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Let (tn)n≥0 be defined by the recurrence tn = Atn−1 + tn−2 + tn−3 with t0 =
0, t1 = 1, t2 = A and A ≥ 2 integer. In this paper, we prove that there does not
exist integers 1 ≤ a1 < a2 < a3 < a4 such that a1a2 + 1, a2a3 + 1, a3a4 + 1 and
a1a4 + 1 are Tribonacci numbers.
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1. INTRODUCTION

A Diophantine m−tuple is a set {a1, a2, . . . , an} of positive integers such
that aiaj + 1 is a square for all 1 ≤ i < j ≤ m. Diophantus found a ra-
tional quadruple

{
1
16 ,

33
16 ,

68
16 ,

105
16

}
. Fermat found the {1, 3, 8, 120} as the first

Diophantine quadruple. The numbers 1, 3, 8 in Fermat’s set can be viewed as
three consecutive Fibonacci numbers with even subscript.

A famous conjecture is that no quintuple exists. A closely related theorem
of Dujella states that there are only finitely many quintuples.

A variant of the problem is obtained if one replaces the squares by the
terms of a given binary recurrence. Firstly, Luca and Szalay [7, 8] put Fibonacci
and Lucas numbers instead of the squares and showed that there is no Fibonacci
Diophantine triple and {1, 2, 3} is the only Lucas Diophantine triples. Alp,
Irmak and Szalay [1] proved afterwards that there are no balancing Diophantine
triples. Fuchs, Luca and Szalay [3] gave the necessary conditions to have the
finitely many solutions in the case of replacing the member of second order
sequence instead of squares. Moreover, Irmak and Szalay [5] showed that there
is no triple 0 < a < b < c satisfying the following system of equations

ab+ 1 = ux

ac+ 1 = uy

bc+ 1 = uz

such that un = Aun−1−un−2 with u0 = 0 and u1 = 1 where A 6= 2 is an integer.
In the sequel, Gómez and Luca [4] solved the following system of equations

a1a2 + 1 = Tx
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a2a3 + 1 = Ty

a3a4 + 1 = Tz

a1a4 + 1 = Tw

and found no quadruple 0 < a1 < a2 < a3 < a4 where Tx, Ty, Tz and Tw are
Tribonacci numbers.

In this paper, we generalize the problem of Ruiz and Luca. Namely, we
investigate the solutions of the following equation system

a1a2 + 1 = tx

a2a3 + 1 = ty

a3a4 + 1 = tz(1)

a1a4 + 1 = tw

where 0 < a1 < a2 < a3 < a4 are integers. Before going further, we define the
generalized Tribonacci sequence (tn)n≥0 by the following recurrence relation

(2) tn = Atn−1 + tn−2 + tn−3

with the initial conditions t0 = 0, t1 = 1 and t2 = A where A is a positive
integer.

Our result is the following,

Theorem 1.1. There is no solution of the equation system (1) with A ≥ 2.

2. PRELIMINARIES

Before proceeding further, some considerations will be needed for the
convenience of the reader. First lemma is about the Binet form of the terms
of the sequence (tn)n≥0.

Lemma 2.1. The Binet-type formula of the generalized Tribonacci se-
quence (tn)n≥0 is

(3) tn =

3∑
k=1

g (k,A)αnk

where g (k,A) = αk−A
(A+3)α2

k−A(A+5)αk+(A−1)(2A+1)
and the elements α1, α2 and

α3 are the roots of the characteristic equation x3 −Ax2 − x− 1 = 0.

Proof. The terms of the sequence (tn)n≥0 can be expressed by linear com-

bination of the roots of the characteristic equation x3−Ax2−x−1 = 0. Namely,

(4) tn = Xαn1 + Y αn2 + Zαn3 .
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Applying the initial conditions t0 = 0, t1 = 1 and t2 = A to the equation (4),
we obtain the coefficient X = α1

(α1−α2)(α1−α3)
. Then

X =
α1

(α1 − α2) (α1 − α3)
=

α1

α2
1 − α1 (α2 + α3) + α2α3

=
α1

α2
1 − α1 (A− α1) +

(
−1−Aα1 + α2

1

) =
1

α2α3

(
3α2

1 − 2Aα1 − 1
)

=
α1 −A

(A+ 3)α2
1 −A (A+ 5)α1 + (A− 1) (2A+ 1)

follows. The other coefficients can be found by similar way.

