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Let a = (a1, . . . , ar) be a vector of positive integers. In continuation of a previous
paper we present other formulas for the restricted partition function pa(n) := the
number of integer solutions (x1, ..., xr) to

∑r
j=1 ajxj = n with x1 ≥ 0, ..., xr ≥ 0.
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1. INTRODUCTION

Let a := (a1, a2, . . . , ar) be a sequence of positive integers, r ≥ 1. The
restricted partition function associated to a is pa : N → N, pa(n) := the
number of integer solutions (x1, . . . , xr) of

∑r
i=1 aixi = n with xi ≥ 0. Let D

be a common multiple of a1, . . . , ar.
Sylvester [15],[16] decomposed the restricted partition in a sum of “waves”:

pa(n) =
∑
j≥1

Wj(n,a),

where the sum is taken over all distinct divisors j of the components of a and
showed that for each such j, Wj(n,a) is the coefficient of t−1 in∑

0≤ν<j, gcd(ν,j)=1

ρ−νnj ent

(1− ρνa1j e−a1t) · · · (1− ρνarj e−art)
,

where ρj = e
2πi
j and gcd(0, 0) = 1 by convention.

Note that Wj(n,a)’s are quasi-polynomials of period j. (A quasi-poly-
nomial of period j is a numerical function f(n) such that there exists j poly-
nomials P1(n), P2(n), . . . , Pj(n) such that f(n) = Pi(n) if n ≡ i(modj).) The
first wave Pa(n) := W1(a, n) is called the polynomial part of pa(n).

Glaisher [7] made computations of the Sylvester waves in particular cases.
Fel and Rubinstein [13] proved formulas for the Sylvester waves using Bernoulli
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and Euler polynomials of higher order. Rubinstein [12] showed that all Sylvester
waves can be expressed in terms of Bernoulli polynomials only. Bayad and Beck
[2, Theorem 3.1] proved an explicit expression of the partition function pa(n)
in terms of Bernoulli-Barnes polynomials and the Fourier Dedekind sums, in
the case that a1, . . . , ar are pairwise coprime. Beck, Gessler and Komatsu [1,
page 2], Dilcher and Vignat [6, Theorem 1.1] proved explicit formulas for the
polynomial part of pa(n).

As a continuation of [4] we present here other formulas for pa(n) and for
the Sylvester waves. Also, we reprove, using our method, several results. In
Proposition 3.2 we prove that

pa(n) =

b nDc∑
j=0

(
r + j − 1

j

)
fa(n− jD),

where fa(n) = #{(j1, . . . , jr) : a1j1 + · · · + arjr = n, 0 ≤ jk ≤ D
ak
− 1, 1 ≤

k ≤ r}. This result is similar to Theorem 1 of Rodseth and Seller [11].
In Corollary 3.4 (compare [11, Theorem 2]) we prove the congruence

(r − 1)! pa(n) ≡ 0 mod (j + k + 1)(j + k + 2) · . . . · (j + r − 1),

where k =
⌊
n
D

⌋
−
⌈
n+a1+···+ar

D

⌉
+ r.

In Proposition 5.2 we prove that

Wj(n,a) =
1

D(r − 1)!

r∑
m=1

j∑
`=1

ρ`j

r−1∑
k=m−1

[
r

k + 1

]
(−1)k−m+1

(
k

m− 1

)
·

·
∑

0≤j1≤ D
a1
−1,...,0≤jr≤ D

ar
−1

a1j1+···+arjr≡`( mod j)

D−k(a1j1 + · · ·+ arjr)
k−m+1nm−1,

where
[
r
k

]
are the unsigned Stirling numbers of the first kind.

The Bernoulli numbers are defined by the identity

t

et − 1
=

∞∑
`=0

t`

`!
B`.

If gcd(ai, aj) = 1 for all i 6= j we prove in Proposition 5.3 that

pa(n)=

r∑
m=1

(−1)r−m

(a1 ···ar)(m−1)!

