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It is well-known that vibrating strings can be steered to a position of rest in
finite time by suitably defined boundary control functions, if the time horizon is
sufficiently long. In optimal control problems, the desired terminal state is often
enforced by terminal conditions, that add an additional difficulty to the optimal
control problem. In this paper we present an optimal control problem for the
wave equation with a time-dependent weight in the objective function such that
for a sufficiently long time horizon, the optimal state reaches a position of rest in
finite time without prescribing a terminal constraint. This situation can be seen
as a realization of the finite-time turnpike phenomenon that has been studied
recently in [3].
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1. INTRODUCTION

Often in dynamic optimal control problems with a long time horizon, in
a large neighbourhood of the middle of the time interval the optimal control
and the optimal state are very close to the solution of a control problem that
is derived from the dynamic optimal control problems by omitting the infor-
mation about the initial state and possibly a desired terminal state. Often,
the solution of this auxiliary problem is simpler than the solution of the orig-
inal dynamic problem since it has a solution that is independent of time. We
refer to this solution as the turnpike. The situation that the dynamic optimal
state approaches the turnpike in the interior of the time interval is referred
to as the turnpike phenomenon. The turnpike phenomenon has been studied
in economics for a long time (see for example [2]). Recently, it has also been
investigated for optimal control problems for systems governed by partial dif-
ferential equations, see for example [4] for a turnpike result for a boundary
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control system governed by the wave equation or [5] for a turnpike result for
linear quadratic optimal control of general evolution equations. The turnpike
phenomenon for optimal boundary control problems with hyperbolic systems
has also been studied in [6].

If the turnpike is reached after finite time, the situation is referred to as
the finite-time turnpike phenomenon. The finite-time turnpike phenomenon
has been studied for example in [7], [3].

Optimal boundary control problems for systems governed by the wave
equation that include terminal constraints have been the subject of numer-
ous studies, see for example [8] for Dirichlet controls, [9] and the references
therein. Let us observe that under reasonable simplifications also models from
engineering applications lead to systems governed by the wave equation, see
for example the models for gas pipeline flow that are discussed in [10].

One way to avoid the terminal constraint is to replace it by a non-smooth
penalty term in the objective function, that can enforce the desired terminal
state for a sufficiently large penalty parameter, see [11]. Apart from the non-
smoothness this requires a penalty term that depends only on the state at
the terminal time, so this leads to additional difficulties in the solution of the
optimal control problem.

In this paper we study an optimal control problem with a differentiable
objective function that is given by a weighted L2-norm with a time-dependent
periodic weight function. We show that if the time-horizon is sufficiently long,
the optimal state reaches the desired position of rest after finite time, although
there is no terminal constraint in the optimal control problem and there is no
terminal penalty term in the objective function.

2. STATEMENT OF THE OPTIMAL CONTROL PROBLEM

Let a length L > 0, the wave speed c > 0 and a time T0 > 2Lc ,
k ∈ {1, 2, 3, ...} and T = k T0 be given. We introduce the T0-periodic weight
function w(t) with w(t) = T0 − t for t ∈ [0, T0]. So if T0 = 2π, we have

w(t) = π +

∞∑
k=1

2

k
sin(k t).

Figure 1 shows the graph of the T0-periodic weight function w(t) for T0 = 1.

For y ∈ C((0, T ), H1(0, L)) and t ∈ [0, T ] let E(t) denote the energy

(1) E(t) =
1

2

∫ L

0
(yx(t, x))2 +

1

c2
(yt(t, x))2 dx.
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Fig. 1 – Shows the graph of the T0-periodic weight function w(t) for T0 = 1.

For a parameter γ ≥ 0, an initial position y0 ∈ H1(0, L) with y0(0) = 0
and an initial velocity y1 ∈ L2(0, L) we consider the following problem of
optimal Neumann-boundary control:

OCP(T, γ)



min
u∈L2(0,T )

T∫
0

E(t) + γ
2 w(t)u2(t) dt

subject to
y(0, x) = y0(x), yt(0, x) = y1(x), x ∈ (0, L)
y(t, 0) = 0, yx(t, L) = u(t), t ∈ (0, T )
ytt(t, x) = c2 yxx(t, x), (t, x) ∈ (0, T )× (0, L).