When we put A = 1 in the equation (3), it coincides with the Binet
formula of 3−generalized Fibonacci sequence which is given by the paper of
Dresden and Du [2].

Lemma 2.2. Let A, s ∈ N, s ≥ 2 and let

f (x) = xs −Axs−1 − xs−2 − · · · − x− 1.

Then
(a) f (x) has exactly one positive simple root α ∈ R with A < α < A+ 1
(b) the remaining s − 1 roots of f (x) lie within the unit circle in the

complex plane.

Proof. See Lemma 2 in [6].

Since |α2| = |α3| < 1, then the contribution of the roots α2 and α3 will
quickly become trivial in the equation (3). That is,

(5) tn ∼= g (1, A)αn1

holds for n sufficiently large.
The next lemma presents the upper and lower bounds for the terms of

the sequence {tn} .

Lemma 2.3. Let A ≥ 2 and α = α1 be the dominant root of the equation
x3 −Ax2 − x− 1 = 0. Then the following inequality

(6) αn−2 ≤ tn < αn−0.51

holds for n ≥ 1.

Proof. It is obvious that αn−2 ≤ tn. Since tn = g (1, A)αn + g (2, A)αn2 +
g (3, A)αn3 , then

tn = g (1, A)αn
(

1 +
g (2, A)

g (1, A)

(α2

α

)n
+
g (3, A)

g (1, A)

(α3

α

)n)
≤ 2g (1, A)αn
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follows. So, we get that

tn < 2g (1, A)αn = αn+logα 2g(1,A).

As the function logα 2g (1, A) is decreasing (since d
dα logα 2g (1, A) < 0), then

it takes the maximum value at A = 2. So, we have

tn < αn−0.51

as claimed.

Lemma 2.4. Let A ≥ 2. For n ≥ 1, the following inequality holds

|tn − g (1, A)αn| ≤ 0.52.

Proof. Let En = tn − g (1, A)αn. Since tn = Atn−1 + tn−2 + tn−3 and
αn = Aαn−1 + αn−2 + αn−3 hold, then we have En = AEn−1 + En−2 + En−3
for n ≥ 3. Now, we will follow the method of the proof of Theorem 2 in the
paper of Dresden of Du [2]. Assume that |En| > 0.52 for n ≥ 3. Let n0 be
the smallest positive such integer n. Namely, |En0 | > 0.52 > |En0−k| holds for
k ≥ 1. Together with the equations

En0+1 = AEn0 + En0−1 + En0−2

and
En0 = AEn0−1 + En0−2 + En0−3,

then we have

En0+1 = (A+ 1)En0 + (1−A)En0−1 − En0−3.

This equation gives that

(A+ 1) |En0 | = |En0+1 + (A− 1)En0−1 + En0−3|
≤ |En0+1|+ (A− 1) |En0−1|+ |En0−3| .(7)

We obtain the followings by the inequality (7)

(A− 1) (|En0 | − |En0−1|) + |En0 | − |En0−3| ≤ |En0+1| − |En0 | .

Since |En0 |−|En0−1| > 0 and |En0 |−|En0−3| > 0, then we obtain that |En0+1|−
|En0 | > 0. If we apply this argument repeatedly, we get

|En0+i| > · · · > |En0+1| > |En0 | ≥ 0.52.

But this contradicts with the observation from equation (5) since the error
terms must converge to 0. We conclude that |En| ≤ 0.52.