∑
i1+···+ir=r−m

Bi1 ···Bir
i1!···ir!

ai11 ···a
ir
r n

m−1 +
1

D(r−1)!
×

∑
j 6=1

j∑
`=1

ρ`j

r−1∑
k=0

1

Dk

[
r

k + 1

]
(−1)k

∑
0≤j1≤ D

a1
−1,...,0≤jr≤ D

ar
−1

a1j1+···+arjr≡`( mod j)

D−k(a1j1 + · · ·+ arjr)
k,
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where j|ai for some 1 ≤ i ≤ r. Another formulas for pa(n) in the case that
a1, . . . , ar are pairwise coprimes were proved in [5, Theorem C, pag 113], [2,
Theorem 3.1] and [8].

Let

∞∑
n=0

pa(n)zn =
1

(1− za1) . . . (1− zar)
=
∑
λD=1

m(λ)∑
`=1

cλ,`
(λ− z)`

,

where m(λ) is the multiplicity of λ as a root of (1− za1) . . . (1− zar).
In Proposition 5.4 we prove that

cρj ,m =
ρmj (m− 1)!

D

m(ρj)∑
t=m

(−1)t−m
{
t

m

} j∑
`=1

ρ`j

r−1∑
k=m−1

[
r

k + 1

]
×

(−1)k−m+1

(
k

m− 1

) ∑
0≤j1≤ D

a1
−1,...,0≤jr≤ D

ar
−1

a1j1+···+arjr≡`( mod j)

D−k(a1j1 + · · ·+ arjr)
k−m+1,

where
{
t
m

}
are Stirling numbers of the second kind.

In Proposition 5.5 we prove that

c1,m =
(m− 1)!

a1 · · · ar

r∑
`=m

(−1)`−m
{
`
m

}
(`− 1)!

∑
i1+···+ir=r−`

Bi1 · · ·Bir
i1! · · · ir!

ai11 · · · a
ir
r .

In the case a = (1, 2, . . . , r) we reprove O’Sullivan’s formulas [9] for
Rademacher’s coefficients c01m, see Corollary 5.6.

Given a sequence of positive integers a = (a1, ..., ar) with gcd(a1, ..., ar) =
1, the Frobenius number of a, denoted by F (a) = F (a1, . . . , ar) is the largest
integer n with the property that pa(n) = 0. If gcd(ai, aj) = 1 for all i 6= j, we
prove in Corollary 6.2 that F (A1, . . . , Ar) = D(r − 1) − A1 − · · · − Ar, where
A1 := D

a1
, . . . , Ar := D

ar
. This is a particular case of [10, Theorem 2.7] and

appears also in [17, Theorem 1(a)].

2. PRELIMINARIES

Let a := (a1, a2, . . . , ar) be a sequence of positive integers, r ≥ 1. The
restricted partition function associated to a is pa : N→ N, pa(n) := the number
of integer solutions (x1, . . . , xr) of

∑r
i=1 aixi = n with xi ≥ 0.

Let D be a common multiple of a1, a2, . . . , ar. Bell [3] has proved that
pa(n) is a quasi-polynomial of degree r − 1, with the period D, i.e.

pa(n) = da,r−1(n)nr−1 + · · ·+ da,1(n)n+ da,0(n),
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where da,m(n+D) = da,m(n) for 0 ≤ m ≤ r−1 and n ≥ 0, and da,r−1(n) is not
identically zero. In the following, we recall several results from our previous
paper [4].

Theorem 2.1 ([4, Theorem 2.8(1)]). For 0 ≤ m ≤ r − 1 and n ≥ 0 we
have

da,m(n) =
1

(r − 1)!

∑
0≤j1≤ D

a1
−1,...,0≤jr≤ D

ar
−1

a1j1+···+arjr≡n( mod D)

r−1∑
k=m

[
r

k + 1

]
(−1)k−m

(
k

m

)
×

D−k(a1j1 + · · ·+ arjr)
k−m.

Corollary 2.2 ([4, Corollary 2.10]). We have

pa(n) =
1

(r − 1)!

∑
0≤j1≤ D

a1
−1,...,0≤jr≤ D

ar
−1

a1j1+···+arjr≡n( mod D)

r−1∏
`=1

(
n− a1j1 − · · · − arjr

D
+ `).

