REMARKS ON THE RESTRICTED PARTITION FUNCTION

MIRCEA CIMPOEAS

Communicated by Lucian Beznea

Let \(\mathbf{a} = (a_1, \ldots, a_r) \) be a vector of positive integers. In continuation of a previous paper we present other formulas for the restricted partition function \(p_{\mathbf{a}}(n) := \) the number of integer solutions \((x_1, \ldots, x_r) \) to \(\sum_{j=1}^{r} a_j x_j = n \) with \(x_1 \geq 0, \ldots, x_r \geq 0. \)

AMS 2010 Subject Classification: restricted partition function, Sylvester waves, quasi-polynomial.

Key words: Primary 05A17, 11P83; Secondary 05A15, 11P82.

1. INTRODUCTION

Let \(\mathbf{a} := (a_1, a_2, \ldots, a_r) \) be a sequence of positive integers, \(r \geq 1. \) The restricted partition function associated to \(\mathbf{a} \) is \(p_{\mathbf{a}} : \mathbb{N} \to \mathbb{N}, p_{\mathbf{a}}(n) := \) the number of integer solutions \((x_1, \ldots, x_r) \) of \(\sum_{i=1}^{r} a_i x_i = n \) with \(x_i \geq 0. \) Let \(D \) be a common multiple of \(a_1, \ldots, a_r. \)

Sylvester \[15],[16\] decomposed the restricted partition in a sum of “waves”:

\[
p_{\mathbf{a}}(n) = \sum_{j \geq 1} W_j(n, \mathbf{a}),
\]

where the sum is taken over all distinct divisors \(j \) of the components of \(\mathbf{a} \) and showed that for each such \(j, \) \(W_j(n, \mathbf{a}) \) is the coefficient of \(t^{-1} \) in

\[
\sum_{0 \leq \nu < j, \gcd(\nu, j) = 1} \rho_j^{-\nu n} e^{nt}
\]

\[
x^{\nu a_1} e^{-a_1 t} \cdots (1 - \rho_j^{a_r} e^{-a_r t}),
\]

where \(\rho_j = e^{2\pi i/j} \) and \(\gcd(0, 0) = 1 \) by convention.

Note that \(W_j(n, \mathbf{a}) \)'s are quasi-polynomials of period \(j. \) (A quasi-polynomial of period \(j \) is a numerical function \(f(n) \) such that there exists \(j \) polynomials \(P_1(n), P_2(n), \ldots, P_j(n) \) such that \(f(n) = P_i(n) \) if \(n \equiv i (\mod j).) \) The first wave \(P_{\mathbf{a}}(n) := W_1(\mathbf{a}, n) \) is called the polynomial part of \(p_{\mathbf{a}}(n). \)

Glaisher \[7\] made computations of the Sylvester waves in particular cases. Fel and Rubinstein \[13\] proved formulas for the Sylvester waves using Bernoulli

The author was supported by a grant of the Romanian National Authority for Scientific Research, CNCS - UEFISCDI, project number PN-II-ID-PCE-2011-1023.
and Euler polynomials of higher order. Rubinstein [12] showed that all Sylvester waves can be expressed in terms of Bernoulli polynomials only. Bayad and Beck [2, Theorem 3.1] proved an explicit expression of the partition function \(p_a(n) \) in terms of Bernoulli-Barnes polynomials and the Fourier Dedekind sums, in the case that \(a_1, \ldots, a_r \) are pairwise coprime. Beck, Gessler and Komatsu [1, page 2], Dilcher and Vignat [6, Theorem 1.1] proved explicit formulas for the polynomial part of \(p_a(n) \).

As a continuation of [4] we present here other formulas for \(p_a(n) \) and for the Sylvester waves. Also, we reprove, using our method, several results. In Proposition 3.2 we prove that

\[
p_a(n) = \sum_{j=0}^{\left\lfloor \frac{n}{D} \right\rfloor} \binom{r+j-1}{j} f_a(n-jD),
\]

where \(f_a(n) = \#\{(j_1, \ldots, j_r) : a_1 j_1 + \cdots + a_r j_r = n, \ 0 \leq j_k \leq \frac{D}{a_k} - 1, \ 1 \leq k \leq r\} \). This result is similar to Theorem 1 of Rodseth and Seller [11].