Lemma 2.5. Let A ≥ 2 be an integer. For n > m ≥ 4 and k ∈ {1, 2} , tn
satisfies

tm − 1

tm−k − 1
>

tn − 1

tn−k − 1
.
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Proof. Let s (n,m) = (tm − 1) (tn−k − 1)− (tm−k − 1) (tn − 1) . Our aim
is to show that s (n,m) > 0. Applying induction on n, we have the followings

s (n,m) + s (n+ 1,m) +A× s (n+ 2,m)

= det

(
tm − 1 tm−k − 1
tn − 1 tn−k − 1

)
+ det

(
tm − 1 tm−k − 1
tn+1 − 1 tn+1−k − 1

)
+Adet

(
tm − 1 tm−k − 1
tn+2 − 1 tn+2−k − 1

)
= det

(
tm − 1 tm−k − 1

tn + tn+1 − 2 tn−k + tn−k+1 − 2

)
+ det

(
tm − 1 tm−k − 1

Atn+2 −A tn+2−k −A

)
= det

(
tm − 1 tm−k − 1

tn+3 − (A+ 2) tn+3−k − (A+ 2)

)
> 0.

We conclude that (tm−1)(tn+3−k−1)−(tm−k−1)(tn+3−1)>(A+1)(tm−tm−k).
Since (tm−tm−k) > 0, then we deduce that s (n+ 3,m) = (tm−1) (tn+3−k−1)−
(tm−k − 1) (tn+3 − 1) > 0 as claimed.

Now we are ready to deal with the proof of the theorems.

3. PROOF OF THEOREM 1.1

3.1. An upper bound for the integer z

Since 1 ≤ a1 < a2 < a3 < a4, then tx = a1a2 + 1 ≥ 3 follows. Define the
function lA as follows:

lA =

{
2, if A ≥ 3;

3, if A = 2.
So, we have that lA ≤ x.

In the sequel, we obtain the equation

(8) (tx − 1) (tz − 1) = (ty − 1) (tw − 1)

by the equation (1). Using the upper and lowers bounds for the terms of the
sequence (tn)n≥0, we get the followings

αx+z−4 ≤ (tx − 1) (tz − 1) < αy+w−1.02

and
αy+w−4 ≤ (tx − 1) (tz − 1) < αx+z−1.02.

Combining these inequalities yields

|(x+ z)− (y + w)| ≤ 2.
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So, we have two possible cases (x+ z) = (y + w) and (x+ z) 6= (y + w) . Note
that, we can see easily that

lA ≤ x < λ = min {y, w} ≤ δ = max {y, w} < z.

since 1 ≤ a1 < a2 < a3 < a4.

Case I: (x+ z) = (y + w)
The terms of the sequence (tn)n≥0 can be expressed by tn = g1α

n +
h (n) where g1 = g (1, A) and |h (n)| < 0.52. Expanding the equation (8), the
equation

txtz − tλtδ = tx + tz − tλ − tδ
gives that

|g1αzh (x)− g1αz| =
∣∣∣−g1αxh (z)− h (x)h (z) + g1α

λh (δ)

+g1α
δh (λ) + h (λ)h (δ) + h (z) + h (x)

− h (λ)− h (δ) + g1α
x − g1αλ − g1αδ

∣∣∣ .
Divide both side by g1α

z. Then

|h (x)− 1| <
|h (x)h (z)|+ |h (λ)h (δ)|+ |h (z)|+ |h (x)|+ |h (λ)|+ |h (δ)|

g1αz

+
g1α

x |h (z)|+ g1α
λ |h (δ)|+ g1α

δ |h (λ)|
g1αz

+
g1α

x + g1α
λ + g1α

δ

g1αz

<
2.63

g1αz
+

1.56

αz−δ
+

3

αz−δ
<

7.19

αz−δ

follows, where we used the facts 1
g1
< α2 and g1 < 1. The inequality |h (x)−1| >

0.48 yields that z − δ ≤ 2. So we can write that z = δ + k where k ∈ {1, 2} .
Applying this fact to the equation (8) together with x+ z = δ + λ, we obtain
that

(tx − 1) (tδ+k − 1) = (tδ − 1) (tx+k − 1) .
However, this contradicts with Lemma 2.5.

