GENERALIZED TRIBONACCI DIOPHANTINE QUADRUPLES

NURETTIN IRMAK

Communicated by Alexandru Zaharescu

Abstract

Let $\left(t_{n}\right)_{n>0}$ be defined by the recurrence $t_{n}=A t_{n-1}+t_{n-2}+t_{n-3}$ with $t_{0}=$ $0, t_{1}=1, t_{2}=A$ and $A \geq 2$ integer. In this paper, we prove that there does not exist integers $1 \leq a_{1}<a_{2}<a_{3}<a_{4}$ such that $a_{1} a_{2}+1, a_{2} a_{3}+1, a_{3} a_{4}+1$ and $a_{1} a_{4}+1$ are Tribonacci numbers.

AMS 2010 Subject Classification: 11D72, 11B39.
Key words: Tribonacci number, diophantine quadruples.

1. INTRODUCTION

A Diophantine m-tuple is a set $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ of positive integers such that $a_{i} a_{j}+1$ is a square for all $1 \leq i<j \leq m$. Diophantus found a rational quadruple $\left\{\frac{1}{16}, \frac{33}{16}, \frac{68}{16}, \frac{105}{16}\right\}$. Fermat found the $\{1,3,8,120\}$ as the first Diophantine quadruple. The numbers 1,3,8 in Fermat's set can be viewed as three consecutive Fibonacci numbers with even subscript.

A famous conjecture is that no quintuple exists. A closely related theorem of Dujella states that there are only finitely many quintuples.

A variant of the problem is obtained if one replaces the squares by the terms of a given binary recurrence. Firstly, Luca and Szalay [7, 8] put Fibonacci and Lucas numbers instead of the squares and showed that there is no Fibonacci Diophantine triple and $\{1,2,3\}$ is the only Lucas Diophantine triples. Alp, Irmak and Szalay [1] proved afterwards that there are no balancing Diophantine triples. Fuchs, Luca and Szalay [3] gave the necessary conditions to have the finitely many solutions in the case of replacing the member of second order sequence instead of squares. Moreover, Irmak and Szalay [5] showed that there is no triple $0<a<b<c$ satisfying the following system of equations

$$
\begin{aligned}
a b+1 & =u_{x} \\
a c+1 & =u_{y} \\
b c+1 & =u_{z}
\end{aligned}
$$

such that $u_{n}=A u_{n-1}-u_{n-2}$ with $u_{0}=0$ and $u_{1}=1$ where $A \neq 2$ is an integer. In the sequel, Gómez and Luca [4] solved the following system of equations

$$
a_{1} a_{2}+1=T_{x}
$$

$$
\begin{aligned}
a_{2} a_{3}+1 & =T_{y} \\
a_{3} a_{4}+1 & =T_{z} \\
a_{1} a_{4}+1 & =T_{w}
\end{aligned}
$$

and found no quadruple $0<a_{1}<a_{2}<a_{3}<a_{4}$ where T_{x}, T_{y}, T_{z} and T_{w} are Tribonacci numbers.

In this paper, we generalize the problem of Ruiz and Luca. Namely, we investigate the solutions of the following equation system

$$
\begin{align*}
a_{1} a_{2}+1 & =t_{x} \\
a_{2} a_{3}+1 & =t_{y} \\
a_{3} a_{4}+1 & =t_{z} \tag{1}\\
a_{1} a_{4}+1 & =t_{w}
\end{align*}
$$

where $0<a_{1}<a_{2}<a_{3}<a_{4}$ are integers. Before going further, we define the generalized Tribonacci sequence $\left(t_{n}\right)_{n \geq 0}$ by the following recurrence relation

$$
\begin{equation*}
t_{n}=A t_{n-1}+t_{n-2}+t_{n-3} \tag{2}
\end{equation*}
$$

with the initial conditions $t_{0}=0, t_{1}=1$ and $t_{2}=A$ where A is a positive integer.

Our result is the following,
Theorem 1.1. There is no solution of the equation system (1) with $A \geq 2$.

2. PRELIMINARIES

Before proceeding further, some considerations will be needed for the convenience of the reader. First lemma is about the Binet form of the terms of the sequence $\left(t_{n}\right)_{n \geq 0}$.