Note that problem OCP(T, γ) has a quadratic objective functional. For
the system that governs the state in OCP(T, γ), exact boundary controllability
is only possible for T > 2Lc . This follows for example from Theorem 3.1 in [9],
where the case that the control acts on both ends is considered.

Let X(T ) = H1(0, L)×L2(0, L)×L2(0, T ). The corresponding problem
with free initial state and free terminal state is

Free(T, γ)



min
(y0,y1,u)∈X(T ):y0(0)=0

T∫
0

E(t) + γ
2 w(t)u2(t) dt

subject to
y(0, x) = y0(x), yt(0, x) = y1(x), x ∈ (0, L)
y(t, 0) = 0, yx(t, L) = u(t), t ∈ (0, T )
ytt(t, x) = c2 yxx(t, x), (t, x) ∈ (0, T )× (0, L).
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The solution of Free(T, γ) is the position of rest with u(t) = 0 for all t ∈ [0, T ]
and y(t, x) = 0 for (t, x) ∈ (0, T )× (0, L). Now we state our main result:

Theorem 2.1. For all γ ≥ 0, OCP(T, γ) determines a unique optimal
state where the energy E(t) decays exponentially fast.

For γ = 0 and T ≥ T0 > 2 L
c , the optimal state of OCP(T, γ) reaches a

position of rest in the finite time 2 L
c , that is the optimal state has a finite-time

turnpike property.

For the proof of Theorem 2.1 we need the following Lemma.

Lemma 2.2. Let k ∈ {1, 2, 3, ...}, T = k T0 and u ∈ L2(0, T ) be given.
Then we have

(2)

T∫
0

w(t)u2(t) dt =
k−1∑
j=0

∫ (j+1)T0

j T0

(∫ t

j T0

u2(s) ds

)
dt.

Proof. For all j ∈ {0, ..., k − 1} and t ∈ [j T0, (j + 1)T0] we have

w(t) = T0 − (t− j T0) = (j + 1)T0 − t

and thus
(j+1)T0∫
j T0

w(t)u2(t) dt =

(j+1)T0∫
j T0

((j + 1)T0 − t)u2(t) dt.

Integration by parts yields

(j+1)T0∫
j T0

((j + 1)T0 − t)u2(t) dt

=

((j + 1)T0 − t)
t∫

j T0

u2(s) ds

 |(j+1)T0
t=j T0

+

(j+1)T0∫
j T0

t∫
j T0

u2(s) dsdt.

Since
T∫
0

w(t)u2(t) dt =
k−1∑
j=0

(j+1)T0∫
j T0

w(t)u2(t) dt, the assertion follows.

Proof of Theorem 2.1. For u ∈ L2(0, T ), let

J(u) =

T∫
0

E(t) +
γ

2
w(t)u2(t) dt

denote the objective function of the optimal control problem OCP(T, γ).
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Due to Lemma 2.2, we can rewrite the objective function in the form

J(u) =
k−1∑
j=0

∫ (j+1)T0

j T0

E(t) +
γ

2

(∫ t

j T0

u2(s) ds

)
dt.

For all j ∈ {0, ..., k − 1} and t ∈ [j T0, (j + 1)T0], define the integrand

Hu,j(t) = E(t) +
γ

2

t∫
j T0

u2(s) ds.

Then

(3) J(u) =

k−1∑
j=0

∫ (j+1)T0

j T0

Hu,j(t) dt.

For a given control u ∈ L2(0, T ), the function Hu,j is differentiable almost
everywhere on (j T0, (j + 1)T0) with respect to t, and we have

Hu,j
t (t) = Et(t) +

γ

2
u2(t).

Suppose that we have a control ũ ∈ L2(0, T ), such that for all u ∈ L2(0, T )
we have the inequality

(4) H ũ,j
t (t) ≤ Hu,j

t (t)

almost everywhere on (j T0, (j + 1)T0) for all j ∈ {0, ..., k− 1}. Note that due
to the definition of Hu and since the initial energy E(0) is determined by the
initial state we have

H ũ,0(0) = E(0) = Hu,0(0).
Hence for all j ∈ {0, ..., k − 1} and t ∈ (j T0, (j + 1)T0) almost everywhere we
have the inequality

H ũ,j(t) = E(0) +

j−1∑
l=0

∫ (l+1)T0

l T0

H ũ,l
t (s) ds+

∫ t

jT0

H ũ,j
t (s) ds

≤ E(0) +

j−1∑
l=0

∫ (l+1)T0

l T0

Hu,l
t (s) ds+

∫ t

jT0

Hu,j
t (s) ds = Hu,j(t).