Corollary 2.3 ([4, Corollary 2.12]). For n ≥ 0 we have pa(n) = 0 if
and only if n < a1j1 + · · · + arjr for all 0 ≤ j1 ≤ D

a1
− 1, . . . , 0 ≤ jr ≤ D

ar
− 1

with a1j1 + · · ·+ arjr ≡ n(modD).

We also recall the following result of Beck, Gessler and Komatsu [1, page
2]. See also [4, Corollary 2.11].

Theorem 2.4. The polynomial part of pa(n) is

Pa(n) :=
1

a1 · · · ar

r−1∑
u=0

(−1)u

(r − 1− u)!

∑
i1+···+ir=u

Bi1 · · ·Bir
i1! · · · ir!

ai11 · · · a
ir
r n

r−1−u.

3. A FORMULA AND A CONGRUENCE FOR pa(n)

Let a := (a1, a2, . . . , ar) be a sequence of positive integers, r ≥ 1. It holds
that ∞∑

n=0

pa(n)zn =
1

(1− za1) · · · (1− zar)
, |z| < 1.

Let D be a common multiple of a1, . . . , ar. Let

Fa(z) :=
(1− zD)r

(1− za1) · · · (1− zar)
=

r∏
i=1

(1 + zai + · · ·+ z
ai(

D
ai
−1)

).

Let d := rD − a1 − · · · − ar. Since Fa(z) = zdFa(1z ), it follows that

Fa(z) =: fa(d)zd + · · ·+ fa(1)z + fa(0)
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is a reciprocal polynomial, that is fa(d − n) = fa(n) for 0 ≤ n ≤ d. Let
fa(n) := 0 for n ≥ d+ 1. It holds that

fa(n) = #{(j1, . . . , jr) : a1j1 + · · ·+ arjr = n, 0 ≤ jk ≤
D

ak
− 1, 1 ≤ k ≤ r}.

From the power series identity
∞∑
n=0

fa(n)zn = Fa(z) = (1− zD)r
∞∑
n=0

pa(n)zn =

∞∑
n=0

pa(n)

r∑
j=0

(
r

j

)
(−1)jzn+jD

it follows that

(3.1) fa(n) =

b nDc∑
j=0

(
r

j

)
(−1)jpa(n− jD), n ≥ 0.

Proposition 3.1. For n ≥ 0 we have that

fa(n) =

1

(r − 1)!

b nDc∑
j=0

(
r

j

)
(−1)j

∑
0≤j1≤ D

a1
−1,...,0≤jr≤ D

ar
−1

a1j1+···+arjr≡n( mod D)

r−1∏
`=1

(
n− a1j1 −···− arjr

D
+ `− j).

Proof. It follows from Corollary 2.2 and (3.1).

Proposition 3.2 (compare [11, Theorem 1]). It holds that

pa(n) =

b nDc∑
j=0

(
r + j − 1

j

)
fa(n− jD), n ≥ 0.

Proof. Denote k :=
⌊
n
D

⌋
. From (3.1) we get the following system of linear

equations in the indeterminates pa(n− jD), 0 ≤ j ≤ k

(3.2)

k∑
j=t

(
r

j − t

)
(−1)j−tpa(n− jD) = fa(n− tD), 0 ≤ t ≤ k.

It follows that

pa(n) =

k∑
j=0

(−1)j∆jfa(n− jD),

where ∆0 = 1 and ∆j = −
∑j−1

i=0

(
r
j−i
)
∆i. Using induction on j ≥ 0 it follows

that ∆j = (−1)j
(
r+j−1
j

)
for all 0 ≤ j ≤ k. Hence

pa(n) =
k∑
j=0

(
r + j − 1

j

)
fa(n− jD).
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Corollary 3.3. For n ≥ 0 it holds that

(r − 1)! pa(n) =

b nDc∑
j=dn+σD e−r

(j + 1) · · · (j + r − 1)fa(n− jD),

where σ = a1 + · · ·+ ar.

