GENERALIZED TRIBONACCI DIOPHANTINE QUADRUPLES

NURETTIN IRMAK

Communicated by Alexandru Zaharescu

Let $(t_n)_{n\geq 0}$ be defined by the recurrence $t_n = At_{n-1} + t_{n-2} + t_{n-3}$ with $t_0 = 0$, $t_1 = 1$, $t_2 = A$ and $A \geq 2$ integer. In this paper, we prove that there does not exist integers $1 \leq a_1 < a_2 < a_3 < a_4$ such that $a_1a_2 + 1$, $a_2a_3 + 1$, $a_3a_4 + 1$ and $a_1a_4 + 1$ are Tribonacci numbers.

AMS 2010 Subject Classification: 11D72, 11B39.

Key words: Tribonacci number, diophantine quadruples.

1. INTRODUCTION

A Diophantine m-tuple is a set $\{a_1, a_2, \ldots, a_n\}$ of positive integers such that $a_i a_j + 1$ is a square for all $1 \leq i < j \leq m$. Diophantus found a rational quadruple $\{\frac{1}{16}, \frac{33}{16}, \frac{68}{16}, \frac{105}{16}\}$. Fermat found the $\{1, 3, 8, 120\}$ as the first Diophantine quadruple. The numbers 1, 3, 8 in Fermat's set can be viewed as three consecutive Fibonacci numbers with even subscript.

A famous conjecture is that no quintuple exists. A closely related theorem of Dujella states that there are only finitely many quintuples.

A variant of the problem is obtained if one replaces the squares by the terms of a given binary recurrence. Firstly, Luca and Szalay [7, 8] put Fibonacci and Lucas numbers instead of the squares and showed that there is no Fibonacci Diophantine triple and $\{1, 2, 3\}$ is the only Lucas Diophantine triples. Alp, Irmak and Szalay [1] proved afterwards that there are no balancing Diophantine triples. Fuchs, Luca and Szalay [3] gave the necessary conditions to have the finitely many solutions in the case of replacing the member of second order sequence instead of squares. Moreover, Irmak and Szalay [5] showed that there is no triple 0 < a < b < c satisfying the following system of equations

$$ab+1 = u_x$$
$$ac+1 = u_y$$
$$bc+1 = u_z$$

such that $u_n = Au_{n-1} - u_{n-2}$ with $u_0 = 0$ and $u_1 = 1$ where $A \neq 2$ is an integer. In the sequel, Gómez and Luca [4] solved the following system of equations

$$a_1a_2 + 1 = T_x$$

MATH. REPORTS 23(73) (2021), 4, 465-474

 $\begin{array}{rcl} a_2 a_3 + 1 & = & T_y \\ a_3 a_4 + 1 & = & T_z \\ a_1 a_4 + 1 & = & T_w \end{array}$

and found no quadruple $0 < a_1 < a_2 < a_3 < a_4$ where T_x, T_y, T_z and T_w are Tribonacci numbers.

In this paper, we generalize the problem of Ruiz and Luca. Namely, we investigate the solutions of the following equation system

(1)
$$a_{1}a_{2} + 1 = t_{x}$$
$$a_{2}a_{3} + 1 = t_{y}$$
$$a_{3}a_{4} + 1 = t_{z}$$
$$a_{1}a_{4} + 1 = t_{w}$$

where $0 < a_1 < a_2 < a_3 < a_4$ are integers. Before going further, we define the generalized Tribonacci sequence $(t_n)_{n>0}$ by the following recurrence relation

(2)
$$t_n = At_{n-1} + t_{n-2} + t_{n-3}$$

with the initial conditions $t_0 = 0$, $t_1 = 1$ and $t_2 = A$ where A is a positive integer.

Our result is the following,

THEOREM 1.1. There is no solution of the equation system (1) with $A \ge 2$.

2. PRELIMINARIES

Before proceeding further, some considerations will be needed for the convenience of the reader. First lemma is about the Binet form of the terms of the sequence $(t_n)_{n>0}$.

LEMMA 2.1. The Binet-type formula of the generalized Tribonacci sequence $(t_n)_{n\geq 0}$ is

(3)
$$t_n = \sum_{k=1}^3 g(k, A) \alpha_k^n$$

where $g(k, A) = \frac{\alpha_k - A}{(A+3)\alpha_k^2 - A(A+5)\alpha_k + (A-1)(2A+1)}$ and the elements α_1 , α_2 and α_3 are the roots of the characteristic equation $x^3 - Ax^2 - x - 1 = 0$.

