{j_{r}+1}{a_{r}} .
$$

Since $\operatorname{gcd}\left(a_{i}, a_{j}\right)=1$ it follows that $a_{k} \mid\left(j_{k}+1\right)$ for all $1 \leq k \leq r$. Since $j_{k} \geq 0$ we get

$$
\begin{gathered}
r-1=\frac{j_{1}+1}{a_{1}}+\cdots+\frac{j_{r}+1}{a_{r}} \geq r \\
\text { a contradiction. So } F\left(A_{1}, \ldots, A_{r}\right) \geq D(r-1)-A_{1}-\cdots-A_{r} .
\end{gathered}
$$

Acknowledgments. The author express his gratitude to Florin Nicolae for discussions and valuable suggestions which helped to improve this paper.

REFERENCES

[1] M. Beck, I. M. Gessel, and T. Komatsu, The polynomial part of a restricted partition function related to the Frobenius problem. Electronic Journal of Combinatorics 8 (2001), $1, \mathrm{~N} 7$.
[2] A. Bayad and M. Beck, Relations for Bernoulli-Barnes Numbers and Barnes Zeta Functions. International Journal of Number Theory 10 (2014), 1321-1335.
[3] E. T. Bell, Interpolated denumerants and Lambert series. Am. J. Math. 65 (1943), 382386.
[4] M. Cimpoeaş and F. Nicolae, On the restricted partition function. Ramanujan J. 47 (2018), 3, 565-588.
[5] L. Comtet, Advanced combinatorics: The art of finite and infinite expansions. D. Reidel Publishing Co., Dordrecht. Holland; Boston, Mass., 1974.
[6] K. Dilcher and C. Vignat, An explicit form of the polynomial part of a restricted partition function. Res. Number Theory 3 (2017), Paper No. 1.
[7] J. W. L. Glaisher, Formulae for partitions into given elements, derived from Sylvesters theorem. Quart. J. Pure Appl. Math. 40 (1908), 275-348.
[8] T. Komatsu, On the number of solutions of the Diophantine equation of Frobenius: general case. Math. Commun. 8 (2003), 2, 195-206.
[9] C. O'Sullivan, On the partial fraction decomposition of the restricted partition generating function. Forum Mathematicum, 27 (2015), 2, 735-766.
[10] M. Raczunas and P. Chrząstowski-Wachtel, A diophantine problem of Frobenius in terms of the least common multiple. Discrete Math. 150 (1996), 347-357.
[11] Ø. J. Rødseth and J. A. Sellers, Partitions with parts in a finite set. International Journal of Number Theory $\mathbf{0 2}$ (2006), 03, 455-468.
[12] B. Y. Rubinstein, Expression for restricted partition function through Bernoulli polynomials. Ramanujan J. 15 (2008), 2, 177-185.
[13] B. Y. Rubinstein and L. G. Fel, Restricted partition functions as Bernoulli and Eulerian polynomials of higher order. Ramanujan J. 11 (2006), 3, 331-347.
[14] R. P. Stanley, Enumerative Combinatorics, Vol. 1. Wadsworth and Brooks/Cole, Monterey, California, 1986.
[15] J. J. Sylvester, On the partition of numbers. Quart. J. Pure Appl. Math. 1 (1857), 141-152.
[16] J. J. Sylvester, On subinvariants, i.e. semi-invariants to binary quatities of an unlimited order with an excursus on rational fractions and partitions. Am. J. Math. 5 (1882), 79136.
[17] A. Tripathi, On a linear diophantine problem of Frobenius. Electronic Journal of Combinatorial Number Theory 6 (2006).

Received January 24, 2018

> University"Politehnica" of Bucharest
> Faculty of Applied Sciences 060042 Bucharest, Romania
> and
> "Simion Stoilow" Institute of Mathematics of the Romanian Academy Research unit 5,
> P.O.Box 1-764, Bucharest 014700, Romania mircea.cimpoeas@upb.ro, mircea.cimpoeas@imar.ro