Proof. For n− jD > rD − σ it holds that fa(n− jD) = 0. From Propo-
sition 3.2 it follows that

(r − 1)! pa(n) =

b nDc∑
j=0

(r − 1)!

(
r + j − 1

j

)
fa(n− jD)

=

b nDc∑
j=dn+σD e−r

(j + 1) · · · (j + r − 1)fa(n− jD).

Corollary 3.4 (compare [11, Theorem 2]). For n ≥ 0 it holds that

(r − 1)! pa(n) ≡ 0 mod (j + k + 1)(j + k + 2) · . . . · (j + r − 1),

where k =
⌊
n
D

⌋
−
⌈
n+σ
D

⌉
+ r, σ = a1 + . . .+ ar.

Proof. For
⌈
n+σ
D

⌉
− r ≤ j ≤

⌊
n
D

⌋
it holds that

(j + 1) · · · (j + r − 1) ≡ 0 mod (j + k + 1) · · · (j + r − 1).

Apply now Corollary 3.3.

4. QUASI-POLYNOMIALS

Let p : N→ C be a quasi-polynomial of degree r − 1 ≥ 0,

p(n) := dr−1(n)nr−1 + · · ·+ d1(n)n+ d0(n),

where dm(n)’s are periodic functions with integral period D > 0 and dr−1(n)
is not identically zero.

According to [14, Proposition 4.4.1], we have
∞∑
n=0

p(n)zn =
L(z)

M(z)
,

where L(z),M(z) ∈ C[z], every zero λ of M(z) satisfies λD = 1 (provided L(z)
M(z)

has been reduced to lowest terms), and degL(z) < degM(z). Moreover,

p(n) =
∑
λD=1

Pλ(n)λ−n,
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where each Pλ(n) is a polynomial function with degPλ(n) ≤ m(λ)− 1, where
m(λ) is the multiplicity of λ as a root of M(z). We define the polynomial part
of p(n) to be the polynomial function P (n) := P1(n).

Let γ ∈ C with γD = 1. It holds that

pγ(n) := γnp(n) =
∑
λD=1

Pλ(n)(γ · λ−1)n,

hence Pγ(n) is the polynomial part of pγ(n).

Proposition 4.1 ([4, Proposition 3.5]). It holds that

Pγ(n) = Rγ,m(γ)n
r−1 + · · ·+Rγ,2n+Rγ,1,

where Rγ,m = 1
D

∑D−1
v=0 γ

vdm−1(v), 1 ≤ m ≤ m(γ).

Consider the decomposition

(4.1)
∞∑
n=0

p(n)zn =
L(z)

M(z)
=

∑
M(λ)=0

m(λ)∑
`=1

cλ,`
(λ− z)`

.

Let γ be a root of M(z). Since the decomposition (4.1) is unique, it follows
that

∞∑
n=0

Pγ(n)γ−nzn =

m(γ)∑
`=1

cγ,`
(γ − z)`

=

m(γ)∑
`=1

cγ,`
γ`

( ∞∑
n=0

γ−nzn

)`

=

m(γ)∑
`=1

cγ,`
γ`

∞∑
n=0

(
n+ `− 1

`− 1

)
γ−nzn.

It follows that

(4.2) Pγ(n) =

m(γ)∑
`=1

cγ,`
γ`

(
n+ `− 1

`− 1

)
.

The Stirling numbers of the second kind, denoted by
{
n
k

}
, count the num-

ber of ways to partition a set of n labelled objects into k nonempty unlabelled
subsets. They are related with the unsigned Stirling numbers of the first kind
by

(4.3)

n∑
k=0

{
n

k

} k∑
`=0

(−1)`
[
k

`

]
= (−1)n

Proposition 4.2. For each 1 ≤ m ≤ m(γ) it holds that

cγ,m = γm(m− 1)!

m(γ)∑
`=m

(−1)`−m
{
`

m

}
1

D

D−1∑
v=0

γvd`−1(v).
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Proof. From Proposition 4.1 and (4.2) it follows that Rγ,m = 0 for all
m > m(γ) and

(4.4) Rγ,m =

m(γ)∑
`=1

cγ,`
γ`(`− 1)!