Lemma 2.1. The Binet-type formula of the generalized Tribonacci sequence $\left(t_{n}\right)_{n \geq 0}$ is

$$
\begin{equation*}
t_{n}=\sum_{k=1}^{3} g(k, A) \alpha_{k}^{n} \tag{3}
\end{equation*}
$$

where $g(k, A)=\frac{\alpha_{k}-A}{(A+3) \alpha_{k}^{2}-A(A+5) \alpha_{k}+(A-1)(2 A+1)}$ and the elements α_{1}, α_{2} and α_{3} are the roots of the characteristic equation $x^{3}-A x^{2}-x-1=0$.

Proof. The terms of the sequence $\left(t_{n}\right)_{n \geq 0}$ can be expressed by linear combination of the roots of the characteristic equation $x^{3}-A x^{2}-x-1=0$. Namely,

$$
\begin{equation*}
t_{n}=X \alpha_{1}^{n}+Y \alpha_{2}^{n}+Z \alpha_{3}^{n} . \tag{4}
\end{equation*}
$$

Applying the initial conditions $t_{0}=0, t_{1}=1$ and $t_{2}=A$ to the equation (4), we obtain the coefficient $X=\frac{\alpha_{1}}{\left(\alpha_{1}-\alpha_{2}\right)\left(\alpha_{1}-\alpha_{3}\right)}$. Then

$$
\begin{aligned}
X & =\frac{\alpha_{1}}{\left(\alpha_{1}-\alpha_{2}\right)\left(\alpha_{1}-\alpha_{3}\right)}=\frac{\alpha_{1}}{\alpha_{1}^{2}-\alpha_{1}\left(\alpha_{2}+\alpha_{3}\right)+\alpha_{2} \alpha_{3}} \\
& =\frac{\alpha_{1}}{\alpha_{1}^{2}-\alpha_{1}\left(A-\alpha_{1}\right)+\left(-1-A \alpha_{1}+\alpha_{1}^{2}\right)}=\frac{1}{\alpha_{2} \alpha_{3}\left(3 \alpha_{1}^{2}-2 A \alpha_{1}-1\right)} \\
& =\frac{\alpha_{1}-A}{(A+3) \alpha_{1}^{2}-A(A+5) \alpha_{1}+(A-1)(2 A+1)}
\end{aligned}
$$

follows. The other coefficients can be found by similar way.
When we put $A=1$ in the equation (3), it coincides with the Binet formula of 3-generalized Fibonacci sequence which is given by the paper of Dresden and Du [2].

Lemma 2.2. Let $A, s \in \mathbb{N}, s \geq 2$ and let

$$
f(x)=x^{s}-A x^{s-1}-x^{s-2}-\cdots-x-1 .
$$

Then
(a) $f(x)$ has exactly one positive simple root $\alpha \in \mathbb{R}$ with $A<\alpha<A+1$
(b) the remaining $s-1$ roots of $f(x)$ lie within the unit circle in the complex plane.

Proof. See Lemma 2 in [6].
Since $\left|\alpha_{2}\right|=\left|\alpha_{3}\right|<1$, then the contribution of the roots α_{2} and α_{3} will quickly become trivial in the equation (3). That is,

$$
\begin{equation*}
t_{n} \cong g(1, A) \alpha_{1}^{n} \tag{5}
\end{equation*}
$$

holds for n sufficiently large.
The next lemma presents the upper and lower bounds for the terms of the sequence $\left\{t_{n}\right\}$.

Lemma 2.3. Let $A \geq 2$ and $\alpha=\alpha_{1}$ be the dominant root of the equation $x^{3}-A x^{2}-x-1=0$. Then the following inequality

$$
\begin{equation*}
\alpha^{n-2} \leq t_{n}<\alpha^{n-0.51} \tag{6}
\end{equation*}
$$

holds for $n \geq 1$.
Proof. It is obvious that $\alpha^{n-2} \leq t_{n}$. Since $t_{n}=g(1, A) \alpha^{n}+g(2, A) \alpha_{2}^{n}+$ $g(3, A) \alpha_{3}^{n}$, then

$$
t_{n}=g(1, A) \alpha^{n}\left(1+\frac{g(2, A)}{g(1, A)}\left(\frac{\alpha_{2}}{\alpha}\right)^{n}+\frac{g(3, A)}{g(1, A)}\left(\frac{\alpha_{3}}{\alpha}\right)^{n}\right) \leq 2 g(1, A) \alpha^{n}
$$