In Corollary 3.4 (compare [11, Theorem 2]) we prove the congruence

\[(r-1)! p_a(n) \equiv 0 \mod (j+k+1)(j+k+2) \cdots (j+r-1),\]

where

\[k = \left\lfloor \frac{n}{D} \right\rfloor - \left\lfloor \frac{n+a_1+\cdots+a_r}{D} \right\rfloor + r.\]

In Proposition 5.2 we prove that

\[
W_j(n, a) = \frac{1}{D(r-1)!} \sum_{m=1}^{r} \sum_{\ell=1}^{j} \rho_j^\ell \sum_{k=m-1}^{r-1} \left[\begin{array}{c} r \\ k+1 \end{array} \right] (-1)^{k-m+1} \binom{k}{m-1} D^{-k}(a_1 j_1 + \cdots + a_r j_r)^{k-m+1} n^{m-1},
\]

where \([r/k]\) are the unsigned Stirling numbers of the first kind.

The Bernoulli numbers are defined by the identity

\[
\frac{t}{e^t - 1} = \sum_{\ell=0}^{\infty} \frac{t^\ell}{\ell!} B_\ell.
\]

If \(\gcd(a_i, a_j) = 1 \) for all \(i \neq j \) we prove in Proposition 5.3 that

\[
p_a(n) = \sum_{m=1}^{r} \frac{(-1)^{r-m}}{(a_1 \cdots a_r)(m-1)!} \sum_{i_1+\cdots+i_r=r-m} B_{i_1} \cdots B_{i_r} a_1^{i_1} \cdots a_r^{i_r} n^{m-1} + \frac{1}{D(r-1)!} \times \sum_{j \neq 1} \sum_{\ell=1}^{j} \rho_j^\ell \sum_{k=0}^{r-1} \frac{1}{D^k} \left[\begin{array}{c} r \\ k+1 \end{array} \right] (-1)^k \sum_{0 \leq j_1 \leq \frac{D}{a_1} - 1, \ldots, 0 \leq j_r \leq \frac{D}{a_r} - 1} D^{-k}(a_1 j_1 + \cdots + a_r j_r)^k,
\]

where

\[0 \leq j_1 \leq \frac{D}{a_1} - 1, \ldots, 0 \leq j_r \leq \frac{D}{a_r} - 1, a_1 j_1 + \cdots + a_r j_r \equiv \ell \mod j\]
where \(j \mid a_i \) for some \(1 \leq i \leq r \). Another formulas for \(p_a(n) \) in the case that \(a_1, \ldots, a_r \) are pairwise coprimes were proved in [5, Theorem C, pag 113], [2; Theorem 3.1] and [8].

Let \[
\sum_{n=0}^{\infty} p_a(n)z^n = \frac{1}{(1-z^{a_1})\cdots(1-z^{a_r})} = \sum_{\lambda^\ell=1}^{m(\lambda)} \sum_{t=1}^\infty \frac{c_{\lambda,\ell}}{(\lambda-z)^\ell},
\]
where \(m(\lambda) \) is the multiplicity of \(\lambda \) as a root of \((1-z^{a_1})\cdots(1-z^{a_r}) \).

In Proposition 5.4 we prove that

\[
c_{p_j,m} = \frac{\rho_j^n(m-1)!}{D} \sum_{t=m}^{m(p_j)} (-1)^{t-m} \binom{t}{m} \rho_j^\ell \sum_{\lambda^\ell=1}^{r-1} \left[\frac{r}{k+1} \right] \times
\]

\[
(-1)^{k-m+1} \binom{k}{m-1} \sum_{0 \leq j_1 \leq \frac{D}{a_1}-1, \ldots, 0 \leq j_r \leq \frac{D}{a_r}-1} \frac{D^{-k}(a_1j_1 + \cdots + a_rj_r)^{k-m+1}},
\]

where \(\binom{t}{m} \) are Stirling numbers of the second kind.

In Proposition 5.5 we prove that

\[
c_{1,m} = \frac{(m-1)!}{a_1 \cdots a_r} \sum_{\ell=m}^{r} (-1)^{\ell-m} \binom{\ell}{m-1} \sum_{i_1 + \cdots + i_r = r-\ell} \frac{B_{i_1} \cdots B_{i_r} a_1^{i_1} \cdots a_r^{i_r}}{i_1! \cdots i_r!}.
\]

In the case \(a = (1,2,\ldots,r) \) we reprove O’Sullivan’s formulas [9] for Rademacher’s coefficients \(c_{01m} \), see Corollary 5.6.

