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The main aim of this paper is to study the limit joint distribution function (df)
of any two extreme, as well as central, m-generalized order statistics (m−gos)
of a stationary Gaussian sequence under an equi-correlated set-up. It is shown
that under this general set-up, any lower and upper extremes are asymptotically
dependent unless the correlation is of order ◦( 1

logn
), on the contrary of gos based

on i.i.d random variables (rv’s). Moreover, under this general framework of
study, the classes of possible non-degenerate limit df’s of the generalized quasi-
ranges, quasi-mid-ranges, extremal quotient, extremal product and the ratio of
the symmetric differences of m−gos are obtained. It is worth mentioning that,
the results of this paper contribute not only to a critical assessment of existing
statistical methodology, but also help to address their limitations within different
contexts
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1. INTRODUCTION

The concept of generalized order statistics (gos) was introduced by [17],
as a general framework for models of ordered rv’s. In testing the strength of
materials, reliability analysis, lifetime studies, etc., the realizations of experi-
ments arise in nondecreasing order and therefore we need to consider several
models of ascendingly ordered rv’s. Many practical important models of or-
dered rv’s, such as ordinary order statistics (oos), progressively type II censored
order statistics, upper record values and sequential order statistics (sos), are
seen to be particular cases of gos. These models can be effectively applied.
For example, in reliability theory the rth order statistic in a sample of size n
represents the life-length of a (n−r+1)-out of-n-system, which is an important
technical structure. A more flexible and more adequate model for a (n−r+1)-
out-of-n-system is sos, which has to take a specific dependence structure into
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consideration. Namely, if some component of the system fails, this may have
an influence on the life-length distributions of the remaining components.

Let γn = k > 0, γi = k+n− i+
∑n−1

j=i mj > 0, i = 1, 2, ..., n−1, and m̃ =

(m1, m2, · · · ,mn−1) ∈ <n−1. Then, the rv’s X(1, n, m̃, k) ≤ X(2, n, m̃, k) ≤
... ≤ X(n, n, m̃, k) are called gos based on a continuous df F, with probability
density function (pdf) f, which are defined via their pdf

f
(m̃,k)
1,2,...,n:n(x1, x2, ..., xn) =

 n∏
j=1

γj

n−1∏
j=1

(1− F (xj))
γj−γj+1−1f(xj)

×
(1− F (xn))γn−1f(xn),

where F−1(0) ≤ x1 ≤ ... ≤ xn ≤ F−1(1). Particular choices of the parameters
γ1, γ2, ..., γn lead to different models, e.g., m−gos (γi = k+ (n− i)(m+ 1), i =
1, 2, ..., n−1), oos (k = 1, γi = n− i+1, i = 1, 2, ..., n−1) and sos (k = αn, γi =
(n− i+ 1)αi, i = 1, 2, ..., n− 1) (see [17]).

In this work, we consider a wide subclass of gos, specifically when m1 =
m2 = ... = mn−1 = m 6= −1. This subclass is known as m−gos. Clearly,
most of the known practical models of gos are included in this subclass such
as oos, type II censored order statistics, sos and order statistics with non-
integral sample size (the order statistics with non-integral sample size have
been introduced as an extension of oos. Moreover, these quantities can be
interpreted as certain sos, cf. [17].

Nasri-Roudsar [21] (see also [4]) derived the marginal df of the (n−i+1)th

m−gos, in the form Φ
(m,k)
n−i+1:n(x) = IGm(x)(Nn − Ri + 1, Ri), where Gm(x) =

1 − (1 − F (x))m+1 = 1 − F
m+1

(x), Nn = k
m+1 + n − 1, Ri = k

m+1 + i − 1

and Ix(a, b) = 1
β(a,b)

∫ x
0 t

a−1(1 − t)b−1dt is the incomplete beta ratio function.
The possible non-degenerate limit distributions and the convergence rate of
the upper extreme m−gos, i.e., (n− i+ 1)th m−gos for fixed i, were discussed
in [22]. The necessary and sufficient conditions of the weak convergence, as
n→∞, as well as the form of the possible limit df’s of extreme, intermediate
and central m−gos were derived in [4].

The asymptotic theory of oos of stationary normal sequences has found
many applications, as testified by many references, among them are [1, 9,
18]. Let X1, X2, ..., Xn be a Gaussian sequence with zero expectation, unit
variance and correlation rn = E(XiXj) ≥ 0, i 6= j. This sequence can be
replaced, by the sequence Xj =

√
rn Y0 +

√
1− rn Yj , 1 ≤ j ≤ n, for the

i.i.d standard normal variates Y0, Y1, ..., Yn. Moreover, Xj = Yj , for rn = 0 (cf.
[14]). Therefore, for any 0 ≤ i ≤ n, we get

(1) X(i, n,m, k) =
√
rn Y0 +

√
1− rn Y (i, n,m, k),
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where X(i, n,m, k) and Y (i, n,m, k) are the ith m−gos based on X1, X2, ..., Xn

and Y1, Y2, ..., Yn, respectively. In a recent paper [9], the limit df’s of extreme,
intermediate and central oos of a stationary Gaussian sequence under equi-
correlated set-up, when the random sample size is assumed to converge weakly,
were derived. These results were generalized by [10] for m−gos.