follows. So, we get that

$$
t_{n}<2 g(1, A) \alpha^{n}=\alpha^{n+\log _{\alpha} 2 g(1, A)}
$$

As the function $\log _{\alpha} 2 g(1, A)$ is decreasing (since $\frac{d}{d \alpha} \log _{\alpha} 2 g(1, A)<0$), then it takes the maximum value at $A=2$. So, we have

$$
t_{n}<\alpha^{n-0.51}
$$

as claimed.
Lemma 2.4. Let $A \geq 2$. For $n \geq 1$, the following inequality holds

$$
\left|t_{n}-g(1, A) \alpha^{n}\right| \leq 0.52
$$

Proof. Let $E_{n}=t_{n}-g(1, A) \alpha^{n}$. Since $t_{n}=A t_{n-1}+t_{n-2}+t_{n-3}$ and $\alpha^{n}=A \alpha^{n-1}+\alpha^{n-2}+\alpha^{n-3}$ hold, then we have $E_{n}=A E_{n-1}+E_{n-2}+E_{n-3}$ for $n \geq 3$. Now, we will follow the method of the proof of Theorem 2 in the paper of Dresden of $\mathrm{Du}[2]$. Assume that $\left|E_{n}\right|>0.52$ for $n \geq 3$. Let n_{0} be the smallest positive such integer n. Namely, $\left|E_{n_{0}}\right|>0.52>\left|E_{n_{0}-k}\right|$ holds for $k \geq 1$. Together with the equations

$$
E_{n_{0}+1}=A E_{n_{0}}+E_{n_{0}-1}+E_{n_{0}-2}
$$

and

$$
E_{n_{0}}=A E_{n_{0}-1}+E_{n_{0}-2}+E_{n_{0}-3}
$$

then we have

$$
E_{n_{0}+1}=(A+1) E_{n_{0}}+(1-A) E_{n_{0}-1}-E_{n_{0}-3}
$$

This equation gives that

$$
\begin{align*}
(A+1)\left|E_{n_{0}}\right| & =\left|E_{n_{0}+1}+(A-1) E_{n_{0}-1}+E_{n_{0}-3}\right| \\
& \leq\left|E_{n_{0}+1}\right|+(A-1)\left|E_{n_{0}-1}\right|+\left|E_{n_{0}-3}\right| \tag{7}
\end{align*}
$$

We obtain the followings by the inequality (7)

$$
(A-1)\left(\left|E_{n_{0}}\right|-\left|E_{n_{0}-1}\right|\right)+\left|E_{n_{0}}\right|-\left|E_{n_{0}-3}\right| \leq\left|E_{n_{0}+1}\right|-\left|E_{n_{0}}\right|
$$

Since $\left|E_{n_{0}}\right|-\left|E_{n_{0}-1}\right|>0$ and $\left|E_{n_{0}}\right|-\left|E_{n_{0}-3}\right|>0$, then we obtain that $\left|E_{n_{0}+1}\right|-$ $\left|E_{n_{0}}\right|>0$. If we apply this argument repeatedly, we get

$$
\left|E_{n_{0}+i}\right|>\cdots>\left|E_{n_{0}+1}\right|>\left|E_{n_{0}}\right| \geq 0.52
$$

But this contradicts with the observation from equation (5) since the error terms must converge to 0 . We conclude that $\left|E_{n}\right| \leq 0.52$.

Lemma 2.5. Let $A \geq 2$ be an integer. For $n>m \geq 4$ and $k \in\{1,2\}, t_{n}$ satisfies

$$
\frac{t_{m}-1}{t_{m-k}-1}>\frac{t_{n}-1}{t_{n-k}-1}
$$

Proof. Let $s(n, m)=\left(t_{m}-1\right)\left(t_{n-k}-1\right)-\left(t_{m-k}-1\right)\left(t_{n}-1\right)$. Our aim is to show that $s(n, m)>0$. Applying induction on n, we have the followings