Proof. The terms of the sequence $(t_n)_{n\geq 0}$ can be expressed by linear combination of the roots of the characteristic equation $x^3 - Ax^2 - x - 1 = 0$. Namely,

(4)
$$t_n = X\alpha_1^n + Y\alpha_2^n + Z\alpha_3^n$$

Applying the initial conditions $t_0 = 0$, $t_1 = 1$ and $t_2 = A$ to the equation (4), we obtain the coefficient $X = \frac{\alpha_1}{(\alpha_1 - \alpha_2)(\alpha_1 - \alpha_3)}$. Then

$$X = \frac{\alpha_1}{(\alpha_1 - \alpha_2)(\alpha_1 - \alpha_3)} = \frac{\alpha_1}{\alpha_1^2 - \alpha_1(\alpha_2 + \alpha_3) + \alpha_2\alpha_3}$$

= $\frac{\alpha_1}{\alpha_1^2 - \alpha_1(A - \alpha_1) + (-1 - A\alpha_1 + \alpha_1^2)} = \frac{1}{\alpha_2\alpha_3(3\alpha_1^2 - 2A\alpha_1 - 1)}$
= $\frac{\alpha_1 - A}{(A + 3)\alpha_1^2 - A(A + 5)\alpha_1 + (A - 1)(2A + 1)}$

follows. The other coefficients can be found by similar way. \Box

When we put A = 1 in the equation (3), it coincides with the Binet formula of 3-generalized Fibonacci sequence which is given by the paper of Dresden and Du [2].

LEMMA 2.2. Let
$$A, s \in \mathbb{N}, s \ge 2$$
 and let
 $f(x) = x^s - Ax^{s-1} - x^{s-2} - \dots - x - 1.$

Then

(a) f(x) has exactly one positive simple root $\alpha \in \mathbb{R}$ with $A < \alpha < A + 1$

(b) the remaining s - 1 roots of f(x) lie within the unit circle in the complex plane.

Proof. See Lemma 2 in [6]. \Box

Since $|\alpha_2| = |\alpha_3| < 1$, then the contribution of the roots α_2 and α_3 will quickly become trivial in the equation (3). That is,

(5)
$$t_n \cong g(1, A) \alpha_1^n$$

holds for n sufficiently large.

The next lemma presents the upper and lower bounds for the terms of the sequence $\{t_n\}$.

LEMMA 2.3. Let $A \ge 2$ and $\alpha = \alpha_1$ be the dominant root of the equation $x^3 - Ax^2 - x - 1 = 0$. Then the following inequality

(6)
$$\alpha^{n-2} \le t_n < \alpha^{n-0.51}$$

holds for $n \geq 1$.

Proof. It is obvious that $\alpha^{n-2} \leq t_n$. Since $t_n = g(1, A) \alpha^n + g(2, A) \alpha_2^n + g(3, A) \alpha_3^n$, then

$$t_n = g\left(1, A\right) \alpha^n \left(1 + \frac{g\left(2, A\right)}{g\left(1, A\right)} \left(\frac{\alpha_2}{\alpha}\right)^n + \frac{g\left(3, A\right)}{g\left(1, A\right)} \left(\frac{\alpha_3}{\alpha}\right)^n\right) \le 2g\left(1, A\right) \alpha^n$$

follows. So, we get that

$$t_n < 2g(1, A) \alpha^n = \alpha^{n + \log_\alpha 2g(1, A)}.$$

As the function $\log_{\alpha} 2g(1, A)$ is decreasing (since $\frac{d}{d\alpha} \log_{\alpha} 2g(1, A) < 0$), then it takes the maximum value at A = 2. So, we have

$$t_n < \alpha^{n-0.51}$$

as claimed. \Box

LEMMA 2.4. Let
$$A \ge 2$$
. For $n \ge 1$, the following inequality holds
 $|t_n - g(1, A) \alpha^n| \le 0.52.$