In Section 2 of this paper we will develop the limit theory for gos, by re-
vealing the asymptotic dependence structural between the members of m−gos
of the stationary Gaussian sequence {X(i, n,m, k)}. Namely, for any 1 ≤ ` <
s < n, the limit joint df’s of the m−gos X(n − s + 1, n,m, k) and X(n − ` +
1, n,m, k), or X(`, n,m, k) and X(s, n,m, k), or X(`, n,m, k) and X(n − s +
1, n,m, k) (in this case 1 ≤ `, s < n), or X(`n, n,m, k) and X(sn, n,m, k), when
m 6= −1, are derived in extreme case (i.e., 1 ≤ ` < s ≤ n are fixed with respect
to n) and in the central case, where `n, sn →∞ and `n

Nn
→ λ1,

sn
Nn
→ λ2, where

0 < λ1 < λ2 < 1, as Nn → ∞ (or equivalently, as n → ∞). A remarkable ex-
ample of the central oos is the pth sample quantile, where `n = [np], 0 < p < 1,
and [x] denotes the largest integer not exceeding x. It is revealed that under this
general set-up, any lower and upper extremes are asymptotically dependent,
unless rn log n→ 0, as n→∞.

In Section 3, we will study the classes of possible non-degenerate limit df’s
of the suitably normalized generalized quasi-ranges, quasi-mid-ranges, extremal
quotient and extremal product. These important functions when they based
on oos were studied extensively in [3, 6, 7, 16]. Moreover, these functions,
when they based on m−gos, which are arising from i.i.d rv’s, were studied in
[11]. Also, in Section 3, we will study the asymptotic behavior of the ratio of
the symmetric differences of m−gos of a stationary Gaussian sequence X =
(X1, X2, ..., Xn) defined in (1),

4n(m, k|X) =
X(`4;n, n,m, k)−X(`2;n, n,m, k)

X(`3;n, n,m, k)−X(`1;n, n,m, k)
,

where qi, i = 1, 2, 3, 4 , 0 < q2 < q1 < 1
2 , q3 = (1 − q1) < q4 = (1 − q2),

`3;n = n − `1;n + 1 and `4;n = n − `2;n + 1. The statistic 4n(0, 1|W ), based
on a general sequence of i.i.d rv’s W1,W2, ...,Wn, was studied in [5], while
the general statistic 4n(m, k|W ) was recently studied in [12]. Section 4 is
devoted to indicate some potential applications of the main results of the paper
(Theorems 1-3 and 5).

Everywhere in what follows the symbols −→n ,
w−→n and

p−→n stand
for convergence, converge weakly and converge in probability, as n → ∞,
respectively. Moreover, for every i, x ≥ 0, Γi(x) = 1

Γ(i)

∫ x
0 t

i−1e−tdt stands for

the incomplete gamma ratio function (the gamma df), while Γ̄i(x) = 1−Γi(x)
denotes its survivor function. Also the symbol “∗” denotes the convolution
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operation. Finally, φ(z) = 1√
2π
e−

1
2
z2 is the standard pdf and Φ(z) is its df (i.e.,

the normal df), while Φµ;σ2(z) is normal df with mean µ and variance σ2.

2. THE ASYMPTOTIC DEPENDENCE STRUCTURAL OF
m−gos IN A STATIONARY GAUSSIAN SEQUENCE

The following theorems reveal the asymptotic dependence structural of
m−gos, m ≥ −1, in a stationary Gaussian sequence in the following cases:
upper-upper extreme, lower-lower extreme, lower-upper extreme m−gos and
central-central m−gos, respectively.

Theorem 1 (the joint df of upper-upper extreme m−gos). Let m ≥ −1

and let an,m = 1
bn,m
− 1

2bn,m(log log n
1

m+1 + log 4π) and bn,m = ( 2
m+1 log n)

−1
2 .