Case II: (x+ z) 6= (y + w)
Combining the equation (8) together with tn = g1α

n + h (n) , then we get

g21α
x+z − g21αλ+δ = g1α

x (1− h (z)) + g1α
z (1− h (x))

+g1α
λ (h (δ)− 1) + g1α

δ (h (λ)− 1)

+h (x) + h (z)− h (λ)− h (δ)

+h (λ)h (δ)− h (x)h (z) .
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When we divide both sides by the term g21α
x+z, then∣∣∣1− α−(x+z−λ−δ)∣∣∣ < 1.52

g1

(
1

αz
+

1

αx
+
αλ−z

αx
+
αδ−z

αx

)
+

2.63

g21α
x+z

<
1

g21

(
1.52g1

2 + α−1 + α−2

αx
+ 2.63

α−4

αx

)
<

1.6

g21α
x
<

1.6

αx−4

follows. We used the facts λ − z ≤ −2, δ − z ≤ −1, 4 ≤ z, 1
g21
< 1

α−4 and

|g1| < 0.4. So, the inequality

0.6 < min
|x+z−λ−δ|≤2

∣∣∣1− α−(x+z−λ−δ)∣∣∣ < 1.6

αx−4

gives that lA ≤ x ≤ 5.
Now, we rewrite the equation (8) as follows:

(tx − 1) tz − tλtδ = tx − tλ − tδ.

This equation yields that

(tx−1) g1α
z− g21αλ+δ = g1α

λh (δ) + g1α
δh (λ) + h (λ)h (δ)

−h (z) (tx − 1)− g1αλ − h (λ)

−g1αδ − h (δ) + (tx − 1) + 1

= g1α
λ (h (δ)− 1) + g1α

δ (h (λ)− 1)

− (tx − 1) (h (z)− 1) + h (λ)h (δ)− h (λ)− h (δ)+1.

When we divide both sides by the term (tx − 1) g1α
z, we obtain the followings

together with the fact (tx − 1) ≥ 2∣∣∣1− g1αλ+δ−z (tx − 1)−1
∣∣∣ <

|h (δ)− 1|
(tx − 1)αz−λ

+
|h (λ)− 1|

(tx − 1)αz−δ
+
|h (z)− 1|
g1αz

+
|h (λ)h (δ)− h (λ)− h (δ) + 1|

g1 (tx − 1)αz

≤ 1.52

αz−δ
+

1.52

αz−2
+

1.16

αz−2
<

4.2

αz−δ
.

where we used the facts 1
g1
≤ α2 and g1 > 1 for A ≥ 2 integer. Since

|λ+ δ − x− z| ≤ 2 and y+w 6= x+z holds, then we write that λ+δ−z = x+ε
where ε ∈ {±1,±2} . Then

min
ε∈{±1,±2}
lA≤x≤5

∣∣∣1− g1αx+ε (tx − 1)−1
∣∣∣ < 4.2

αz−δ

follows. If A = 2, then x = 3 yields that

min
ε∈{±1,±2}

∣∣∣1− g1α3+ε (t3 − 1)−1
∣∣∣ > 0.5.
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If A ≥ 3, then x ≥ 2 gives that

min
ε∈{±1,±2}
2≤x≤5

∣∣∣1− g1αx+ε (tx − 1)−1
∣∣∣ > 0.56.

Therefore, we have

0.5 < min
ε∈{±1,±2}
lA≤x≤5

∣∣∣1− g1αx+ε (tx − 1)−1
∣∣∣ < 4.2

αz−δ

follows. This fact yields that z ≤ δ + 2.
By the equation

(tx − 1) (tz − 1)

tδ − 1
= tλ − 1

together with Lemma 2.3 and the fact z ≤ δ + 2, we get

αλ−2 < tλ − 1 =
(tx − 1) (tz − 1)

tδ − 1
< αz−δ+1.49 + αx−0.51

< α3.49 + α2.49 < α3.49+2.48 = α5.97

which yields that 3 ≤ λ ≤ 7.
The equation (8) gives that

(tx − 1) tz − (tλ − 1) tδ = tx − tλ.

Put tn = g1α
n + h (n) for the indices δ and z, we have the followings

(tx − 1) g1α
z − (tλ − 1) g1α

δ = (tλ − 1) (h (δ)− 1) + (tx − 1) (1− h (z)) .