Proof. Let $E_n = t_n - g(1, A) \alpha^n$. Since $t_n = At_{n-1} + t_{n-2} + t_{n-3}$ and $\alpha^n = A\alpha^{n-1} + \alpha^{n-2} + \alpha^{n-3}$ hold, then we have $E_n = AE_{n-1} + E_{n-2} + E_{n-3}$ for $n \geq 3$. Now, we will follow the method of the proof of Theorem 2 in the paper of Dresden of Du [2]. Assume that $|E_n| > 0.52$ for $n \geq 3$. Let n_0 be the smallest positive such integer n. Namely, $|E_{n_0}| > 0.52 > |E_{n_0-k}|$ holds for $k \geq 1$. Together with the equations

$$E_{n_0+1} = AE_{n_0} + E_{n_0-1} + E_{n_0-2}$$

and

$$E_{n_0} = AE_{n_0-1} + E_{n_0-2} + E_{n_0-3}$$

then we have

$$E_{n_0+1} = (A+1) E_{n_0} + (1-A) E_{n_0-1} - E_{n_0-3}.$$

This equation gives that

(7)
$$(A+1) |E_{n_0}| = |E_{n_0+1} + (A-1) E_{n_0-1} + E_{n_0-3}| \\ \leq |E_{n_0+1}| + (A-1) |E_{n_0-1}| + |E_{n_0-3}|.$$

We obtain the followings by the inequality (7)

$$(A-1)\left(|E_{n_0}| - |E_{n_0-1}|\right) + |E_{n_0}| - |E_{n_0-3}| \le |E_{n_0+1}| - |E_{n_0}|.$$

Since $|E_{n_0}| - |E_{n_0-1}| > 0$ and $|E_{n_0}| - |E_{n_0-3}| > 0$, then we obtain that $|E_{n_0+1}| - |E_{n_0}| > 0$. If we apply this argument repeatedly, we get

$$|E_{n_0+i}| > \dots > |E_{n_0+1}| > |E_{n_0}| \ge 0.52.$$

But this contradicts with the observation from equation (5) since the error terms must converge to 0. We conclude that $|E_n| \leq 0.52$. \Box

LEMMA 2.5. Let $A \ge 2$ be an integer. For $n > m \ge 4$ and $k \in \{1, 2\}$, t_n satisfies

$$\frac{t_m - 1}{t_{m-k} - 1} > \frac{t_n - 1}{t_{n-k} - 1}.$$

Proof. Let $s(n,m) = (t_m - 1)(t_{n-k} - 1) - (t_{m-k} - 1)(t_n - 1)$. Our aim is to show that s(n,m) > 0. Applying induction on n, we have the followings

$$s(n,m) + s(n+1,m) + A \times s(n+2,m)$$

$$= \det \begin{pmatrix} t_m - 1 & t_{m-k} - 1 \\ t_n - 1 & t_{n-k} - 1 \end{pmatrix} + \det \begin{pmatrix} t_m - 1 & t_{m-k} - 1 \\ t_{n+1} - 1 & t_{n+1-k} - 1 \end{pmatrix}$$

$$+ A \det \begin{pmatrix} t_m - 1 & t_{m-k} - 1 \\ t_{n+2} - 1 & t_{n+2-k} - 1 \end{pmatrix}$$

$$= \det \begin{pmatrix} t_m - 1 & t_{m-k} - 1 \\ t_n + t_{n+1} - 2 & t_{n-k} + t_{n-k+1} - 2 \end{pmatrix}$$

$$+ \det \begin{pmatrix} t_m - 1 & t_{m-k} - 1 \\ At_{n+2} - A & t_{n+2-k} - A \end{pmatrix}$$

$$= \det \begin{pmatrix} t_m - 1 & t_{m-k} - 1 \\ At_{n+2} - A & t_{n+2-k} - A \end{pmatrix} > 0.$$

We conclude that $(t_m - 1)(t_{n+3-k} - 1) - (t_{m-k} - 1)(t_{n+3} - 1) > (A+1)(t_m - t_{m-k})$. Since $(t_m - t_{m-k}) > 0$, then we deduce that $s(n+3,m) = (t_m - 1)(t_{n+3-k} - 1) - (t_{m-k} - 1)(t_{n+3} - 1) > 0$ as claimed. \Box

Now we are ready to deal with the proof of the theorems.

3. PROOF OF THEOREM 1.1

3.1. An upper bound for the integer z

Since $1 \le a_1 < a_2 < a_3 < a_4$, then $t_x = a_1a_2 + 1 \ge 3$ follows. Define the function l_A as follows:

$$l_A = \begin{cases} 2, & \text{if } A \ge 3; \\ 3, & \text{if } A = 2. \end{cases}$$

So, we have that $l_A \leq x$.