$$
\begin{aligned}
& s(n, m)+s(n+1, m)+A \times s(n+2, m) \\
= & \operatorname{det}\left(\begin{array}{cc}
t_{m}-1 & t_{m-k}-1 \\
t_{n}-1 & t_{n-k}-1
\end{array}\right)+\operatorname{det}\left(\begin{array}{cc}
t_{m}-1 & t_{m-k}-1 \\
t_{n+1}-1 & t_{n+1-k}-1
\end{array}\right) \\
& +A \operatorname{det}\left(\begin{array}{cc}
t_{m}-1 & t_{m-k}-1 \\
t_{n+2}-1 & t_{n+2-k}-1
\end{array}\right) \\
= & \operatorname{det}\left(\begin{array}{cc}
t_{m}-1 & t_{m-k}-1 \\
t_{n}+t_{n+1}-2 & t_{n-k}+t_{n-k+1}-2
\end{array}\right) \\
& +\operatorname{det}\left(\begin{array}{cc}
t_{m}-1 & t_{m-k}-1 \\
A t_{n+2}-A & t_{n+2-k}-A
\end{array}\right) \\
= & \operatorname{det}\left(\begin{array}{cc}
t_{m}-1 & t_{m-k}-1 \\
t_{n+3}-(A+2) & t_{n+3-k}-(A+2)
\end{array}\right)>0 .
\end{aligned}
$$

We conclude that $\left(t_{m}-1\right)\left(t_{n+3-k}-1\right)-\left(t_{m-k}-1\right)\left(t_{n+3}-1\right)>(A+1)\left(t_{m}-t_{m-k}\right)$. Since $\left(t_{m}-t_{m-k}\right)>0$, then we deduce that $s(n+3, m)=\left(t_{m}-1\right)\left(t_{n+3-k}-1\right)-$ $\left(t_{m-k}-1\right)\left(t_{n+3}-1\right)>0$ as claimed.

Now we are ready to deal with the proof of the theorems.

3. PROOF OF THEOREM 1.1

3.1. An upper bound for the integer z

Since $1 \leq a_{1}<a_{2}<a_{3}<a_{4}$, then $t_{x}=a_{1} a_{2}+1 \geq 3$ follows. Define the function l_{A} as follows:

$$
l_{A}= \begin{cases}2, & \text { if } A \geq 3 \\ 3, & \text { if } A=2\end{cases}
$$

So, we have that $l_{A} \leq x$.
In the sequel, we obtain the equation

$$
\begin{equation*}
\left(t_{x}-1\right)\left(t_{z}-1\right)=\left(t_{y}-1\right)\left(t_{w}-1\right) \tag{8}
\end{equation*}
$$

by the equation (1). Using the upper and lowers bounds for the terms of the sequence $\left(t_{n}\right)_{n \geq 0}$, we get the followings

$$
\alpha^{x+z-4} \leq\left(t_{x}-1\right)\left(t_{z}-1\right)<\alpha^{y+w-1.02}
$$

and

$$
\alpha^{y+w-4} \leq\left(t_{x}-1\right)\left(t_{z}-1\right)<\alpha^{x+z-1.02}
$$

Combining these inequalities yields

$$
|(x+z)-(y+w)| \leq 2
$$

So, we have two possible cases $(x+z)=(y+w)$ and $(x+z) \neq(y+w)$. Note that, we can see easily that

$$
l_{A} \leq x<\lambda=\min \{y, w\} \leq \delta=\max \{y, w\}<z
$$

since $1 \leq a_{1}<a_{2}<a_{3}<a_{4}$.
Case I: $(x+z)=(y+w)$
The terms of the sequence $\left(t_{n}\right)_{n \geq 0}$ can be expressed by $t_{n}=g_{1} \alpha^{n}+$ $h(n)$ where $g_{1}=g(1, A)$ and $|h(n)|<0.52$. Expanding the equation (8), the equation

$$
t_{x} t_{z}-t_{\lambda} t_{\delta}=t_{x}+t_{z}-t_{\lambda}-t_{\delta}
$$

gives that

$$
\begin{aligned}
\left|g_{1} \alpha^{z} h(x)-g_{1} \alpha^{z}\right|= & \mid-g_{1} \alpha^{x} h(z)-h(x) h(z)+g_{1} \alpha^{\lambda} h(\delta) \\
& +g_{1} \alpha^{\delta} h(\lambda)+h(\lambda) h(\delta)+h(z)+h(x) \\
& -h(\lambda)-h(\delta)+g_{1} \alpha^{x}-g_{1} \alpha^{\lambda}-g_{1} \alpha^{\delta} \mid
\end{aligned}
$$