Given a sequence of positive integers \(a = (a_1,\ldots,a_r) \) with \(\gcd(a_1,\ldots,a_r) = 1 \), the Frobenius number of \(a \), denoted by \(F(a) = F(a_1,\ldots,a_r) \) is the largest integer \(n \) with the property that \(p_a(n) = 0 \). If \(\gcd(a_i,a_j) = 1 \) for all \(i \neq j \), we prove in Corollary 6.2 that \(F(A_1,\ldots,A_r) = D(r-1) - A_1 - \cdots - A_r \), where \(A_1 := \frac{D}{a_1}, \ldots, A_r := \frac{D}{a_r} \). This is a particular case of [10, Theorem 2.7] and appears also in [17, Theorem 1(a)].

2. PRELIMINARIES

Let \(a := (a_1,a_2,\ldots,a_r) \) be a sequence of positive integers, \(r \geq 1 \). The restricted partition function associated to \(a \) is \(p_a : \mathbb{N} \to \mathbb{N} \), \(p_a(n) := \) the number of integer solutions \((x_1,\ldots,x_r)\) of \(\sum_{i=1}^{r} a_ix_i = n \) with \(x_i \geq 0 \).

Let \(D \) be a common multiple of \(a_1,a_2,\ldots,a_r \). Bell [3] has proved that \(p_a(n) \) is a quasi-polynomial of degree \(r - 1 \), with the period \(D \), i.e.

\[
p_a(n) = d_{a,r-1}(n)n^{r-1} + \cdots + d_{a,1}(n)n + d_{a,0}(n),
\]
where $d_{a,m}(n+D) = d_{a,m}(n)$ for $0 \leq m \leq r-1$ and $n \geq 0$, and $d_{a,r-1}(n)$ is not identically zero. In the following, we recall several results from our previous paper [4].

Theorem 2.1 ([4, Theorem 2.8(1)]). For $0 \leq m \leq r-1$ and $n \geq 0$ we have

$$d_{a,m}(n) = \frac{1}{(r-1)!} \sum_{0 \leq j_1 \leq \frac{D}{a_1} - 1, \ldots, 0 \leq j_r \leq \frac{D}{a_r} - 1} \sum_{a_1j_1 + \cdots + a_rj_r \equiv n \pmod{D}} r \sum_{k=m}^{r-1} \binom{r}{k+1} (-1)^{k-m} \binom{k}{m} \times D^{-k}(a_1j_1 + \cdots + a_rj_r)^{k-m}.$$

Corollary 2.2 ([4, Corollary 2.10]). We have

$$p_a(n) = \frac{1}{(r-1)!} \sum_{0 \leq j_1 \leq \frac{D}{a_1} - 1, \ldots, 0 \leq j_r \leq \frac{D}{a_r} - 1} \prod_{\ell=1}^{r-1} \left(\frac{n-a_1j_1 - \cdots - a_rj_r}{D} + \ell \right).$$

Corollary 2.3 ([4, Corollary 2.12]). For $n \geq 0$ we have $p_a(n) = 0$ if and only if $n < a_1j_1 + \cdots + a_rj_r$ for all $0 \leq j_1 \leq \frac{D}{a_1} - 1, \ldots, 0 \leq j_r \leq \frac{D}{a_r} - 1$ with $a_1j_1 + \cdots + a_rj_r \equiv n \pmod{D}$.

We also recall the following result of Beck, Gessler and Komatsu [1, page 2]. See also [4, Corollary 2.11].

Theorem 2.4. The polynomial part of $p_a(n)$ is

$$P_a(n) := \frac{1}{a_1 \cdots a_r} \sum_{u=0}^{r-1} \frac{(-1)^u}{(r-1-u)!} \sum_{i_1+\cdots+i_r=u} B_{i_1} \cdots B_{i_r} a_1^{i_1} \cdots a_r^{i_r} n^{r-1-u}.$$

3. A Formula and A Congruence For $p_a(n)$

Let $a := (a_1, a_2, \ldots, a_r)$ be a sequence of positive integers, $r \geq 1$. It holds that

$$\sum_{n=0}^{\infty} p_a(n) z^n = \frac{1}{(1 - z^{a_1}) \cdots (1 - z^{a_r})}, \quad |z| < 1.$$