In the sequel, we obtain the equation

(8)
$$(t_x - 1)(t_z - 1) = (t_y - 1)(t_w - 1)$$

by the equation (1). Using the upper and lowers bounds for the terms of the sequence $(t_n)_{n>0}$, we get the followings

$$\alpha^{x+z-4} \le (t_x - 1) (t_z - 1) < \alpha^{y+w-1.02}$$

and

$$\alpha^{y+w-4} \le (t_x - 1) (t_z - 1) < \alpha^{x+z-1.02}.$$

Combining these inequalities yields

$$|(x+z) - (y+w)| \le 2$$

So, we have two possible cases (x + z) = (y + w) and $(x + z) \neq (y + w)$. Note that, we can see easily that

$$l_A \le x < \lambda = \min\{y, w\} \le \delta = \max\{y, w\} < z.$$

since $1 \le a_1 < a_2 < a_3 < a_4$.

Case I: (x + z) = (y + w)

The terms of the sequence $(t_n)_{n\geq 0}$ can be expressed by $t_n = g_1 \alpha^n + h(n)$ where $g_1 = g(1, A)$ and |h(n)| < 0.52. Expanding the equation (8), the equation

$$t_x t_z - t_\lambda t_\delta = t_x + t_z - t_\lambda - t_\delta$$

gives that

$$\begin{aligned} |g_1 \alpha^z h(x) - g_1 \alpha^z| &= \left| -g_1 \alpha^x h(z) - h(x) h(z) + g_1 \alpha^\lambda h(\delta) \right. \\ &+ g_1 \alpha^\delta h(\lambda) + h(\lambda) h(\delta) + h(z) + h(x) \\ &- h(\lambda) - h(\delta) + g_1 \alpha^x - g_1 \alpha^\lambda - g_1 \alpha^\delta \right|. \end{aligned}$$

Divide both side by $g_1 \alpha^z$. Then

$$\begin{split} |h\left(x\right)-1| &< \frac{|h\left(x\right)h\left(z\right)|+|h\left(\lambda\right)h\left(\delta\right)|+|h\left(z\right)|+|h\left(x\right)|+|h\left(\lambda\right)|+|h\left(\delta\right)|}{g_{1}\alpha^{z}} \\ &+ \frac{g_{1}\alpha^{x}\left|h\left(z\right)\right|+g_{1}\alpha^{\lambda}\left|h\left(\delta\right)\right|+g_{1}\alpha^{\delta}\left|h\left(\lambda\right)\right|}{g_{1}\alpha^{z}} \\ &+ \frac{g_{1}\alpha^{x}+g_{1}\alpha^{\lambda}+g_{1}\alpha^{\delta}}{g_{1}\alpha^{z}} \\ &< \frac{2.63}{g_{1}\alpha^{z}}+\frac{1.56}{\alpha^{z-\delta}}+\frac{3}{\alpha^{z-\delta}} < \frac{7.19}{\alpha^{z-\delta}} \end{split}$$

follows, where we used the facts $\frac{1}{g_1} < \alpha^2$ and $g_1 < 1$. The inequality |h(x)-1| > 0.48 yields that $z - \delta \leq 2$. So we can write that $z = \delta + k$ where $k \in \{1, 2\}$. Applying this fact to the equation (8) together with $x + z = \delta + \lambda$, we obtain that

$$(t_x - 1) (t_{\delta+k} - 1) = (t_{\delta} - 1) (t_{x+k} - 1).$$

However, this contradicts with Lemma 2.5.

Case II: $(x + z) \neq (y + w)$ Combining the equation (8) together with $t_n = g_1 \alpha^n + h(n)$, then we get

$$g_1^2 \alpha^{x+z} - g_1^2 \alpha^{\lambda+\delta} = g_1 \alpha^x \left(1 - h\left(z\right)\right) + g_1 \alpha^z \left(1 - h\left(x\right)\right) \\ + g_1 \alpha^\lambda \left(h\left(\delta\right) - 1\right) + g_1 \alpha^\delta \left(h\left(\lambda\right) - 1\right) \\ + h\left(x\right) + h\left(z\right) - h\left(\lambda\right) - h\left(\delta\right) \\ + h\left(\lambda\right) h\left(\delta\right) - h\left(x\right) h\left(z\right).$$