Divide both side by $g_{1} \alpha^{z}$. Then

$$
\begin{aligned}
|h(x)-1|< & \frac{|h(x) h(z)|+|h(\lambda) h(\delta)|+|h(z)|+|h(x)|+|h(\lambda)|+|h(\delta)|}{g_{1} \alpha^{z}} \\
& +\frac{g_{1} \alpha^{x}|h(z)|+g_{1} \alpha^{\lambda}|h(\delta)|+g_{1} \alpha^{\delta}|h(\lambda)|}{g_{1} \alpha^{z}} \\
& +\frac{g_{1} \alpha^{x}+g_{1} \alpha^{\lambda}+g_{1} \alpha^{\delta}}{g_{1} \alpha^{z}} \\
< & \frac{2.63}{g_{1} \alpha^{z}}+\frac{1.56}{\alpha^{z-\delta}}+\frac{3}{\alpha^{z-\delta}}<\frac{7.19}{\alpha^{z-\delta}}
\end{aligned}
$$

follows, where we used the facts $\frac{1}{g_{1}}<\alpha^{2}$ and $g_{1}<1$. The inequality $|h(x)-1|>$ 0.48 yields that $z-\delta \leq 2$. So we can write that $z=\delta+k$ where $k \in\{1,2\}$. Applying this fact to the equation (8) together with $x+z=\delta+\lambda$, we obtain that

$$
\left(t_{x}-1\right)\left(t_{\delta+k}-1\right)=\left(t_{\delta}-1\right)\left(t_{x+k}-1\right)
$$

However, this contradicts with Lemma 2.5.
Case II: $(x+z) \neq(y+w)$
Combining the equation (8) together with $t_{n}=g_{1} \alpha^{n}+h(n)$, then we get

$$
\begin{aligned}
g_{1}^{2} \alpha^{x+z}-g_{1}^{2} \alpha^{\lambda+\delta}= & g_{1} \alpha^{x}(1-h(z))+g_{1} \alpha^{z}(1-h(x)) \\
& +g_{1} \alpha^{\lambda}(h(\delta)-1)+g_{1} \alpha^{\delta}(h(\lambda)-1) \\
& +h(x)+h(z)-h(\lambda)-h(\delta) \\
& +h(\lambda) h(\delta)-h(x) h(z) .
\end{aligned}
$$

When we divide both sides by the term $g_{1}^{2} \alpha^{x+z}$, then

$$
\begin{aligned}
\left|1-\alpha^{-(x+z-\lambda-\delta)}\right| & <\frac{1.52}{g_{1}}\left(\frac{1}{\alpha^{z}}+\frac{1}{\alpha^{x}}+\frac{\alpha^{\lambda-z}}{\alpha^{x}}+\frac{\alpha^{\delta-z}}{\alpha^{x}}\right)+\frac{2.63}{g_{1}^{2} \alpha^{x+z}} \\
& <\frac{1}{g_{1}^{2}}\left(1.52 g_{1} \frac{2+\alpha^{-1}+\alpha^{-2}}{\alpha^{x}}+2.63 \frac{\alpha^{-4}}{\alpha^{x}}\right)<\frac{1.6}{g_{1}^{2} \alpha^{x}}<\frac{1.6}{\alpha^{x-4}}
\end{aligned}
$$

follows. We used the facts $\lambda-z \leq-2, \delta-z \leq-1,4 \leq z, \frac{1}{g_{1}^{2}}<\frac{1}{\alpha^{-4}}$ and $\left|g_{1}\right|<0.4$. So, the inequality

$$
0.6<\min _{|x+z-\lambda-\delta| \leq 2}\left|1-\alpha^{-(x+z-\lambda-\delta)}\right|<\frac{1.6}{\alpha^{x-4}}
$$

gives that $l_{A} \leq x \leq 5$.
Now, we rewrite the equation (8) as follows:

$$
\left(t_{x}-1\right) t_{z}-t_{\lambda} t_{\delta}=t_{x}-t_{\lambda}-t_{\delta}
$$