Let D be a common multiple of a_1, \ldots, a_r. Let

$$F_a(z) := \frac{(1 - z^D)^r}{(1 - z^{a_1}) \cdots (1 - z^{a_r})} = \prod_{i=1}^{r} (1 + z^{a_i} + \cdots + z^{a_i(\frac{D}{a_i} - 1)}) \cdot \frac{(1-z^D)^r}{(1 - z^{a_1}) \cdots (1 - z^{a_r})}.$$

Let $d := rD - a_1 - \cdots - a_r$. Since $F_a(z) = z^d F_a(\frac{1}{z})$, it follows that

$$F_a(z) = f_a(d) z^d + \cdots + f_a(1) z + f_a(0).$$
is a reciprocal polynomial, that is \(f_a(d - n) = f_a(n) \) for \(0 \leq n \leq d \). Let \(f_a(n) := 0 \) for \(n \geq d + 1 \). It holds that

\[
 f_a(n) = \# \{(j_1, \ldots, j_r) : a_1 j_1 + \cdots + a_r j_r = n, \ 0 \leq j_k \leq \frac{D}{a_k} - 1, \ 1 \leq k \leq r \}. \]

From the power series identity

\[
 \sum_{n=0}^{\infty} f_a(n) z^n = F_a(z) = (1 - z^D)^r \sum_{n=0}^{\infty} p_a(n) z^n = \sum_{n=0}^{\infty} p_a(n) \sum_{j=0}^{\infty} \binom{r}{j} (-1)^j z^{n+jD}
\]

it follows that

\[
 f_a(n) = \binom{n}{D} \sum_{j=0}^{\lfloor \frac{n}{D} \rfloor} \binom{r}{j} (-1)^j p_a(n - jD), \ n \geq 0.
\]

Proposition 3.1. For \(n \geq 0 \) we have that

\[
 f_a(n) = \frac{1}{(r-1)!} \sum_{j=0}^{\lfloor \frac{n}{D} \rfloor} \binom{r}{j} (-1)^j \sum_{0 \leq j_1 \leq \frac{D}{a_1} - 1, \ldots, 0 \leq j_r \leq \frac{D}{a_r} - 1, a_1 j_1 + \cdots + a_r j_r \equiv n \pmod{D}}^{r-1} \prod_{\ell=1}^{r-1} \left(\frac{n - a_1 j_1 - \cdots - a_r j_r}{D} + \ell - j \right).
\]

Proof. It follows from Corollary 2.2 and (3.1). \(\square \)

Proposition 3.2 (compare [11, Theorem 1]). It holds that

\[
 p_a(n) = \sum_{j=0}^{\lfloor \frac{n}{D} \rfloor} \binom{r+j-1}{j} f_a(n - jD), \ n \geq 0.
\]

Proof. Denote \(k := \lfloor \frac{n}{D} \rfloor \). From (3.1) we get the following system of linear equations in the indeterminates \(p_a(n - jD), \ 0 \leq j \leq k \)

\[
 \sum_{j=t}^{k} \binom{r}{j-t} (-1)^{j-t} p_a(n - jD) = f_a(n - tD), \ 0 \leq t \leq k.
\]

It follows that

\[
 p_a(n) = \sum_{j=0}^{k} (-1)^j \Delta_j f_a(n - jD),
\]

where \(\Delta_0 = 1 \) and \(\Delta_j = - \sum_{i=0}^{j-1} \binom{r}{j-i} \Delta_i \). Using induction on \(j \geq 0 \) it follows that \(\Delta_j = (-1)^j \binom{r+j-1}{j} \) for all \(0 \leq j \leq k \). Hence

\[
 p_a(n) = \sum_{j=0}^{k} \binom{r+j-1}{j} f_a(n - jD).
\]

\(\square \)
Corollary 3.3. For \(n \geq 0 \) it holds that
\[
(r - 1)! p_a(n) = \sum_{j=\left[\frac{n}{D}\right] - r}^{\left[\frac{n+\sigma}{D}\right]} (j + 1) \cdots (j + r - 1) f_a(n - jD),
\]
where \(\sigma = a_1 + \cdots + a_r \).

