REMARKS ON THE RESTRICTED PARTITION FUNCTION
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Let a = (a1, ..., a,) be a vector of positive integers. In continuation of a previous
paper we present other formulas for the restricted partition function pa(n) := the
number of integer solutions (1, ...,zr) to 37_, a;z; = n with z1 > 0,...,z, > 0.
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1. INTRODUCTION

Let a := (a1,as,...,a,) be a sequence of positive integers, r > 1. The
restricted partition function associated to a is pa : N — N, pa(n) := the
number of integer solutions (z1,...,z,) of >.;_; a;x; = n with 2; > 0. Let D
be a common multiple of a1, ..., a,.

Sylvester [15],[16] decomposed the restricted partition in a sum of “waves”:
pa(n) = Z Wj(n,a),
Jj=1
where the sum is taken over all distinct divisors j of the components of a and

showed that for each such j, W;(n,a) is the coefficient of =1 in

—vn nt
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_ YAl ,—aqt) ... _ pYar —art)’
0<v<j, ged(v,j)=1 (1 pype ) (1 Fi ¢ )

27
where p; =e 7 and ged(0,0) = 1 by convention.

Note that Wj(n,a)’s are quasi-polynomials of period j. (A quasi-poly-
nomial of period j is a numerical function f(n) such that there exists j poly-
nomials P;(n), Py(n), ..., Pj(n) such that f(n) = Pi(n) if n = i(modj).) The
first wave Pa(n) := Wi(a,n) is called the polynomial part of pa(n).

Glaisher [7] made computations of the Sylvester waves in particular cases.
Fel and Rubinstein [13] proved formulas for the Sylvester waves using Bernoulli

The author was supported by a grant of the Romanian National Authority for Scientific
Research, CNCS - UEFISCDI, project number PN-II-ID-PCE-2011-1023.

MATH. REPORTS 23(73) (2021), 4, 425-436



426 M. Cimpoeag 2

and Euler polynomials of higher order. Rubinstein [12] showed that all Sylvester
waves can be expressed in terms of Bernoulli polynomials only. Bayad and Beck
[2, Theorem 3.1] proved an explicit expression of the partition function pa(n)
in terms of Bernoulli-Barnes polynomials and the Fourier Dedekind sums, in
the case that ai,...,a, are pairwise coprime. Beck, Gessler and Komatsu [1,
page 2|, Dilcher and Vignat [6, Theorem 1.1] proved explicit formulas for the
polynomial part of pa(n).

As a continuation of [4] we present here other formulas for p,(n) and for
the Sylvester waves. Also, we reprove, using our method, several results. In
Proposition 3.2 we prove that

5] r+j—1
pan) = 3 ( | )fam—jD),
=0~ 7
where fa(n) = #{(j1,.-.,jr) : @i+ +ajr =n, 0<jp <2 -1, 1<
k < r}. This result is similar to Theorem 1 of Rodseth and Seller [11].
In Corollary 3.4 (compare [11, Theorem 2]) we prove the congruence

(r—=1!pa(n) =0 mod (j+k+1)(G+k+2)-...-(j+r—1),

_ +etar
where k = L%J — {w] +r.
In Proposition 5.2 we prove that

e =g 3 5[ Jeren(F)

m=1 (=1 k=m—

2. DM@y 4+ ag, )

0<1< 2 =105, < 2 —1
a1j1++arjr=£( mod j)
where [Z] are the unsigned Stirling numbers of the first kind.
The Bernoulli numbers are defined by the identity

o

t tt

t—1 i
—0

—By.

If ged(a;, a5) =1 for all i # j we prove in Proposition 5.3 that

T
_ (-p—m Bii-Bi, i i ome1
pa(n)=7) (a1--ar)(m—1)! > P +

i1+ tir=r—m

b
D(r—1)!

j _
1 r _ . .
SEP DA I [EV D SRR S PR
0<< 2 =105 < 2~ 1
a1j1+-+arjr-=¢( mod J)
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where jla; for some 1 < i < r. Another formulas for pa(n) in the case that

ai,...,a, are pairwise coprimes were proved in [5, Theorem C, pag 113], [2,
Theorem 3.1] and [8].
Let
1 m(\) C)\g
Zpa 1—2“1) 1_Zar Z Z
AD=1 (=1

where m(A) is the multiplicity of A as a root of (1 — z%)... (1 — 2%).
In Proposition 5.4 we prove that

o= TS oy {}Zﬂ £ L)
)

k=m—
<1>’f—m+1( D~*(ars 4+ + args ),
0<31<7_17 ,0<JT<2—1

a1j1+--+arjr=£( mod j)

m —

where {TZ} are Stirling numbers of the second kind.
In Proposition 5.5 we prove that

1
(m—1)! < vem Lo} B, -+ B; ;
= — —1)yrm__m s D PN I i
Cl’m ai - Qp Z( ) (E_l)‘ Z ) '...ZT! al ar

. - 11-
l=m it tip=r—£

In the case a = (1,2,...,r) we reprove O’Sullivan’s formulas [9] for
Rademacher’s coefficients cyi.,,, see Corollary 5.6.