When we divide both sides by the term $g_1^2 \alpha^{x+z}$, then

$$\begin{aligned} \left| 1 - \alpha^{-(x+z-\lambda-\delta)} \right| &< \frac{1.52}{g_1} \left(\frac{1}{\alpha^z} + \frac{1}{\alpha^x} + \frac{\alpha^{\lambda-z}}{\alpha^x} + \frac{\alpha^{\delta-z}}{\alpha^x} \right) + \frac{2.63}{g_1^2 \alpha^{x+z}} \\ &< \frac{1}{g_1^2} \left(1.52g_1 \frac{2 + \alpha^{-1} + \alpha^{-2}}{\alpha^x} + 2.63 \frac{\alpha^{-4}}{\alpha^x} \right) < \frac{1.6}{g_1^2 \alpha^x} < \frac{1.6}{\alpha^{x-4}} \end{aligned}$$

follows. We used the facts $\lambda - z \leq -2$, $\delta - z \leq -1$, $4 \leq z$, $\frac{1}{g_1^2} < \frac{1}{\alpha^{-4}}$ and $|g_1| < 0.4$. So, the inequality

$$0.6 < \min_{|x+z-\lambda-\delta| \le 2} \left| 1 - \alpha^{-(x+z-\lambda-\delta)} \right| < \frac{1.6}{\alpha^{x-4}}$$

gives that $l_A \leq x \leq 5$.

Now, we rewrite the equation (8) as follows:

$$(t_x - 1) t_z - t_\lambda t_\delta = t_x - t_\lambda - t_\delta.$$

This equation yields that

$$(t_x - 1) g_1 \alpha^z - g_1^2 \alpha^{\lambda + \delta} = g_1 \alpha^\lambda h(\delta) + g_1 \alpha^\delta h(\lambda) + h(\lambda) h(\delta)$$

$$-h(z) (t_x - 1) - g_1 \alpha^\lambda - h(\lambda)$$

$$-g_1 \alpha^\delta - h(\delta) + (t_x - 1) + 1$$

$$= g_1 \alpha^\lambda (h(\delta) - 1) + g_1 \alpha^\delta (h(\lambda) - 1)$$

$$- (t_x - 1) (h(z) - 1) + h(\lambda) h(\delta) - h(\lambda) - h(\delta) + 1.$$

When we divide both sides by the term $(t_x - 1) g_1 \alpha^z$, we obtain the followings together with the fact $(t_x - 1) \ge 2$

$$\begin{aligned} \left| 1 - g_1 \alpha^{\lambda + \delta - z} \left(t_x - 1 \right)^{-1} \right| &< \frac{\left| h\left(\delta \right) - 1 \right|}{\left(t_x - 1 \right) \alpha^{z - \lambda}} + \frac{\left| h\left(\lambda \right) - 1 \right|}{\left(t_x - 1 \right) \alpha^{z - \delta}} + \frac{\left| h\left(z \right) - 1 \right|}{g_1 \alpha^z} \\ &+ \frac{\left| h\left(\lambda \right) h\left(\delta \right) - h\left(\lambda \right) - h\left(\delta \right) + 1 \right|}{g_1 \left(t_x - 1 \right) \alpha^z} \\ &\leq \frac{1.52}{\alpha^{z - \delta}} + \frac{1.52}{\alpha^{z - 2}} + \frac{1.16}{\alpha^{z - 2}} < \frac{4.2}{\alpha^{z - \delta}}. \end{aligned}$$

where we used the facts $\frac{1}{g_1} \leq \alpha^2$ and $g_1 > 1$ for $A \geq 2$ integer. Since $|\lambda + \delta - x - z| \leq 2$ and $y + w \neq x + z$ holds, then we write that $\lambda + \delta - z = x + \varepsilon$ where $\varepsilon \in \{\pm 1, \pm 2\}$. Then

$$\min_{\substack{\varepsilon \in \{\pm 1, \pm 2\}\\ l_A \le x \le 5}} \left| 1 - g_1 \alpha^{x+\varepsilon} \left(t_x - 1 \right)^{-1} \right| < \frac{4.2}{\alpha^{z-\delta}}$$

follows. If A = 2, then x = 3 yields that

$$\min_{\varepsilon \in \{\pm 1, \pm 2\}} \left| 1 - g_1 \alpha^{3+\varepsilon} \left(t_3 - 1 \right)^{-1} \right| > 0.5.$$

If $A \geq 3$, then $x \geq 2$ gives that

$$\min_{\substack{\varepsilon \in \{\pm 1, \pm 2\}\\2 \le x \le 5}} \left| 1 - g_1 \alpha^{x+\varepsilon} \left(t_x - 1 \right)^{-1} \right| > 0.56.$$

Therefore, we have

$$0.5 < \min_{\substack{\varepsilon \in \{\pm 1, \pm 2\} \\ l_A \le x \le 5}} \left| 1 - g_1 \alpha^{x+\varepsilon} (t_x - 1)^{-1} \right| < \frac{4.2}{\alpha^{z-\delta}}$$

follows. This fact yields that $z \leq \delta + 2$.