Proof. For \(n - jD > rD - \sigma \) it holds that \(f_a(n - jD) = 0 \). From Proposition 3.2 it follows that
\[
(r - 1)! p_a(n) = \sum_{j=0}^{\left[\frac{n}{D}\right]} (r - 1)! \binom{r + j - 1}{j} f_a(n - jD)
\]
\[
= \sum_{j=\left[\frac{n+\sigma}{D}\right] - r}^{\left[\frac{n+\sigma}{D}\right]} (j + 1) \cdots (j + r - 1) f_a(n - jD).
\]

Corollary 3.4 (compare [11, Theorem 2]). For \(n \geq 0 \) it holds that
\[
(r - 1)! p_a(n) \equiv 0 \mod (j + k + 1)(j + k + 2) \cdots \cdot (j + r - 1),
\]
where \(k = \left[\frac{n}{D}\right] - \left[\frac{n+\sigma}{D}\right] + r, \sigma = a_1 + \cdots + a_r \).

Proof. For \(\left[\frac{n+\sigma}{D}\right] - r \leq j \leq \left[\frac{n}{D}\right] \) it holds that
\[
(j + 1) \cdots (j + r - 1) \equiv 0 \mod (j + k + 1) \cdots (j + r - 1).
\]
Apply now Corollary 3.3. \(\Box \)

4. QUASI-POLYNOMIALS

Let \(p : \mathbb{N} \to \mathbb{C} \) be a quasi-polynomial of degree \(r - 1 \geq 0 \),
\[
p(n) := d_{r-1}(n)n^{r-1} + \cdots + d_1(n)n + d_0(n),
\]
where \(d_m(n) \)'s are periodic functions with integral period \(D > 0 \) and \(d_{r-1}(n) \) is not identically zero.

According to [14, Proposition 4.4.1], we have
\[
\sum_{n=0}^{\infty} p(n)z^n = \frac{L(z)}{M(z)},
\]
where \(L(z), M(z) \in \mathbb{C}[z] \), every zero \(\lambda \) of \(M(z) \) satisfies \(\lambda^D = 1 \) (provided \(\frac{L(z)}{M(z)} \) has been reduced to lowest terms), and \(\deg L(z) < \deg M(z) \). Moreover,
\[
p(n) = \sum_{\lambda^D=1} P_\lambda(n)\lambda^{-n},
\]
where each $P_\lambda(n)$ is a polynomial function with $\deg P_\lambda(n) \leq m(\lambda) - 1$, where $m(\lambda)$ is the multiplicity of λ as a root of $M(z)$. We define the polynomial part of $p(n)$ to be the polynomial function $P(n) := P_1(n)$.

Let $\gamma \in \mathbb{C}$ with $\gamma^D = 1$. It holds that

$$p_\gamma(n) := \gamma^n p(n) = \sum_{\lambda^D = 1} P_\lambda(n)(\gamma \cdot \lambda^{-1})^n,$$

hence $P_\gamma(n)$ is the polynomial part of $p_\gamma(n)$.

Proposition 4.1 ([4, Proposition 3.5]). It holds that

$$P_\gamma(n) = R_{\gamma,m(\gamma)} n^{r-1} + \cdots + R_{\gamma,2} n + R_{\gamma,1},$$

where $R_{\gamma,m} = \frac{1}{D} \sum_{v=0}^{D-1} \gamma^v d_{m-1}(v)$, $1 \leq m \leq m(\gamma)$.

Consider the decomposition

$$\sum_{n=0}^{\infty} p(n) z^n = \frac{L(z)}{M(z)} = \sum_{M(\lambda) = 0} \sum_{\ell = 1}^{m(\lambda)} \frac{c_{\gamma,\ell}}{(\lambda - z)^\ell}.$$

Let γ be a root of $M(z)$. Since the decomposition (4.1) is unique, it follows that

$$\sum_{n=0}^{\infty} P_\gamma(n) \gamma^{-n} z^n = \sum_{\ell = 1}^{m(\gamma)} \frac{c_{\gamma,\ell}}{\gamma^\ell} \left(\sum_{n=0}^{\infty} \gamma^{-n} z^n \right)^\ell = \sum_{\ell = 1}^{m(\gamma)} \frac{c_{\gamma,\ell}}{\gamma^\ell} \sum_{n=0}^{\infty} \left(n + \ell - 1 \choose \ell - 1 \right) \gamma^{-n} z^n.$$