Due to (3) this implies
J(ũ) ≤ J(u).

Hence if ũ satisfies (4), it solves problem OCP(T, γ).
Now we construct a control ũ that satisfies (4). For this purpose, we

first compute the time-derivative Et(t) for a given control u ∈ L2(0, T ). For
t ∈ (0, T ) almost everywhere we have

Et(t) = yt(t, L) yx(t, L) = yt(t, L)u(t).
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For j ∈ {0, ..., k − 1} and t ∈ (j T0, (j + 1)T0) almost everywhere we consider
the parametric optimization problem

(5) min
u∈R

Ht(t)
u,j .

With a travelling waves solution of the form y(t, x) = α
(
t+ x

c

)
− α

(
t− x

c

)
,

for the energy we obtain the representation

E(t) =
1

c2

∫ L

0

(
α′
(
t+

x

c

))2
+
(
α′
(
t− x

c

))2
dt.

This yields

E′(t) =
1

c

[
α′
(
t+

L

c

)2

− α′
(
t− L

c

)2
]
.

For our parametric optimization problem (5) we obtain

min
α′(t+L

c )∈R

1

c

[
α′
(
t+

L

c

)2

− α′
(
t− L

c

)2
]

+
γ

2 c2

[
α′
(
t+

L

c

)
+ α′

(
t− L

c

)]2
.

The necessary optimality conditions yield the solution

α′
(
t+

L

c

)
= − γ

2c+ γ
α′
(
t− L

c

)
.

This solution can be transformed to the form u = − 1
c+γ yt(t, L).

For t ∈ (0, T ) almost everywhere, we define ũ by the feedback law

(6) ũ(t) = − 1

c+ γ
yt(t, L).

Then due to the construction, for t ∈ (0, T ) almost everywhere, ũ(t) solves (5).
Thus (4) holds. Hence ũ solves problem OCP(T, γ).

The velocity feedback law (6) is well–known and has been studied for
example already in [15], [1] and [12] (Theorem 5.3). The properties of the
feedback law imply the assertion. Thus Theorem 2.1 is proved.

Remark 1. Note that for γ = 0, due to the finite-time turnpike property
for the optimal control ũ we have ũ(t) = 0 for t > T0 and for the optimal state
we have E(t) = 0 for t > T0. In this case, ũ also solves the corresponding
infinite time-horizon problem with T replaced by ∞, that is OCP(∞, γ). In
fact, also for γ > 0, the state that is generated with the feedback law (6) is the
optimal state for the infinite time-horizon problem OCP(∞, γ). For γ > 0,
the optimal state does not have the finite-time turnpike property but due to
the exponential decay of the energy shows an exponential turnpike structure
where the decay rate is independent of T .
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An example for the switching delay feedback stabilization of the vibrating
string is presented in [13]. In [14] optimal boundary feedback stabilization of
a string with moving boundary is considered.

For the general theory on optimal control problems for the wave equation
see the monographs [16] and [17].

3. CONCLUSIONS

While the turnpike phenomenon with non-smooth objective functions
has already been studied, in this paper we show that a suitable chosen time-
dependent weight function can also enforce that the optimal state reaches the
desired state in finite time. This finite time turnpike property is useful for the
numerical treatment of the problem since it allows to concentrate the dynamic
computations on the first part of the time interval, because after finite time a
static situation is reached.

We expect that a generalization of the result to networked systems is
possible. This is important, since many systems in engineering can be modelled
as networked systems, for example gas transportation networks or electrical
grids. On the other hand, the question whether it is possible to generalize the
result to dimensions 2 or 3 is completely open. A possible step in this direction
would be to consider a system governed by the wave equation with control
concentrated in interior curves, similar to [18]. Let me emphasize that in this
case, also a slower turnpike property where the the optimal state converges to
the turnpike only slowly would be of great interest.
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