If rn log n −→n τ ∈ [0,∞), then

P (X(n− s+ 1, n,m, k) ≤ x1;n, X(n− `+ 1, n,m, k) ≤ x2;n) =

Ψ
(m,k)
n−s+1,n−`+1:n(x1;n, x2;n)

w−→n

∫∞
−∞ Γ̄R`(e

−(m+1)(x2−z)−τ )dΦ(
√

m+1
2τ z), x1 ≥ x2,∫∞

−∞ Γ̄Rs(e
−(m+1)(x1−z)−τ )dΦ(

√
m+1
2τ z)

− 1
Γ(Rs)

∫∞
−∞

∫∞
e−(m+1)(x1−z)−τ I e−(m+1)(x2−z)−τ

t

(R`, Rs −R`)×

tRs−1e−tdtdΦ(
√

m+1
2τ z), x1 ≤ x2,

(2)

where xi;n = bn,mxi + an,m, i = 1, 2. Otherwise (i.e., if rn log n −→n ∞),

(3) Ψ
(m,k)
n−s+1,n−`+1:n(x?1;n, x

?
2;n)

w−→n Φ(min(x1, x2)),

where x?i;n =
√
rnxi +

√
1− rnan,m, i = 1, 2.

Proof. By using the representation (1) and in view of the independence
of Y0 and Yi, i = 1, 2, ..., n, we can write

Ψ
(m,k)
n−s+1,n−`+1:n(x1;n, x2;n)

=

∫ ∞
−∞

P (X(n−s+1, n,m, k) ≤ x1;n, X(n−`+1, n,m, k) ≤ x2;n|Y0 = y)φ(y)dy

=

∫ ∞
−∞

P (Y (n− s+ 1, n,m, k) ≤ x1;n(y), Y (n− `+ 1, n,m, k) ≤ x2;n(y))φ(y)dy

(4) =

∫ ∞
−∞

Φ
(m,k)
n−s+1,n−`+1:n(x1;n(y), x2;n(y))φ(y)dy,
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where, xi,n(y) = Bn,mxi+An,m, i = 1, 2, Bn,m =
bn,m√
1−rn

, An,m =
an,m−

√
rny√

1−rn
and

Φ
(m,k)
n−s+1,n−`+1:n (x1;n(y), x2;n(y)) = P (Y (n−s+1, n,m, k) ≤ x1;n(y), Y (n−`+

1, n,m, k) ≤ x2;n(y)). On the other hand, by using Theorem 2.1, the relation
(2.7) in [8] and by applying Theorem 2.1 in [4] on the normal upper extreme
m−gos, we get

Φ
(m,k)
n−s+1,n−`+1:n(x1;n, x2;n)

w−→n
Γ̄R`(e

−(m+1)x2), x1 ≥ x2,

Γ̄Rs(e
−(m+1)x1)− 1

Γ(Rs)

∫∞
e−(m+1)x1 I e−(m+1)x2

t

(R`, Rs −R`)tRs−1e−tdt,

x1 ≤ x2.

(5)

Therefore, in view of Khinchin’s type theorem and by using the transfor-

mation z =
√

2τ
m+1y, the relations (4) and (5) yield (2), if we show that

An,m−an,m
bn,m

−→n τ
m+1 −

√
2τ
m+1y and

Bn,m
bn,m

−→n 1. The later is evident from the

assumption that rn log n −→n τ ≥ 0 (this assumption yields rn −→n 0). Hence,
only the first relation needs proof. Applying that

√
1− rn = 1− 1

2rn(1 + ◦(1))

and bearing in mind that rn log logn
1

m+1 = (rn log n)( logn−log(m+1)
logn ) −→n 0, we

can verify that

An,m − an,m
bn,m

=
−√rny + 1

2rnan,m(1 + ◦(1))

bn,m

= −
√

2

m+ 1
rn log n y +

rn log n

m+ 1
− rn

4

[
log logn

1
m+1 + log 4π

]
−→n

τ

m+ 1
−
√

2τ

m+ 1
y.

Turning now to the case rn log n −→ ∞, for which we start with the relation

(4), with x?i;n(y) =
√

rn
1−rn (xi − y) + an,m, i = 1, 2. Now, for every ε > 0, we

have

P

(√
1− rn
rn
|Y (n− ji + 1, n,m, k)− an,m| ≥ ε

)
≤ P (|Y (n− ji + 1, n,m, k)− an,m| ≥

√
rnε)

= P

(
|Y (n− ji + 1, n,m, k)− an,m

bn,m
| ≥ (

2

m+ 1
rn log n)

1
2 ε

)
−→n 0,

i = 1, 2, j1 = `, j2 = s. Thus, the df P (|(
√

1−rn
rn
|Y (n− ji + 1, n,m, k)− an,m| ≤

xi − y), i = 1, 2, has a degenerate limit df at zero, i.e., has the limit

∈ (xi − y) =

{
1, xi − y ≥ 0,
0, xi − y < 0, i = 1, 2.
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Consequently, by using the transformation z = −y, we get

(6) Ψ
(m,k)
n−s+1,n−`+1:n(x?1;n, x

?
2;n)

w−→n

∫ ∞
−∞
∈ (x1 + z, x2 + z)φ(z)dz,

where

(7) ∈ (x1 + z, x2 + z) =

{
1, z ≥ max(−x1,−x2) = −min(x1, x2),
0, z < max(−x1,−x2) = −min(x1, x2).