This equation yields that

$$
\begin{aligned}
\left(t_{x}-1\right) g_{1} \alpha^{z}-g_{1}^{2} \alpha^{\lambda+\delta}= & g_{1} \alpha^{\lambda} h(\delta)+g_{1} \alpha^{\delta} h(\lambda)+h(\lambda) h(\delta) \\
& -h(z)\left(t_{x}-1\right)-g_{1} \alpha^{\lambda}-h(\lambda) \\
& -g_{1} \alpha^{\delta}-h(\delta)+\left(t_{x}-1\right)+1 \\
= & g_{1} \alpha^{\lambda}(h(\delta)-1)+g_{1} \alpha^{\delta}(h(\lambda)-1) \\
& -\left(t_{x}-1\right)(h(z)-1)+h(\lambda) h(\delta)-h(\lambda)-h(\delta)+1 .
\end{aligned}
$$

When we divide both sides by the term $\left(t_{x}-1\right) g_{1} \alpha^{z}$, we obtain the followings together with the fact $\left(t_{x}-1\right) \geq 2$

$$
\begin{aligned}
\left|1-g_{1} \alpha^{\lambda+\delta-z}\left(t_{x}-1\right)^{-1}\right|< & \frac{|h(\delta)-1|}{\left(t_{x}-1\right) \alpha^{z-\lambda}}+\frac{|h(\lambda)-1|}{\left(t_{x}-1\right) \alpha^{z-\delta}}+\frac{|h(z)-1|}{g_{1} \alpha^{z}} \\
& +\frac{|h(\lambda) h(\delta)-h(\lambda)-h(\delta)+1|}{g_{1}\left(t_{x}-1\right) \alpha^{z}} \\
\leq & \frac{1.52}{\alpha^{z-\delta}}+\frac{1.52}{\alpha^{z-2}}+\frac{1.16}{\alpha^{z-2}}<\frac{4.2}{\alpha^{z-\delta}} .
\end{aligned}
$$

where we used the facts $\frac{1}{g_{1}} \leq \alpha^{2}$ and $g_{1}>1$ for $A \geq 2$ integer. Since $|\lambda+\delta-x-z| \leq 2$ and $y+w \neq x+z$ holds, then we write that $\lambda+\delta-z=x+\varepsilon$ where $\varepsilon \in\{ \pm 1, \pm 2\}$. Then

$$
\min _{\substack{\varepsilon \in\{ \pm 1,2\} \\ l_{A} \leq x \leq 5}}\left|1-g_{1} \alpha^{x+\varepsilon}\left(t_{x}-1\right)^{-1}\right|<\frac{4.2}{\alpha^{z-\delta}}
$$

follows. If $A=2$, then $x=3$ yields that

$$
\min _{\varepsilon \in\{ \pm 1, \pm 2\}}\left|1-g_{1} \alpha^{3+\varepsilon}\left(t_{3}-1\right)^{-1}\right|>0.5
$$

If $A \geq 3$, then $x \geq 2$ gives that

$$
\min _{\substack{\varepsilon \in\{ \pm 1, \pm 2\} \\ 2 \leq x \leq 5}}\left|1-g_{1} \alpha^{x+\varepsilon}\left(t_{x}-1\right)^{-1}\right|>0.56
$$

Therefore, we have

$$
0.5<\min _{\substack{\varepsilon \in\{1, \pm 2\} \\ l_{A} \leq x \leq 5}}\left|1-g_{1} \alpha^{x+\varepsilon}\left(t_{x}-1\right)^{-1}\right|<\frac{4.2}{\alpha^{z-\delta}}
$$

follows. This fact yields that $z \leq \delta+2$.
By the equation

$$
\frac{\left(t_{x}-1\right)\left(t_{z}-1\right)}{t_{\delta}-1}=t_{\lambda}-1
$$

together with Lemma 2.3 and the fact $z \leq \delta+2$, we get

$$
\begin{aligned}
\alpha^{\lambda-2} & <t_{\lambda}-1=\frac{\left(t_{x}-1\right)\left(t_{z}-1\right)}{t_{\delta}-1}<\alpha^{z-\delta+1.49}+\alpha^{x-0.51} \\
& <\alpha^{3.49}+\alpha^{2.49}<\alpha^{3.49+2.48}=\alpha^{5.97}
\end{aligned}
$$

which yields that $3 \leq \lambda \leq 7$.
The equation (8) gives that

$$
\left(t_{x}-1\right) t_{z}-\left(t_{\lambda}-1\right) t_{\delta}=t_{x}-t_{\lambda}
$$