By the equation

$$\frac{(t_x-1)(t_z-1)}{t_{\delta}-1} = t_{\lambda}-1$$

together with Lemma 2.3 and the fact $z \leq \delta + 2$, we get

$$\begin{aligned} \alpha^{\lambda-2} &< t_{\lambda} - 1 = \frac{(t_x - 1)(t_z - 1)}{t_{\delta} - 1} < \alpha^{z - \delta + 1.49} + \alpha^{x - 0.51} \\ &< \alpha^{3.49} + \alpha^{2.49} < \alpha^{3.49 + 2.48} = \alpha^{5.97} \end{aligned}$$

which yields that $3 \leq \lambda \leq 7$. The equation (8) gives that

$$(t_x - 1) t_z - (t_\lambda - 1) t_\delta = t_x - t_\lambda.$$

Put $t_n = g_1 \alpha^n + h(n)$ for the indices δ and z, we have the followings

$$(t_x - 1) g_1 \alpha^z - (t_\lambda - 1) g_1 \alpha^\delta = (t_\lambda - 1) (h(\delta) - 1) + (t_x - 1) (1 - h(z)).$$

Divide both sides by $(t_\lambda - 1) g_1 \alpha^\delta$. Then

(9)
$$\left|1 - (t_x - 1)(t_\lambda - 1)^{-1}\alpha^{z-\delta}\right| \le \frac{|h(\delta) - 1|}{g_1\alpha^{\delta}} + \frac{t_x - 1}{t_\lambda - 1}\frac{|h(z) - 1|}{\alpha^{\delta-2}} < \frac{3.04}{\alpha^{\delta-2}}$$

follows. We used that facts $\frac{t_x-1}{t_\lambda-1} \leq 1$ and $\frac{1}{g_1} < \alpha^2$. Since $z - \delta = \lambda - x + \varepsilon$ and $\varepsilon \in \{\pm 1, \pm 2\}$, then we have that

$$\min_{\substack{l_A \le x \le 5\\ x+1 \le \lambda \le 7\\ \varepsilon \in \{\pm 1, \pm 2\}}} \left| 1 - (t_x - 1) (t_\lambda - 1)^{-1} \alpha^{\lambda - x + \varepsilon} \right| < \frac{3.04}{\alpha^{\delta - 2}}.$$

The case A = 2 gives that x = 3. Then

(10)
$$0.6 < \min_{\substack{4 \le \lambda \le 7\\ \varepsilon \in \{\pm 1, \pm 2\}}} \left| 1 - (t_3 - 1) (t_\lambda - 1)^{-1} \alpha^{\lambda - 3 + \varepsilon} \right|$$

follows. If $A \geq 3$ integer, then it yields that

(11)
$$0.7 < \min_{\substack{2 \le x \le 5\\ x+1 \le \lambda \le 7\\ \varepsilon \in \{\pm 1, \pm 2\}}} \left| 1 - (t_x - 1) (t_\lambda - 1)^{-1} \alpha^{\lambda - x + \varepsilon} \right|.$$

Together with the inequalities (10), (11) and (9), we obtain

$$0.6 < \min_{\substack{l_{A} \le x \le 5\\ x+1 \le \lambda \le 7\\ \varepsilon \in \{\pm 1, \pm 2\}}} \left| 1 - (t_{x} - 1) (t_{\lambda} - 1)^{-1} \alpha^{\lambda - x + \varepsilon} \right| < \frac{3.04}{\alpha^{\delta - 2}}$$

gives that $\delta \leq 3$.

By the equation system (1), one can see that

$$t_z - 1 < (t_\lambda - 1) (t_\delta - 1)$$

which gives that $z \leq \lambda + \delta$. So, $z \leq 10$ since $\lambda \leq 7$ and $\delta \leq 3$.

By the definition of the l_A function, there are two possibilities as follows:

(1) If $A \ge 3$, $2 \le x < \lambda \le \delta < z \le 10$ Since we find $\delta \le 3$, then only the case x = 2, $\delta = \lambda = 3$ and $4 \le z \le 10$ must hold.