It follows that

$$P_\gamma(n) = \sum_{\ell = 1}^{m(\gamma)} \frac{c_{\gamma,\ell}}{\gamma^\ell} \left(n + \ell - 1 \choose \ell - 1 \right).$$

The Stirling numbers of the second kind, denoted by $\{n \atop k\}$, count the number of ways to partition a set of n labelled objects into k nonempty unlabelled subsets. They are related with the unsigned Stirling numbers of the first kind by

$$\sum_{k=0}^{n} \left\{ n \atop k \right\} \sum_{\ell=0}^{k} (-1)^\ell \left[k \atop \ell \right] = (-1)^n \quad (4.3)$$

Proposition 4.2. For each $1 \leq m \leq m(\gamma)$ it holds that

$$c_{\gamma,m} = \gamma^m (m - 1)! \sum_{\ell = m}^{m(\gamma)} (-1)^{m-\ell} \left\{ \ell \atop m \right\} \frac{1}{D} \sum_{v=0}^{D-1} \gamma^v d_{\ell-1}(v).$$
Proof. From Proposition 4.1 and (4.2) it follows that \(R_{\gamma,m} = 0 \) for all \(m > m(\gamma) \) and

\[
R_{\gamma,m} = \sum_{\ell=1}^{m(\gamma)} \frac{c_{\gamma,\ell}}{\gamma^\ell (\ell - 1)!} \left[\ell \atop m \right], \quad 1 \leq m \leq m(\gamma).
\]

From (4.3) and (4.4) it follows that

\[
c_{\gamma,m} = \gamma^m (m - 1)! \sum_{\ell=m}^{m(\gamma)} (-1)^{\ell-m} \left\{ \ell \atop m \right\} R_{\gamma,\ell},
\]

hence, the conclusion follows from Proposition 4.1. \(\square \)

5. SYLVESTER WAVES AND THE PARTIAL FRACTION DECOMPOSITION OF \(\sum_{n=0}^{\infty} p_\mathbf{a}(n)z^n \)

Let \(\mathbf{a} = (a_1, \ldots, a_r) \) a sequence of positive integers. We write \(p_\mathbf{a}(n) \) as a sum of waves

\[p_\mathbf{a}(n) = \sum_j W_j(n, \mathbf{a}), \]

where the sum is taken over the \(j \geq 1 \) with \(j|a_i \) for some \(1 \leq i \leq r \). We have that

\[
W_j(n, \mathbf{a}) = P_{\mathbf{a},\rho_j}(n)\rho_j^{-n},
\]

where \(\rho_j := e^{\frac{2\pi i}{j}} \) and \(P_{\mathbf{a},\rho_j}(n) \) is the polynomial part of the quasi-polynomial \(\rho_j^n p_\mathbf{a}(n) \).

PROPOSITION 5.1. We have that

\[
W_j(n, \mathbf{a}) = \rho_j^{-n}(R_{j,m(j)} \cdot n^{m(j)-1} + \cdots + R_{j,2} \cdot n + R_{j,1}),
\]

where \(m(j) = \# \{ i : j|a_i \} \) and \(R_{j,m} = \frac{1}{D} \sum_{v=0}^{D-1} \rho_j^v d_{a,m-1}(v) \) for \(1 \leq m \leq m(j) \).

Proof. It follows from Proposition 4.1 and (5.1). \(\square \)

PROPOSITION 5.2. For any positive integer \(j \) with \(j|a_i \) for some \(1 \leq i \leq r \), we have that:

\[
W_j(n, \mathbf{a}) = \frac{1}{D(r-1)!} \sum_{m=1}^{r} \sum_{\ell=1}^{j} \rho_j^\ell \sum_{k=m-1}^{r-1} \left[\binom{r}{k+1} \right] (-1)^{k-m+1} \left(\binom{k}{m-1} \right) \times \\
\sum_{0 \leq j_1 \leq \frac{D}{a_1} - 1, \ldots, 0 \leq j_r \leq \frac{D}{a_r} - 1} D^{-k}(a_1j_1 + \cdots + a_rj_r)^{k-m+1}n^{m-1}.
\]
Proof. It follows from Proposition 5.1 and Theorem 2.1. \qed