Given a sequence of positive integers a = (ay, ..., a,) with gcd(ay, ...,a,) =
1, the Frobenius number of a, denoted by F(a) = F(ay,...,a,) is the largest
integer n with the property that pa(n) = 0. If ged(as, a5) = 1 for all ¢ # j, we
prove in Corollary 6.2 that F'(A;,...,A,) =D(r—1)—A; —--- — A,, where
Ay = al""’AT = 5. This is a particular case of [10, Theorem 2.7] and

appears also in [17, Theorem 1(a)].

2. PRELIMINARIES

Let a := (ay,as,...,a,) be a sequence of positive integers, r > 1. The
restricted partition function associated to ais pa : N — N pa(n) := the number
of integer solutions (z1,...,z,) of Y i, a;x; = n with z; > 0.

Let D be a common multiple of aj,as,...,a,. Bell [3] has proved that
pa(n) is a quasi-polynomial of degree r — 1, with the period D, i.e.

pa(n) = da,_1(n)n" "+ F da1(n)n + dao(n),
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where dg ym(n+D) = dam(n) for 0 <m <r—1andn >0, and da,—1(n) is not
identically zero. In the following, we recall several results from our previous
paper [4].

THEOREM 2.1 ([4, Theorem 2.8(1)]). For 0 <m <r—1 and n > 0 we
have

1 r—1

- k
dunit) - I A (ST (4R
’ — 1) 1
(r=1) 0<ji< 2 —1,.,0), < 2 -1 h=m bt m

a1ji1+-+arjr=n( mod D)

D_k(aljl +---+ arjr)k_m
COROLLARY 2.2 ([4, Corollary 2.10]). We have

1 riln—alj __aj
pa(n)_( 0 Z H( 1 Tr+£)_
r—=npt L o)
0SS =1 0SS -1 (=1
a1j1+-+arjr=n( mod D)
COROLLARY 2.3 ([4, Corollary 2.12]). For n > 0 we have pa(n) = 0 if

and only if n < a1j1 + -+ + apjr for all 0 < j; Sg—l,...,OSjTSaQ—l
with a1j1 + -+ - + ayjr = n(mod D).

3

We also recall the following result of Beck, Gessler and Komatsu [1, page
2]. See also [4, Corollary 2.11].

THEOREM 2.4. The polynomial part of pa(n) is
r—1

L 1 (_1)u BllBlr i1 b T—1—u
T . e

il iy "
u=0 114 Fir=u 1 T

3. A FORMULA AND A CONGRUENCE FOR p,(n)

Let a:= (ay,as,...,a,) be a sequence of positive integers, r > 1. It holds

that
Zpa 1 |Z| < 1.
1—za1) (1= z0r)’
Let D be a common multiple of aq1,...,a,. Let
(1—zP) - . ai(2-1)
Fa(2) = =TT+ 2% 4+ 2%y,
a(2) (= 20) (1= 20) }:[1( +2% 4tz )

Let d :=rD —a; — -+ — a,. Since Fy(2) = 29F5(2), it follows that

Fa(z) = fa(d)zd + -+ fa(1)z + fa(0)
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is a reciprocal polynomial, that is fa(d — n) = fa(n) for 0 < n < d. Let
fa(n) :=0 for n > d+ 1. It holds that

. . . , . _ D
fa(n):#{(j17"'7]7“): a1j1+-~—|—arj7~:n, Ogjkgaik_la 1§k§r}

From the power series identity

D fa(n)z" = Fa(z) = (1= 2°)" ) pa(n) Zpa ( > (—=1) 2P
n=0 n=0 j=0 J
it follows that
EI
(1) fali) = 3 (1) (-1l D), n 2 0.
— \J
J
PROPOSITION 3.1. For n > 0 we have that

" j=0 0<31<771, e
ar
a1j1+-+arjr=n( mod D)

Proof. Tt follows from Corollary 2.2 and (3.1). O

PROPOSITION 3.2 (compare [11, Theorem 1}). It holds that

3,
B r+5—1 o .
pa(n) = ;O < y >fa( D), 0> 0.