Put $t_{n}=g_{1} \alpha^{n}+h(n)$ for the indices δ and z, we have the followings

$$
\left(t_{x}-1\right) g_{1} \alpha^{z}-\left(t_{\lambda}-1\right) g_{1} \alpha^{\delta}=\left(t_{\lambda}-1\right)(h(\delta)-1)+\left(t_{x}-1\right)(1-h(z))
$$

Divide both sides by $\left(t_{\lambda}-1\right) g_{1} \alpha^{\delta}$. Then
(9) $\left|1-\left(t_{x}-1\right)\left(t_{\lambda}-1\right)^{-1} \alpha^{z-\delta}\right| \leq \frac{|h(\delta)-1|}{g_{1} \alpha^{\delta}}+\frac{t_{x}-1}{t_{\lambda}-1} \frac{|h(z)-1|}{\alpha^{\delta-2}}<\frac{3.04}{\alpha^{\delta-2}}$
follows. We used that facts $\frac{t_{x}-1}{t_{\lambda}-1} \leq 1$ and $\frac{1}{g_{1}}<\alpha^{2}$. Since $z-\delta=\lambda-x+\varepsilon$ and $\varepsilon \in\{ \pm 1, \pm 2\}$, then we have that

$$
\min _{\substack{l_{A} \leq x \leq 5 \\ x+1 \leq \lambda \leq 7 \\ \varepsilon \in\{ \pm 1, \pm 2\}}}\left|1-\left(t_{x}-1\right)\left(t_{\lambda}-1\right)^{-1} \alpha^{\lambda-x+\varepsilon}\right|<\frac{3.04}{\alpha^{\delta-2}}
$$

The case $A=2$ gives that $x=3$. Then

$$
\begin{equation*}
0.6<\min _{\substack{4 \leq \lambda \leq 7 \\ \varepsilon \in\{ \pm 1, \pm 2\}}}\left|1-\left(t_{3}-1\right)\left(t_{\lambda}-1\right)^{-1} \alpha^{\lambda-3+\varepsilon}\right| \tag{10}
\end{equation*}
$$

follows. If $A \geq 3$ integer, then it yields that

$$
\begin{equation*}
0.7<\min _{\substack{2 \leq x \leq 5 \\ x+1 \leq \bar{\lambda} \leq 7 \\ \varepsilon \in\{ \pm 1, \pm 2\}}}\left|1-\left(t_{x}-1\right)\left(t_{\lambda}-1\right)^{-1} \alpha^{\lambda-x+\varepsilon}\right| \tag{11}
\end{equation*}
$$

Together with the inequalities (10), (11) and (9), we obtain

$$
0.6<\min _{\substack{l_{A} \leq x \leq 5 \\ x+1 \leq 土 \\ \varepsilon \in\{ \pm 1, \pm 2\}}}\left|1-\left(t_{x}-1\right)\left(t_{\lambda}-1\right)^{-1} \alpha^{\lambda-x+\varepsilon}\right|<\frac{3.04}{\alpha^{\delta-2}}
$$

gives that $\delta \leq 3$.
By the equation system (1), one can see that

$$
t_{z}-1<\left(t_{\lambda}-1\right)\left(t_{\delta}-1\right)
$$

which gives that $z \leq \lambda+\delta$. So, $z \leq 10$ since $\lambda \leq 7$ and $\delta \leq 3$.
By the definition of the l_{A} function, there are two possibilities as follows:
(1) If $A \geq 3,2 \leq x<\lambda \leq \delta<z \leq 10$ Since we find $\delta \leq 3$, then only the case $x=2, \delta=\lambda=3$ and $4 \leq z \leq 10$ must hold.
(2) If $A=2, x=3, \lambda=4, \delta=5$, and $4 \leq z \leq 10$. However, this case impossible since $\delta \leq 3$.