(2) If A = 2, x = 3, $\lambda = 4$, $\delta = 5$, and $4 \le z \le 10$. However, this case impossible since $\delta \le 3$.

3.2. An upper bound for the integer A

Up to now, we prove that x = 2, $\lambda = \delta = 3$ and $4 \le z \le 10$ is the only possible case for the equation system (1). Now, we follow the key argument in the paper [5] to find the upper bound for A. The terms of the sequence $\{t_n\}$ are monic polynomials in A with integer coefficients. By the equation system (1), the term

$$a_1 a_2 = \sqrt{\frac{(t_2 - 1)(t_3 - 1)^2}{(t_z - 1)}}$$

must be integer. By the polynomial division, there uniquely exist polynomials q(A) and r(A) with integer coefficients such that

$$(t_2 - 1) (t_3 - 1)^2 = q (A) (t_z - 1) + r (A)$$

holds. For the case $4 \le z \le 10$, we obtain the following table.

z	$q\left(A ight)$	r(A)
4	$2A^2 + 4A$	$A^2 - A - 2$
5	$-3A^3 + A^2 + 2A$	A-1
6	$-4A^3 - 3A^2 - 3A - 1$	1
7	0	$A^5 - A^4$
8	0	$A^5 - A^4$
9	0	$A^5 - A^4$
10	0	$A^5 - A^4$

Table 1: Remainder and quotient polynomials

Checking the eligible possibilities for x = 2, $\lambda = \delta = 3$ and $4 \le z \le 10$, we observe that r(A) is never zero and there is no positive integer A such that r(A) = 0 for $A \ge 3$. Hence,

(12)
$$\frac{(t_x - 1)(t_\lambda - 1)(t_\delta - 1)}{t_z - 1} = q(A) + \frac{r(A)}{t_z - 1},$$

the term $\frac{r(A)}{t_z-1}$ never disappears in the equation (12). For some A, the right hand side of equation (12) is integer. But deg $(r(A)) < \text{deg}((t_z - 1))$, so A cannot be large since

$$\lim_{A \to \infty} \frac{r(A)}{t_z - 1} = 0.$$

Then, $|r(A)| > t_z - 1$ must hold which yields that $A \leq A_0$ for some positive integer A_0 . We use Mathematica programme to find A_0 for x = 2, $\lambda = \delta = 3$ and $4 \leq z \leq 10$. Then, we find that $A_0 = 2$. But this contradicts with our assumption $A \geq 3$. Therefore, this gives the proof of Theorem 1.1.

Acknowledgments. The author expresses his gratitude to the anonymous reviewer for the instructive suggestions and comments.

REFERENCES

- M. Alp, N. Irmak, and L Szalay, *Balancing Diophantine triples*. Acta Univ. Sapientiae Math. 4 (2012), 11–19.
- [2] G. P. B. Dresden and Z. Du, A simplified Binet formula for k-generalized Fibonacci numbers. J. Integer Seq. 17 (2014), Article 14.4.7, 9 pp.
- [3] C. Fuchs, F. Luca, and L. Szalay, Diophantine triples with values in binary recurrences. Ann. Sc. Norm. Super. Pisa Cl. Sci. 7 (2008), 579–608.
- [4] C. A. Gómez Ruiz and F. Luca, Tribonacci Diophantine quadruples. Glas. Mat. Ser. III 50 (2015), 17–24.
- [5] N. Irmak and L. Szalay, Diophantine triples and reduced quadruples with the Lucas sequence of recurrence $u_n = Au_{n-1} u_{n-2}$. Glas. Mat. Ser. III **49** (2014), 303–312.
- [6] T. Komatsu and V. Laohakosol, On the sum of reciprocals of numbers satisfying a recurrence relation of order s. J. Integer Seq. 13 (2010), Article 10.5.8, 9 pp.
- [7] F. Luca and L. Szalay, Fibonacci Diophantine triples. Glas. Mat. Ser. III 43 (2008), 253–264.
- [8] F. Luca and L. Szalay, Lucas Diophantine triples. Integers 9 (2009) A34, 441–457.

Received February 2, 2018

Konya Technical University Engineering and Natural Science Faculty Department of Engineering Basic Science Konya, Turkey irmaknurettin@gmail.com, nirmak@ktun.edu.tr