Proof. Denote k := | % |. From (3.1) we get the following system of linear
equations in the indeterminates pa(n — jD), 0 < j <k
k

(3.2) 3 < " >(1)j_tpa(n —jD) = fa(n —tD), 0 < t < k.

peri VA
It follows that .
Z )/ Aj fa(n — jD),

where Ag =1 and A; = — ( Z) A;. Using induction on j > 0 it follows
that A; = (—1)7 (Hg 1) for all 0 < j < k. Hence

pa(m) =3 ("7 ) - i)

=~
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COROLLARY 3.3. Forn >0 it holds that

(r=Dlpa(n)= > G+ (j+r—1)faln—jD),

where o = a1 + - + a,.

Proof. For n — jD > rD — ¢ it holds that fa(n —jD) = 0. From Propo-
sition 3.2 it follows that

B
(r = 1tpa(m) = 3 r—1) ( - )fa<n—jD)
j=
L%J
= > G+D--(+r—1faln—jD).
=[5 ] =
COROLLARY 3.4 (compare [11, Theorem 2|). For n > 0 it holds that
(r—=D!'pa(n) =0 mod (j+k+1)(G+k+2)-...-(j+r—1),

where k = L%J — [%1 +r,o=a1+...+ a.
Proof. For [%W —r<j< L%J it holds that
G+1) G+ =1 =0 mod (G +k+ 1) (j+7r 1)
Apply now Corollary 3.3. [

4. QUASI-POLYNOMIALS

Let p: N — C be a quasi-polynomial of degree r — 1 > 0,
p(n) == dr_1(n)n" P+ -+ di(n)n + do(n),
where d,,,(n)’s are periodic functions with integral period D > 0 and d,_1(n)

is not identically zero.
According to [14, Proposition 4.4.1], we have

= n_ L(2)
;p(n)z =30y

where L(z), M(z) € C[z], every zero A of M(z) satisfies AP = 1 (provided (( ))
has been reduced to lowest terms), and deg L(z) < deg M (z). Moreover,

n)= > Py(n)A~

AD=1
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where each Py(n) is a polynomial function with deg Py(n) < m(A) — 1, where
m(A) is the multiplicity of A as a root of M(z). We define the polynomial part
of p(n) to be the polynomial function P(n) := Pi(n).

Let v € C with 4P = 1. It holds that

py(n) :=7"p(n) = Y Pa(n)(y-A~H)",
AD=1
hence P, (n) is the polynomial part of p,(n).
PROPOSITION 4.1 ([4, Proposition 3.5]). It holds that
Py(n) = R'y,m('y)”T_1 ot Byan ot Ry,

where Ry ;m = ZU o ' d 1 (v), 1< m < m(y).
Consider the decomposition
m(A)

(4.1 > )" = 115 = .

n=0 M(N)=0 (=1

Let v be a root of M(z). Since the decomposition (4.1) is unique, it follows
that

> S ()
P —n n — Y — s ( ,Y—nzn>
_ S\ Y4
el S ) A e L
_m(’Y) Cy b oo (n + /— 1> V,nzn
- VA _
/=1 7 n=0 ¢ 1
It follows that
m(y)
B Cyo(n+L€—1
(4.2) Pv(n)_; - ( 0 )

The Stirling numbers of the second kind, denoted by {Z}v count the num-
ber of ways to partition a set of n labelled objects into £ nonempty unlabelled
subsets. They are related with the unsigned Stirling numbers of the first kind
by

(43) 3 i} Sy e

D—-1
VD DI = SRR
v=0
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Proof. From Proposition 4.1 and (4.2) it follows that R,,, = 0 for all
m > m(vy) and

m(7y)

(4.4) Rym=Y_ ﬁ [ﬂ 1<m<m).
/=1
From (4.3) and (4.4) it follows that
m(y) ;
(45) D ST VS

l=m

hence, the conclusion follows from Proposition 4.1. [

5. SYLVESTER WAVES AND THE PARTIAL FRACTION
DECOMPOSITION OF Y%°  p,(n)z"

Let a = (ai,...,a,) a sequence of positive integers. We write pa(n) as a
sum of waves
n) = ZWj(n,a),

J
where the sum is taken over the j > 1 with j|a; for some 1 < i < r. We have
that

(5'1) Wj(n7 a) = Pa,Pj (n)pj—n’

27

where p;j :=e 7 and Pa,;(n) is the polynomial part of the quasi-polynomial
p] pa( )
PROPOSITION 5.1. We have that

W(n,a) = p;n(Rj,m(j) LU= Rj2-n+ Rj1),
where m(j) = #{i : jla;} and Rj,m = ZU 0 Pidam—1(v) for 1 <m < mf(j).
Proof. 1t follows from Proposition 4.1 and (5.1). [

PROPOSITION 5.2. For any positive integer j with jla; for some 1 <i <,
we have that:

W=t Y T [0 Jevn( )

m=1 (=1 k=m—1

— > 1 1
Z DM@y + -+ arfy) T
0SSy —1 0SirS5r—1
aij1+--+arjr=¢( mod j)
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Proof. 1t follows from Proposition 5.1 and Theorem 2.1. [