Divide both sides by (tλ − 1) g1α
δ. Then

(9)
∣∣∣1− (tx − 1) (tλ − 1)−1 αz−δ

∣∣∣ ≤ |h (δ)− 1|
g1αδ

+
tx − 1

tλ − 1

|h (z)− 1|
αδ−2

<
3.04

αδ−2

follows. We used that facts tx−1
tλ−1 ≤ 1 and 1

g1
< α2. Since z− δ = λ− x+ ε and

ε ∈ {±1,±2} , then we have that

min
lA≤x≤5
x+1≤λ≤7
ε∈{±1,±2}

∣∣∣1− (tx − 1) (tλ − 1)−1 αλ−x+ε
∣∣∣ < 3.04

αδ−2
.

The case A = 2 gives that x = 3. Then

(10) 0.6 < min
4≤λ≤7

ε∈{±1,±2}

∣∣∣1− (t3 − 1) (tλ − 1)−1 αλ−3+ε
∣∣∣

follows. If A ≥ 3 integer, then it yields that

(11) 0.7 < min
2≤x≤5

x+1≤λ≤7
ε∈{±1,±2}

∣∣∣1− (tx − 1) (tλ − 1)−1 αλ−x+ε
∣∣∣ .
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Together with the inequalities (10), (11) and (9), we obtain

0.6 < min
lA≤x≤5
x+1≤λ≤7
ε∈{±1,±2}

∣∣∣1− (tx − 1) (tλ − 1)−1 αλ−x+ε
∣∣∣ < 3.04

αδ−2

gives that δ ≤ 3.
By the equation system (1), one can see that

tz − 1 < (tλ − 1) (tδ − 1)

which gives that z ≤ λ+ δ. So, z ≤ 10 since λ ≤ 7 and δ ≤ 3.
By the definition of the lA function, there are two possibilities as follows:
(1) If A ≥ 3, 2 ≤ x < λ ≤ δ < z ≤ 10 Since we find δ ≤ 3, then only the

case x = 2, δ = λ = 3 and 4 ≤ z ≤ 10 must hold.
(2) If A = 2, x = 3, λ = 4, δ = 5, and 4 ≤ z ≤ 10. However, this case

impossible since δ ≤ 3.

3.2. An upper bound for the integer A

Up to now, we prove that x = 2, λ = δ = 3 and 4 ≤ z ≤ 10 is the only
possible case for the equation system (1). Now, we follow the key argument in
the paper [5] to find the upper bound for A. The terms of the sequence {tn}
are monic polynomials in A with integer coefficients. By the equation system
(1), the term

a1a2 =

√
(t2 − 1) (t3 − 1)2

(tz − 1)
must be integer. By the polynomial division, there uniquely exist polynomials
q (A) and r (A) with integer coefficients such that

(t2 − 1) (t3 − 1)2 = q (A) (tz − 1) + r (A)

holds. For the case 4 ≤ z ≤ 10, we obtain the following table.

z q (A) r (A)

4 2A2 + 4A A2 −A− 2

5 −3A3 +A2 + 2A A− 1

6 −4A3 − 3A2 − 3A− 1 1

7 0 A5 −A4

8 0 A5 −A4

9 0 A5 −A4

10 0 A5 −A4

Table 1: Remainder and quotient polynomials
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Checking the eligible possibilities for x = 2, λ = δ = 3 and 4 ≤ z ≤ 10, we
observe that r (A) is never zero and there is no positive integer A such that
r (A) = 0 for A ≥ 3. Hence,

(12)
(tx − 1) (tλ − 1) (tδ − 1)

tz − 1
= q (A) +

r (A)

tz − 1
,

the term r(A)
tz−1 never disappears in the equation (12). For some A, the right

hand side of equation (12) is integer. But deg (r (A)) < deg ((tz − 1)) , so A
cannot be large since

lim
A→∞

r (A)

tz − 1
= 0.

Then, |r (A)| > tz − 1 must hold which yields that A ≤ A0 for some positive
integer A0. We use Mathematica programme to find A0 for x = 2, λ = δ = 3
and 4 ≤ z ≤ 10. Then, we find that A0 = 2. But this contradicts with our
assumption A ≥ 3. Therefore, this gives the proof of Theorem 1.1.
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