Proposition 5.3. If a_1, \ldots, a_r are pairwise coprimes then

$$p_a(n) = \sum_{m=1}^{r} (-1)^{r-m} \frac{(a_1 \cdot a_r)(m-1)!}{(a_1 \cdot a_r)(m-1)!} \sum_{i_1+\cdots+i_r = r-m} \frac{B_{i_1} \cdots B_{i_r}}{i_1! \cdots i_r!} a_1^{i_1} \cdots a_r^{i_r} n^{m-1} + \frac{1}{D(r-1)!}.$$

\[\cdot \sum_{j \neq 1} \sum_{\ell=1}^{j} \rho_j^{r-1} \sum_{k=0}^{r} \frac{1}{D^k} \sum_{k+1}^{r} (-1)^{r-k} \sum_{0 \leq j_1 \leq \frac{D}{a_1} - 1, \ldots, 0 \leq j_r \leq \frac{D}{a_r} - 1} a_1 j_1 + \cdots + a_r j_r \equiv \ell \mod j \]

where $j \mid a_i$ for some $1 \leq i \leq r$.

Proof. Since a_1, \ldots, a_r are pairwise coprimes, it follows that $W_j(a, n)$ is a quasi-polynomial of degree 0. Hence, the conclusion follows from Proposition 4.1 and Proposition 4.2. \qed

Another formulas for $p_a(n)$ in the case that a_1, \ldots, a_r are pairwise coprimes were proved in [5, Theorem C, pag 113], [2, Theorem 3.1] and [8]. We consider the decomposition

$$\sum_{n=0}^{\infty} p_a(n) z^n = \frac{1}{(1 - z^{a_1}) \cdots (1 - z^{a_r})} = \sum_{\lambda} \sum_{\ell=1}^{m(\lambda)} c_{\lambda, \ell} (\lambda - z)^{\ell},$$

where the sum it taken over the λ's with $\lambda^{a_i} = 1$ for some $1 \leq i \leq r$.

Proposition 5.4. Let $j \geq 1$. For $1 \leq m \leq m(j)$ we have that

$$c_{p_{j,m}} = \frac{\rho_j^m (m-1)!}{D} \sum_{t=m}^{j} (-1)^{t-m} \binom{t}{m} \sum_{\ell=1}^{j} \rho_j^r \sum_{k=m-1}^{r-1} \left[\frac{1}{k+1} \right] (-1)^{k-m+1} \binom{k}{m-1}.\]

\[\cdot \sum_{0 \leq j_1 \leq \frac{D}{a_1} - 1, \ldots, 0 \leq j_r \leq \frac{D}{a_r} - 1} a_1 j_1 + \cdots + a_r j_r \equiv \ell \mod j \]

Proof. It follows from Propositions 4.2, 5.1, and 5.2. \qed

Proposition 5.5. For $1 \leq m \leq r$ it holds that

$$c_m = \frac{(m-1)!}{a_1 \cdots a_r} \sum_{\ell=m}^{r} (-1)^{\ell-m} \binom{\ell}{m} \sum_{i_1+\cdots+i_r = r-\ell} \frac{B_{i_1} \cdots B_{i_r}}{i_1! \cdots i_r!} a_1^{i_1} \cdots a_r^{i_r},$$

where $c_m := c_{1,m}$.

Proof. It follows from Theorem 2.4, Proposition 4.1 and Proposition 5.4. \qed
Let \(r \geq 1 \), \(\mathbf{r} := (1, 2, \ldots, r) \). Rademacher’s coefficients \(c_{\omega h k \ell}(r) \) are defined by

\[
\sum_{n=0}^{\infty} p_r(n) z^n = \frac{1}{(1 - z)(1 - z^2) \cdots (1 - z^r)} = \sum_{0 \leq h < r, (h, k) = 1} \sum_{\ell = 1}^{\lfloor \frac{r}{k} \rfloor} \frac{c_{\omega h k \ell}(r)}{(z - \omega h k)^\ell},
\]

where \(\omega_{h k} := e^{2\pi i \frac{h}{k}} \). In the previous notations \(c_{\omega h k \ell}(r) = (-1)^\ell c_{\omega h k, \ell} \). As a direct consequence of Proposition 5.5 we get the following result of C. O’Sullivan [9]:

Corollary 5.6 ([9, Proposition 2.3]). For \(1 \leq m \leq r \) it holds that

\[
c_{01m}(r) = \frac{(-1)^r (m-1)!}{r!} \sum_{\ell=m}^{r} \frac{\{\ell\}_m}{(\ell-1)!} \sum_{i_1 + \cdots + i_r = r - \ell} \frac{B_{i_1} \cdots B_{i_r} 1_{i_1} 2_{i_2} \cdots r_{i_r}}{i_1! \cdots i_r!}
\]

6. Frobenius Number

Given a sequence of positive integers \(\mathbf{a} = (a_1, \ldots, a_r) \) that satisfy \(\gcd(a_1, \ldots, a_r) = 1 \), the Frobenius number of \(\mathbf{a} \), denoted by \(F(\mathbf{a}) = F(a_1, \ldots, a_r) \), is the largest integer \(n \) with the property that \(p_\mathbf{a}(n) = 0 \).

Proposition 6.1. Let \(\mathbf{a} = (a_1, \ldots, a_r) \) with \(\gcd(a_1, \ldots, a_r) = 1 \) and \(D = \text{lcm}(a_1, \ldots, a_r) \). We have that

\[
F(a_1, \ldots, a_r) \leq D(r-1) - a_1 - \cdots - a_r.
\]

Proof. Let \(n \) be an integer with \(p_\mathbf{a}(n) = 0 \). Since the map

\[
\varphi : \mathbb{Z}/a_1 \mathbb{Z} \times \cdots \times \mathbb{Z}/a_r \mathbb{Z} \to \mathbb{Z}/D \mathbb{Z}, \quad \varphi(\hat{a}_1, \ldots, \hat{a}_r) := \frac{a_1 j_1 + \cdots + a_r j_r}{n \mod D}
\]

is a surjective morphism, it follows that there exists some integers \(0 \leq j_1 \leq \frac{D}{a_1} - 1, \ldots, 0 \leq j_r \leq \frac{D}{a_r} - 1 \) such that \(a_1 j_1 + \cdots + a_r j_r \equiv n \pmod{D} \).

From Corollary 2.3 it follows that \(n < a_1 j_1 + \cdots + a_r j_r \), hence

\[
n \leq a_1 j_1 + \cdots + a_r j_r - D \leq (D-1)r - a_1 - \cdots - a_r.
\]

The following corollary is a particular case of [10, Theorem 2.7] and appears also in [17, Theorem 1(a)].

Corollary 6.2. Let \(\mathbf{a} = (a_1, \ldots, a_r) \) such that \(\gcd(a_i, a_j) = 1 \) for all \(i \neq j \), \(D = \text{lcm}(a_1, \ldots, a_r) = a_1 \cdots a_r \), \(A_i := \frac{D}{a_i} \), \(1 \leq i \leq r \). It holds that

\[
F(A_1, \ldots, A_r) = D(r-1) - A_1 - \cdots - A_r.
\]

Proof. It holds that \(D = \text{lcm}(A_1, \ldots, A_r) \). From Lemma 6.1 it follows that

\[
F(A_1, \ldots, A_r) \leq D(r-1) - A_1 - \cdots - A_r.
\]
Suppose that $D(r - 1) - A_1 - \cdots - A_r = A_1 j_1 + \cdots + A_r j_r$ with $j_k \geq 0$ for $1 \leq k \leq r$, hence

$$D(r - 1) = A_1 (j_1 + 1) + \cdots + A_r (j_r + 1), \quad r - 1 = \frac{j_1 + 1}{a_1} + \cdots + \frac{j_r + 1}{a_r}.$$

Since $\gcd(a_i, a_j) = 1$ it follows that $a_k | (j_k + 1)$ for all $1 \leq k \leq r$. Since $j_k \geq 0$ we get

$$r - 1 = \frac{j_1 + 1}{a_1} + \cdots + \frac{j_r + 1}{a_r} \geq r,$$

a contradiction. So $F(A_1, \ldots, A_r) \geq D(r - 1) - A_1 - \cdots - A_r$.

Acknowledgments. The author express his gratitude to Florin Nicolae for discussions and valuable suggestions which helped to improve this paper.

REFERENCES

Received January 24, 2018

University “Politehnica” of Bucharest
Faculty of Applied Sciences
060042 Bucharest, Romania

and

“Simion Stoilow” Institute of Mathematics
of the Romanian Academy
Research unit 5,
P.O.Box 1-764, Bucharest 014700, Romania
mircea.cimpoeas@upb.ro, mircea.cimpoeas@imar.ro