ProrosITION 5.3. Ifay,...,a, are pairwise coprimes then
T
(_1)rfm Bil i Blr i gy, m—1 1
pa(n) = 7@1 -a n +_ .
a mzzjl (al'“aT)(m_l)!il—i— —i—zz,:?“ . i1!e--4,] r D(’/“—l)'
J =l r
k —k . - \k
D7 D’f[k;+1](_1) > D" (arj1+- - +arj)",
jFL =1 k=0 0<j1< 2 1, 0<Gr < 21
ai1j1+-+arjr=£( mod j)
where jla; for some 1 < i <r.
Proof. Since a1, ..., a, are pairwise coprimes, it follows that Wj(a,n) is a

quasi-polynomial of degree 0. Hence, the conclusion follows from Proposition
4.1 and Proposition 4.2. [

Another formulas for pa(n) in the case that ai,...,a, are pairwise co-
primes were proved in [5, Theorem C, pag 113], [2, Theorem 3.1] and [8]. We
consider the decomposition

1
S = e e o

A 4=1

where the sum it taken over the A’s with A% =1 for some 1 < ¢ <.

PROPOSITION 5.4. Let j > 1. For 1 < m < m(j) we have that

SR E Lo ()

/=1 k=m—1

—k . k— m+1
§ D (aljl + -+ ar]r)
. _D . _D
Ogjlga_lvn'v(]SJTSE_l
a1j1+-+arjr-=£( mod j)

Proof. 1t follows from Propositions 4.2, 5.1, and 5.2. [
PROPOSITION 5.5. For 1 < m < r it holds that

_(m_l)' . {—m { } B’il"B’Lr i1 i
Cm—mz( Vs > Tl

- 21
l=m i1+ Fip=r—~L

where ¢, == C1,m-

Proof. 1t follows from Theorem 2.4, Proposition 4.1 and Proposition 5.4.
O
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Let r > 1,r:=(1,2,...,7). Rademacher’s coefficients cpre(r) are defined
by
> 1 S
R (P (= B ey (2 — com)”

0<h<k<r, (h,k)=1 €=1

where wy, 1= 2% In the previous notations cpx(r) = (— 1)%%;@,@- As a direct

consequence of Proposition 5.5 we get the following result of C. O’Sullivan [9]:
COROLLARY 5.6 ([9, Proposition 2.3] ). For 1 < m < r it holds that
(1) (m -1 < {f Bi - Bi . . .
coum(r) = — 2 (z{m} . g et

r! — 1) il
) ibetip=r—t "

l=m

6. FROBENIUS NUMBER

Given a sequence of positive integers a = (aj,...,a,) that satisfy
gcd(ay, ..., ar) = 1, the Frobenius number of a, denoted by F'(a) = F(ay,...,a,),
is the largest integer n with the property that pa(n) = 0.

PROPOSITION 6.1. Leta = (ay,...,a,) with gcd(ay,...,a,) =1 and D =
lem(ai,...,a,). We have that
F(ay,...,a;) < D(r—1)—a; — - — ay.

Proof. Let n be an integer with pa(n) = 0. Since the map

©:2/a1Z X - X Lja,Z — Z)DZ, ©(j1,...,Jr) == a1j1 + - + arjy

is a surjective morphism, it follows that there exists some integers 0 < j; <
% — ,0< 4, < Q — 1 such that a;j1 + - - - + arjr = n(modD).
From Corollary 2 3 it follows that n < a1j1 + - + a,Jr, hence
n<aj1+--+ajy—-D<(D-1)r—a—-—a,. O

The following corollary is a particular case of [10, Theorem 2.7] and ap-
pears also in [17, Theorem 1(a)].

COROLLARY 6.2. Let a = (ai,...,a,) such that ged(ai,a;) = 1 for all
i#j, D=lem(as,...,ar) = ar---ap, Aj:= 2,1 <i <r. It holds that
F(Ay,...,A.)=D(r—1)—A; — - — A,.

Proof. Tt holds that D = lem(A;4,...,A,). From Lemma 6.1 it follows
that
F(Ay,...,A)<D(r—1)—A; —---— A,
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Suppose that D(r — 1) — A} — -+ — A, = A1j1 + -+ + A,jr with ji > 0 for
1 <k <r, hence
. . 1+ 1 ir + 1
D(r—1)=A1(j1 + 1)+ + A (jy + 1), r—1:ﬁT+---+TT.
1 r

Since ged(ai, a;) = 1 it follows that ag|(jr + 1) for all 1 <k < r. Since j, >0

we get
i+ 1 jir + 1

.- >r

- )

-1
ai Qr
a contradiction. So F(Ay,...,A,)>D(r—1)—A; —---—A,. O
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