The required relation (3) is now followed by combining (6) with (7). This
completes the proof of Theorem 1.

Corollary 1. Suppose the conditions in Theorem 1 hold with x1 = x
and x2 → ∞. If rn log n −→n τ ∈ [0,∞), then the marginal df of X(n − s +
1, n,m, k) admits the following limiting representation

P

(
X(n− s+ 1, n,m, k)− an,m

bn,m
≤ x

)
w−→n Ψ(m,k)

s (x)

= Γ̄Rs(e
−(m+1)x−τ ) ∗ Φ(

√
m+ 1

2τ
x).

Otherwise (i.e., if rn log n −→n ∞),

P

(
X(n− s+ 1, n,m, k)−

√
1− rnan,m√

rn
≤ x

)
w−→n Φ(x)

(see [10]).

Theorem 2 (the joint df of lower-lower extreme m−gos). Let m ≥ −1
and let ãn,m = −b̃−1

n,m+ 1
2 b̃n,m(log log n(m+1))+log 4π) and b̃n,m = (2 log n(m+

1))
−1
2 . If rn log n −→n τ ∈ [0,∞), then

P (X(`, n,m, k) ≤ x̃1;n, X(s, n,m, k) ≤ x̃2;n) = Ψ
(m,k)
`,s:n (x̃1;n, x̃2;n)

w−→n

{ ∫∞
−∞ Γs(e

x2−τ−z)dΦ( z√
2τ

), x1 ≥ x2,

1
(`−1)!

∫∞
−∞

∫ ex1−τ−z
0 Γs−`(e

x2−τ−z − t)t`−1e−tdtdΦ( z√
2τ

), x1 ≤ x2,

where x̃i;n = b̃n,mxi + ãn,m, i = 1, 2. Otherwise (i.e., if rn log n −→n ∞),

Ψ
(m,k)
`,s:n (x̃?1;n, x̃

?
2;n)

w−→n Φ(min(x1, x2)),

where x̃?i;n =
√
rnxi +

√
1− rnãn,m, i = 1, 2.

Proof. The proof is similar to the proof of Theorem 1 with only the
exception of obvious changes, e.g., we use the relation (2.6) of Theorem 2.1
in [8] instead of the relation (2.7) and by applying Theorem 2.1 in [4] on the
normal lower extreme m−gos. This completes the proof of Theorem 2.
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Corollary 2. Suppose the conditions in Theorem 2 hold with x1 = x
and x2 → ∞. If rn log n −→n τ ∈ [0,∞), then the marginal df of X(`, n,m, k)
admits the following limiting representation

P

(
X(`, n,m, k)− ãn,m

b̃n,m
≤ x

)
w−→n Ψ̃

(m,k)
` (x) = Γ`(e

x−τ ) ∗ Φ(
x√
2τ

).

Otherwise (i.e., if rn log n −→n ∞),

P

(
X(`, n,m, k) + (1− rn)

1
2 ãn,m√

rn
≤ x

)
w−→n Φ(x)

(see [10]).

Theorem 3 (the joint df of lower-upper extreme m−gos). Let m ≥ −1
and let x̃1;n, x̃

?
1;n, x2;n, x

?
2;n, x̃1;n(y), x̃?1;n(y), x2;n(y) and x?2;n(y) be defined as in

Theorems 1 and 2. If rn log n −→n τ ∈ [0,∞), then for all −∞ < x1, x2 <∞,
we have that ∫ ∞

−∞
Γ`(NnGm(x̃1n(y)))Γ̄Rs(NnḠm(x2n(y)))φ(y)dy

≤ P (X(`, n,m, k) ≤ x̃1;n, X(n− s+ 1, n,m, k) ≤ x2;n) = Ψ
(m,k)
`,n−s+1:n(x̃1;n, x2;n)

≤
∫ ∞
−∞

Γ`(NnGm(x̃1n(y)))(ΓRs(Nn)− ΓRs(NnḠm(x2n(y))))φ(y)dy

and

Ψ
(m,k)
`,n−s+1:n(x̃1;n, x2;n)

w−→n∫ ∞
−∞

Γ`(e
x1−τ−z

√
m+1)Γ̄Rs(e

−(m+1)(x2−z)−τ )dΦ(

√
m+ 1

2τ
z).