3.2. An upper bound for the integer A

Up to now, we prove that $x=2, \lambda=\delta=3$ and $4 \leq z \leq 10$ is the only possible case for the equation system (1). Now, we follow the key argument in the paper [5] to find the upper bound for A. The terms of the sequence $\left\{t_{n}\right\}$ are monic polynomials in A with integer coefficients. By the equation system (1), the term

$$
a_{1} a_{2}=\sqrt{\frac{\left(t_{2}-1\right)\left(t_{3}-1\right)^{2}}{\left(t_{z}-1\right)}}
$$

must be integer. By the polynomial division, there uniquely exist polynomials $q(A)$ and $r(A)$ with integer coefficients such that

$$
\left(t_{2}-1\right)\left(t_{3}-1\right)^{2}=q(A)\left(t_{z}-1\right)+r(A)
$$

holds. For the case $4 \leq z \leq 10$, we obtain the following table.

z	$q(A)$	$r(A)$
4	$2 A^{2}+4 A$	$A^{2}-A-2$
5	$-3 A^{3}+A^{2}+2 A$	$A-1$
6	$-4 A^{3}-3 A^{2}-3 A-1$	1
7	0	$A^{5}-A^{4}$
8	0	$A^{5}-A^{4}$
9	0	$A^{5}-A^{4}$
10	0	$A^{5}-A^{4}$

Table 1: Remainder and quotient polynomials

Checking the eligible possibilities for $x=2, \lambda=\delta=3$ and $4 \leq z \leq 10$, we observe that $r(A)$ is never zero and there is no positive integer A such that $r(A)=0$ for $A \geq 3$. Hence,

$$
\begin{equation*}
\frac{\left(t_{x}-1\right)\left(t_{\lambda}-1\right)\left(t_{\delta}-1\right)}{t_{z}-1}=q(A)+\frac{r(A)}{t_{z}-1}, \tag{12}
\end{equation*}
$$

the term $\frac{r(A)}{t_{z}-1}$ never disappears in the equation (12). For some A, the right hand side of equation (12) is integer. But $\operatorname{deg}(r(A))<\operatorname{deg}\left(\left(t_{z}-1\right)\right)$, so A cannot be large since

$$
\lim _{A \rightarrow \infty} \frac{r(A)}{t_{z}-1}=0
$$

Then, $|r(A)|>t_{z}-1$ must hold which yields that $A \leq A_{0}$ for some positive integer A_{0}. We use Mathematica programme to find A_{0} for $x=2, \lambda=\delta=3$ and $4 \leq z \leq 10$. Then, we find that $A_{0}=2$. But this contradicts with our assumption $A \geq 3$. Therefore, this gives the proof of Theorem 1.1.

Acknowledgments. The author expresses his gratitude to the anonymous reviewer for the instructive suggestions and comments.

REFERENCES

[1] M. Alp, N. Irmak, and L Szalay, Balancing Diophantine triples. Acta Univ. Sapientiae Math. 4 (2012), 11-19.
[2] G. P. B. Dresden and Z. Du, A simplified Binet formula for k-generalized Fibonacci numbers. J. Integer Seq. 17 (2014), Article 14.4.7, 9 pp.
[3] C. Fuchs, F. Luca, and L. Szalay, Diophantine triples with values in binary recurrences. Ann. Sc. Norm. Super. Pisa Cl. Sci. 7 (2008), 579-608.
[4] C. A. Gómez Ruiz and F. Luca, Tribonacci Diophantine quadruples. Glas. Mat. Ser. III 50 (2015), 17-24.
[5] N. Irmak and L. Szalay, Diophantine triples and reduced quadruples with the Lucas sequence of recurrence $u_{n}=A u_{n-1}-u_{n-2}$. Glas. Mat. Ser. III 49 (2014), 303-312.
[6] T. Komatsu and V. Laohakosol, On the sum of reciprocals of numbers satisfying a recurrence relation of order s. J. Integer Seq. 13 (2010), Article $10.5 .8,9$ pp.
[7] F. Luca and L. Szalay, Fibonacci Diophantine triples. Glas. Mat. Ser. III 43 (2008), 253264.
[8] F. Luca and L. Szalay, Lucas Diophantine triples. Integers 9 (2009) A34, 441-457.
Received February 2, 2018
Konya Technical University
Engineering and Natural Science Faculty Department of Engineering Basic Science Konya, Turkey