[
`

m

]
, 1 ≤ m ≤ m(γ).

From (4.3) and (4.4) it follows that

(4.5) cγ,m = γm(m− 1)!

m(γ)∑
`=m

(−1)`−m
{
`

m

}
Rγ,`,

hence, the conclusion follows from Proposition 4.1.

5. SYLVESTER WAVES AND THE PARTIAL FRACTION
DECOMPOSITION OF

∑∑∑∞
n=0 pa(n)z

n

Let a = (a1, . . . , ar) a sequence of positive integers. We write pa(n) as a
sum of waves

pa(n) =
∑
j

Wj(n,a),

where the sum is taken over the j ≥ 1 with j|ai for some 1 ≤ i ≤ r. We have
that

(5.1) Wj(n,a) = Pa,ρj (n)ρ−nj ,

where ρj := e
2πi
j and Pa,ρj (n) is the polynomial part of the quasi-polynomial

ρnj pa(n).

Proposition 5.1. We have that

Wj(n,a) = ρ−nj (Rj,m(j) · nm(j)−1 + · · ·+Rj,2 · n+Rj,1),

where m(j) = #{i : j|ai} and Rj,m = 1
D

∑D−1
v=0 ρ

v
jda,m−1(v) for 1 ≤ m ≤ m(j).

Proof. It follows from Proposition 4.1 and (5.1).

Proposition 5.2. For any positive integer j with j|ai for some 1 ≤ i ≤ r,
we have that:

Wj(n,a) =
1

D(r − 1)!

r∑
m=1

j∑
`=1

ρ`j

r−1∑
k=m−1

[
r

k + 1

]
(−1)k−m+1

(
k

m− 1

)
·

·
∑

0≤j1≤ D
a1
−1,...,0≤jr≤ D

ar
−1

a1j1+···+arjr≡`( mod j)

D−k(a1j1 + · · ·+ arjr)
k−m+1nm−1.
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Proof. It follows from Proposition 5.1 and Theorem 2.1.

Proposition 5.3. If a1, . . . , ar are pairwise coprimes then

pa(n) =
r∑

m=1

(−1)r−m

(a1 ···ar)(m− 1)!

∑
i1+···+ir=r−m

Bi1 ···Bir
i1!···ir!

ai11 ···a
ir
r n

m−1+
1

D(r − 1)!
·

·
∑
j 6=1

j∑
`=1

ρ`j

r−1∑
k=0

1

Dk

[
r

k + 1

]
(−1)k

∑
0≤j1≤ D

a1
−1,...,0≤jr≤ D

ar
−1

a1j1+···+arjr≡`( mod j)

D−k(a1j1 + · · ·+arjr)
k,

where j|ai for some 1 ≤ i ≤ r.

Proof. Since a1, . . . , ar are pairwise coprimes, it follows that Wj(a, n) is a
quasi-polynomial of degree 0. Hence, the conclusion follows from Proposition
4.1 and Proposition 4.2.

Another formulas for pa(n) in the case that a1, . . . , ar are pairwise co-
primes were proved in [5, Theorem C, pag 113], [2, Theorem 3.1] and [8]. We
consider the decomposition

∞∑
n=0

pa(n)zn =
1

(1− za1) · · · (1− zar)
=
∑
λ

m(λ)∑
`=1

cλ,`
(λ− z)`

,

where the sum it taken over the λ’s with λai = 1 for some 1 ≤ i ≤ r.

Proposition 5.4. Let j ≥ 1. For 1 ≤ m ≤ m(j) we have that

cρj ,m =
ρmj (m−1)!

D

m(j)∑
t=m

(−1)t−m
{
t

m

} j∑
`=1

ρ`j

r−1∑
k=m−1

[
r

k+1

]
(−1)k−m+1

(
k

m−1

)
·

·
∑

0≤j1≤ D
a1
−1,...,0≤jr≤ D

ar
−1

a1j1+···+arjr≡`( mod j)

D−k(a1j1 + · · ·+ arjr)
k−m+1.