(8)

Otherwise, if rn log n −→n ∞, then∫ ∞
−∞

Γ`(NnGm(x̃?1n(y)))Γ̄Rs(NnḠm(x?2n(y)))φ(y)dy

≤ P (X(`, n,m, k) ≤ x̃?1;n, X(n− s+ 1, n,m, k) ≤ x?2;n) = Ψ
(m,k)
`,n−s+1:n(x̃?1;n, x

?
2;n)

≤
∫ ∞
−∞

Γ`(NnΓm(x̃?1n(y)))(ΓRs(Nn)− ΓRs(NnḠm(x?2n(y))))φ(y)dy

and

(9) Ψ
(m,k)
`,n−s+1:n(x̃?1;n, x

?
2;n)

w−→n Φ(min(x1, x2)).

REMARK 1. Clearly, Theorem 3 (the relations (8) and (9)) reveals that
the lower and upper extreme m−gos are asymptotically independent only if
rn log n −→n τ = 0.
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Proof. The proof of Theorem 3 is similar to the proof of Theorems 1 and
2, with only the exception of obvious changes, e.g. we use Lemma 2.5 besides
the relations (2.6) and (2.7) of Theorem 2.1 in [8] and we apply Theorem 2.1 in
[4] on the normal lower and upper extreme m−gos. This completes the proof
of Theorem 3.

Let 0 < λ1 < λ2 < 1 and x0i be such that Φ(x0i) = λi, i = 1, 2. Moreover,
let `n and sn be central rank sequences such that

√
n( `nn − λ1) −→n 0 and√

n( snn −λ2) −→n 0. It is known that (cf. [8], Lemma 3.1 and Theorem 3.1, see
also Theorem 2.2 of [4])

P

(
Y (`n, n,m, k)− x01

c1;n
≤ x1,

Y (sn, n,m, k)− x02

c2;n
≤ x2

)
w−→n BIN (

c∗λ1(m)

c∗λ1
(m+ 1)x1,

c∗λ2(m)

c∗λ2
(m+ 1)x2;R),

where ci,n =

√
λi(1−λi)√
nφ(x0i)

, i = 1, 2, cλi =
√
λi(1− λi), λi(m) = 1 − (1 − λi)

1
m+1 ,

c∗λi =
cλi

1−λi , i = 1, 2, and BIN (x1, x2;R) is the standard bivariate normal df

with correlation R =
√

λ1(1−λ2)
λ2(1−λ1) .

Under the above conditions concerning λi, i = 1, 2, `n and sn, the following
theorem gives the limit joint df of the (`n, sn)th central m-gos of Gaussian
sequence (1).

Theorem 4 (the joint df of central-central gos). Let m ≥ −1. If
nrn −→n τ ≥ 0, then

P

(
X(`n, n,m, k)− x01

c1;n
≤ x1,

X(sn, n,m, k)− x02

c2;n
≤ x2

)
w−→n∫ ∞

−∞
BIN

(
(m+ 1)c∗λ1(m)

c∗λ1
(x1 −

√
τφ(x01)√
λ1(1− λ1)

y),

(m+ 1)c∗λ2(m)

c∗λ2
(x2 −

√
τφ(x02)√
λ2(1− λ2)

y);R

)
φ(y)dy.

(10)

Moreover, if nrn −→n ∞, we have

P

(
X(`n, n,m, k)−(1−rn)

1
2x01√

rn
≤ x1,

X(sn, n,m, k)−(1−rn)
1
2x02√

rn
≤ x2

)
w−→n Φ(min(x1, x2)).

(11)
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Proof. By using the representation (1) and in view of the independence
of Y0 and Yi, i, 1, 2, ..., n, we can write

P

(
X(`n, n,m, k)− x01

c1;n
≤ x1,

X(sn, n,m, k)− x02

c2;n
≤ x2

)
=

∫ ∞
−∞

P (X(`n, n,m, k) ≤ c1;nx1 + x01,

X(sn, n,m, k) ≤ c2;nx2 + x02|Y0 = y)φ(y)dy

=

∫ ∞
−∞

P (Y (`n, n,m, k) ≤C1;nx1 +D1;n(y),

Y (sn, n,m, k) ≤ C2;nx2 +D2;n(y))φ(y)dy,

(12)

where, Ci;n =
ci;n√
1−rn

and Di;n(y) =
x0i−

√
rny√

1−rn
, i = 1, 2. On the other hand, by

applying Theorem 3.1 in [8] on the normal central m−gos, we get

P (
Y (`n, n,m, k)− x01

c1;n
≤ x1,

Y (sn, n,m, k)− x02

c2;n
≤ x2)

(13)
w−→n BIN

(
(m+ 1)c∗λ1(m)

c∗λ1
x1,

(m+ 1)c∗λ2(m)

c∗λ2
x2;R

)
.

Therefore, in view of Khinchin’s type theorem, the relations (12) and (13) yield

the relation (10), if we show that
Di;n(y)−x0i

ci;n
−→n −

√
τφ(x0i)y√
λi(1−λi)

and
Ci;n
ci;n
−→n 1,

i = 1, 2. The later is evident from the assumption that nrn −→n τ ≥ 0 (this
assumption yields rn −→n 0). Hence, only the first relation needs proof. Ap-
plying that

√
1− rn = 1 − 1

2rn(1 + ◦(1)) and bearing in mind that rn
ci,n

=
nrnφ(x0i)√
nλi(1−λi)

−→n 0 and
√
rn

ci,n
−→n

√
τφ(x0i)√
λi(1−λi)

, we can easily verify that

Di;n − x0i

ci;n
=
−√rny + 1

2x0irn(1 + ◦(1))− 1
2r

3
2
n y(1 + ◦(1))

ci;n

−→n −
√
τφ(x0i)√
λi(1− λi)

y, i = 1, 2.

Turning now to the case rn log n −→ ∞, for which we start with the relation
(12). Now, for every ε > 0, we have

P

(√
1− rn
rn
|Y (in, n,m, k)− x0i| ≥ ε

)
≤ P (|Y (in, n,m, k)− x0i| ≥ ε

√
rn)

= P

(
|Y (in, n,m, k)− x0i

ci;n
≥
√
nrnφ(x0i)√
λi(1− λi)

ε

)
w−→n 0, i = 1, 2, 1n = `n, 2n = sn
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Thus, the df P
(√

1−rn
rn
|Y (in, n,m, k)− x0i| ≤ xi − y

)
has a degenerate limit

df at zero, i.e., has the limit

∈ (xi − y) =

{
1, xi − y ≥ 0,
0, xi − y < 0.

Consequently, by using the transformation z = −y, we get

P

(
X(`n, n,m, k)− (1− rn)

1
2x01√

rn
≤ x1,

X(sn, n,m, k)− (1− rn)
1
2x02√

rn
≤ x2

)

(14)
w−→n

∫ ∞
−∞
∈ (x1 + z, x2 + z)φ(z)dz,

where

(15) ∈ (x1 + z, x2 + z) =

{
1, z ≥ max(−x1,−x2) = −min(x1, x2),
0, z < max(−x1,−x2) = −min(x1, x2).

The required relation (11) is now followed by combining (14) with (15). This
completes the proof of Theorem 4.

3. ASYMPTOTIC BEHAVIOR OD SOME FUNCTIONS OF
m−gos IN A STATIONARY GAUSSIAN SEQUENCE

The generalized quasi-ranges and quasi-mid-ranges are linear functions
(linear combination) of m-gos. The quasi range and quasi-mid-range are widely
used, particularly, in statistical quality control as simple estimators of the
dispersion and measure of central tendency, respectively. Many short-cut tests
have been based on these statistics. The extremal quotient, as well as the
generalized extremal quotient, is not affected by a change of scale. Thus, it is
frequently used in cases, where the scale plays no role, e.g., in climatic study.
Moreover, the extremal quotient is used in several fields, most notably in life
testing and the classical heterogeneity of variance situation. An important
application on the study of the range and the extremal quotient is the statistic
of ratio of the symmetric differences. This statistic is used as a test for kurtosis,
or as a measure of tail thickness (see [2, 13]).

In this section, the classes of possible non-degenerate limit df’s of the
following suitably normalized generalized quasi-ranges, quasi-mid-ranges, ex-
tremal quotient and extremal product for the m-gos based on a Gaussian se-
quence of rv’s X = (X1, X2, ..., Xn) defined in (1):
R∗n;`,s(m, k) = b−1

n,m:r(Rn;`,s(m, k)− an,m:r),V∗n;`,s(m, k) = b−1
n,m:v(Vn;`,s(m, k)−

an,m:v), 1 ≤ `, s < n, Q∗n(m, k) = b−1
n,m:q(Qn(m, k) − an,m:q) and P∗n(m, k) =
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b−1
n,m:p(Pn(m, k)−an,m:p), respectively, whereRn;`,s(m,k)=X(n−s+1,n,m,k)−
X(`, n,m, k), 2Vn;`,s(m, k) = X(`, n,m, k) + X(n − s + 1, n,m, k),Qn(m, k) =
X(n,n,m,k)
X(1,n,m,k) , Pn(m, k) = |X(n, n,m, k)X(1, n,m, k)|. Moreover, the asymptotic

behavior of the statistic4n(m, k|X) =
X(`4;n,n,m,k)−X(`2;n,n,m,k)
X(`3;n,n,m,k)−X(`1;n,n,m,k) is investigated.