Proof. It follows from Propositions 4.2, 5.1, and 5.2.

Proposition 5.5. For 1 ≤ m ≤ r it holds that

cm =
(m− 1)!

a1 · · · ar

r∑
`=m

(−1)`−m
{
`
m

}
(`− 1)!

∑
i1+···+ir=r−`

Bi1 · · ·Bir
i1! · · · ir!

ai11 · · · a
ir
r ,

where cm := c1,m.

Proof. It follows from Theorem 2.4, Proposition 4.1 and Proposition 5.4.
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Let r ≥ 1, r := (1, 2, . . . , r). Rademacher’s coefficients chk`(r) are defined
by

∞∑
n=0

pr(n)zn =
1

(1− z)(1− z2) · · · (1− zr)
=

∑
0≤h<k≤r, (h,k)=1

b rkc∑
`=1

chk`(r)

(z − ωhk)`
,

where ωhk := e2πi
h
k . In the previous notations chk`(r) = (−1)`cωhk,`. As a direct

consequence of Proposition 5.5 we get the following result of C. O’Sullivan [9]:

Corollary 5.6 ([9, Proposition 2.3] ). For 1 ≤ m ≤ r it holds that

c01m(r) =
(−1)r(m− 1)!

r!

r∑
`=m

{
`
m

}
(`− 1)!

∑
i1+···+ir=r−`

Bi1 · · ·Bir
i1! · · · ir!

1i12i2 · · · rir .

6. FROBENIUS NUMBER

Given a sequence of positive integers a = (a1, . . . , ar) that satisfy
gcd(a1, ..., ar) = 1, the Frobenius number of a, denoted by F (a) = F (a1, ..., ar),
is the largest integer n with the property that pa(n) = 0.

Proposition 6.1. Let a = (a1, . . . , ar) with gcd(a1, . . . , ar) = 1 and D =
lcm(a1, . . . , ar). We have that

F (a1, . . . , ar) ≤ D(r − 1)− a1 − · · · − ar.

Proof. Let n be an integer with pa(n) = 0. Since the map

ϕ : Z/a1Z× · · · × Z/arZ→ Z/DZ, ϕ(ĵ1, . . . , ĵr) := a1j1 + · · ·+ arjr

is a surjective morphism, it follows that there exists some integers 0 ≤ j1 ≤
D
a1
− 1, . . . , 0 ≤ jr ≤ D

ar
− 1 such that a1j1 + · · ·+ arjr ≡ n(modD).

From Corollary 2.3 it follows that n < a1j1 + ·+ arjr, hence
n ≤ a1j1 + · · ·+ arjr −D ≤ (D − 1)r − a1 − · · · − ar.

The following corollary is a particular case of [10, Theorem 2.7] and ap-
pears also in [17, Theorem 1(a)].

Corollary 6.2. Let a = (a1, . . . , ar) such that gcd(ai, aj) = 1 for all
i 6= j, D = lcm(a1, . . . , ar) = a1 · · · ar, Ai := D

ai
, 1 ≤ i ≤ r. It holds that

F (A1, . . . , Ar) = D(r − 1)−A1 − · · · −Ar.

Proof. It holds that D = lcm(A1, . . . , Ar). From Lemma 6.1 it follows
that

F (A1, . . . , Ar) ≤ D(r − 1)−A1 − · · · −Ar.
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Suppose that D(r − 1) − A1 − · · · − Ar = A1j1 + · · · + Arjr with jk ≥ 0 for
1 ≤ k ≤ r, hence

D(r − 1) = A1(j1 + 1) + · · ·+Ar(jr + 1), r − 1 =
j1 + 1

a1
+ · · ·+ jr + 1

ar
.

Since gcd(ai, aj) = 1 it follows that ak|(jk + 1) for all 1 ≤ k ≤ r. Since jk ≥ 0
we get

r − 1 =
j1 + 1

a1
+ · · ·+ jr + 1

ar
≥ r,

a contradiction. So F (A1, . . . , Ar) ≥ D(r − 1)−A1 − · · · −Ar.
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