Throughout this section “Xn
w
=n Yn” means that the rv’s Xn and Yn have the

same limit df.

Theorem 5. Let the conditions of Theorems 1-3 be satisfied. Then,

P (R∗n;`,s(m, k) ≤ x) = P (b−1
n,m:r(Rn;`,s(m, k)− an,m:r) ≤ x)

w−→n Γ̄Rs(e
−(m+1)x) ∗ Γ̄`(e

−
√
m+1x),

(16)

where bn,m:r = bn,m and an,m:r = an,m − ãn,m, if rn log n −→n τ ≥ 0, while
bn,m:r = bn,m

√
1− rn and an,m:r = an,m − ãn,m, if rn log n −→n ∞.

Furthermore,

P (V∗n;`,s(m, k) ≤ x) = P (b−1
n,m:v(Vn;`,s(m, k)− an,m:v) ≤ x)

w−→n
Ψ

(m,k)
s (x) ∗ Ψ̃

(m,k)
` (

√
m+ 1x),

where bn,m:v = 1
2bn,m and an,m:v = 1

2(an,m + ãn,m), if rn log n −→n τ ≥ 0,
Φ0,2(x),

where bn,m:v =
√
rn and an,m:v =

√
1−rn
2 (an,m+ãn,m), if rn log n −→n ∞.

(17)

In addition,

P (Q∗n(m, k) ≤ x) = P (b−1
n,m:q(Qn(m, k)− an,m:q) ≤ x)(18)

w−→n Ψ̄
(m,k)
1 (−x) ∗ ¯̃Ψ

(m,k)

1

(
−4(m+ 1)x

4 + (m+ 1) log(m+ 1)

)
,

where bn,m:q =
bn,m
ãn,m

and an,m:q =
an,m
ãn,m

, if rn log n −→n τ ≥ 0, and

P (P∗n(m, k) ≤ x) = P (b−1
n,m:p(Pn(m, k)− an,m:p) ≤ x)(19)

w−→n Ψ
(m,k)
1 (x) ∗ Ψ̄

(m,k)
1

(
−4(m+ 1)x

4 + (m+ 1) log(m+ 1)

)
,

where bn,m:p = bn,mãn,m and an,m:p = an,mãn,m, if rn log n −→n τ ≥ 0.
Finally, let the condition of Theorem 4 be satisfied. Then, if nrn −→n τ, 0 ≤
τ ≤ ∞, we have

(20) 4n(m, k|X)
w
=n 4n (m, k|Y ).

Proof. The proof of the relations (16) and (20) follows immediately from
the representation (1) and the definition of the statistics Rn;`,s(m, k) and
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4n(m, k|Y ) and by using the results of [11] for the limit relation (16) and [12]
for the limit relation (20). The relation (17) follows from the representation

2V∗n;`,s(m, k)
w
=n

X(n−s+1,n,m,k)−an,m
bn,m

+ η−1
n,m

(
X(`,n,m,k)−ãn,m

b̃n,m

)
, if rn log n −→n τ ≥ 0,

X(n−s+1,n,m,k)−
√

1−rnan,m√
rn

+
(
X(`,n,m,k)−

√
1−rnãn,m√

rn

)
, if rn log n −→n ∞,

where ηn,m =
bn,m
b̃n,m

−→n
√
m+ 1, if rn log n −→n τ ≥ 0 and by applying Corol-

laries 1 and 2. For proving the relation (18), take bn,m:q =
bn,m
ãn,m

and an,m:q =
an,m
ãn,m

, then

Q?n(m, k) =
X?(n, n,m, k)− (b−1

n,mb̃n,m|an,mã−1
n,m|)X?(1, n,m, k)

|ãn,m|−1X(1, n,m, k)

=
X?(n, n,m, k)− ζn,mX?

n(1, n,m, k)

|ãn,m|−1X(1, n,m, k)
,

where
X?(n, n,m, k) = b−1

n,m(X(n, n,m, k)− an,m)
and

X?(1, n,m, k) = b̃−1
n,m(X(1, n,m, k)− ãn,m).

On the other hand, we have an,m ↑ ∞ and ãn,m ↓ −∞, as n → ∞ (cf. [15]).

Thus, on account of Lemma 3.3 in [3], |ãn,m|−1X(1, n,m, k)
p−→n − 1, After

some algebra, we get, for sufficiently large n, the following representation

(21) Q?n(m, k)
w
=n −X

?(n, n,m, k)− ζn,mX?(1, n,m, k).

Now, the representation (21) combined with the results of Corollaries 1 and 2

and the fact that ζn,m −→n
4+(m+1) log(m+1)

4(m+1) prove the claimed relation (18). Fi-

nally, to prove the relation (19) we take bn,m:p = bn,m|ãn,m|, an,m:p = |an,mãn,m|.
After simple arrangements, we get, for sufficiently large n, the following repre-
sentation

P?n(m, k)
w
=n −

b̃n,m
|ãn,m|

X?(n, n,m, k)X?(1, n,m, k)

+X?(n, n,m, k)− ζn,mX?(1, n,m, k).

On the other hand, since
b̃n,m
|ãn,m| → 0, we get the asymptotic relation

P?n(m, k)
w
=n X

?(n, n,m, k) −ζn,mX?(1, n,m, k), which yields the relation (19).
This completes the proof of Theorem 5.

Theorem 5 reveals an interesting fact that the limit df’s of the generalized
quasi-ranges, as well as the ratio of the symmetric differences, of m−gos, m ≥
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−1, in i.i.d rv’s and in a stationary Gaussian sequence of rv’s are the same. In
addition, the limiting form of the df of all statistics given in Theorem 5, with
the exception of the statistic4n(m, k|X) depends on the relation of rn to log n.
On the other hand, if 4n(m, k|Y ) weakly converges, then the convergence of
the sequence nrn (to a finite or infinite limit) guarantees the convergence of
4n(m, k|X) to the same limit as 4n(m, k|Y ). The limit df of 4n(m, k|Y ) was
extensively studied in [12].

If we put τ = 0 in Theorem 5, it easy to verify thatR∗n;`,s(0,k)
w
=n V

∗
n;`,s(0,k)

and Q∗n;`,s(0, k)
w
=n P∗n;`,s(0, k). Moreover, in this case, by virtue of Theorems

1 and 2 (and their Corollaries 1 and 2), we can deduce that the suitably nor-
malized generalized quasi-ranges, quasi-mid-ranges, extremal quotient and ex-
tremal product are asymptotically equivalent to the limit of a linear combina-
tion of the lower and upper m-gos.

4. APPLICATIONS

Theorems 1-5 reduce the limitations of some statistical methodologies
(e.g., in survival analysis and clinical trials) in different contexts. Here we
consider two practical examples.

In the first example, we consider the (n − r + 1)-out-of-n system, where
the life-length distribution of the remaining components may change after each
failure of the components. In literature, one of the most efficient model that
describes such system is the sos model, where we may take the original df
of the ith component (i = 1, 2, ..., n), before beginning the test, as Fi(x) =
1 − (1 − Φ(x))αi , αi > 0. Clearly, this model is a m-gos model, with mi =
(n− i+ 1)αi − (n− i)αi+1 + 1 (cf. [17]). On the other hand, all Theorems 1-5
study a more general situation, when these components constitute a Gaussian
sequence with zero expectation, unit variance and correlation rn > 0, i.e., they
are dependent (rather than independent).

Another important practical example is the type II censoring scheme,
where in a life-testing experiment, n items are placed on the test. The fail-
ure times observed from such a life-test, X(1, n, 0, 1) ≤ X(2, n, 0, 1) ≤ ... ≤
X(n, n, 0, 1), are the oos based on i.i.d rv’s from a continuous df F. However,
one may not continue the experiment until the last failure since the waiting
time for the final failure may be unbounded (cf. [20]). For this reason, in some
cases, the life-testing experiment is usually terminated when the Mth failure
X(M,n, 0, 1) is observed, which is referred to as a type-II censoring scheme.
We call this scheme “the classical type-II censoring scheme”, whenever the
basic rv’s are i.i.d. Clearly, this censoring model saves time and cost.
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This classical model is considered as the special case of m-gos model,
with γi = 2n + M − j + 1, M ≤ n is an integer number and the test on the
components terminates at the Mth failure. On the other hand, this model
is also a special case of the progressive type II censored order statistics with
censoring scheme (R1, ..., RM ), where R1 = ... = RM−1 = 0 and RM = n−M.
Now, in this classical model, let all the lifetimes of the components be i.i.d
normal variates (although the normal df is not used as often in reliability
work, it can represent severe wear-out mechanism, rapidly increasing hazard
function, e.g. filament bulbs, IC wire bonds, see [19]). Then, Theorem 2 reveals
the asymptotic behavior of any two observed failures of order ` and s, where
1 ≤ ` < s ≤ M ≤ n, in a general situation than the classical model, that the
lifetimes of the components constitute a Gaussian sequence with correlation
rn > 0, i.e., they are dependent. This situation happens practically, when the
items in the test constitute a Gaussian sequence of large number of identical
parts of a certain machine, where the inter-correlation between them depends
only on their total number.
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