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This work is a numerical investigation of the coupling between the heat and wave
equations, recast as an interconnection of open port-Hamiltonian systems (pHs).
A structure-preserving discretization suited to open pHs, based on a mixed fi-
nite element approximation space that includes boundary inputs and outputs, is
shown to yield a semi-discrete power balance analogous to the continuous one. In
the frequency domain, the semi-discretization captures the finite accumulation
point in the spectrum, associated with highly-oscillatory eigenfunctions local-
ized at the interconnection interface. In the time domain, the polynomial and
logarithmic energy decays proved by Zhang and Zuazua (Arch. Rational Mech.
Anal. 184, 2007) are recovered using a Crank-Nicolson scheme.

AMS 2010 Subject Classification: 65M60, 65L07.

Key words: polynomial decay, logarithmic decay, Port-Hamiltonian systems, structure-
preserving method.

1. INTRODUCTION AND MAIN RESULTS

This work, which extends [20], is a numerical study of the stabilization
of the 2D wave equation by a heat domain as studied theoretically in [38].
The coupled system is recast as an interconnection of open port-Hamiltonian
systems (pHs) and a structure-preserving finite element method is employed.

1.1. Structure and applications of pHs

pHs are dynamical systems with collocated boundary inputs and outputs,
endowed with a Hamiltonian functional that satisfies a power balance. The un-
derlying geometric structure is known as a Dirac (resp. Stokes-Dirac) structure
in the finite-dimensional (resp. infinite-dimensional) case.

A strength of the port-Hamiltonian approach is its natural handling of
boundary interconnections that preserve the pHs structure [16]. As a result the
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port-Hamiltonian formalism has proven to be a powerful tool for the modelling
and control of complex multi-physics systems. In many cases, spatio-temporal
dynamics must be considered and infinite-dimensional port-Hamiltonian mod-
els are needed [28, 37]. Standard academic examples such as the transmission
line, the shallow water, the beam equations and the reactive Navier-Stokes
equations have been investigated in the port-Hamiltonian framework [17, 4].

1.2. Structure-preserving discretization of pHs

In order to design control laws it is useful to employ a finite-dimensional
approximation that preserves the port-Hamiltonian structure of the original
system. It may serve as a design guide such as in control by interconnection.
Besides, the preservation of the Dirac structure implies the preservation of the
power balance (hence of passivity) as well as other dynamical properties such
as stability.

Using mixed finite element approximation spaces and following the idea
of primal–dual or dual–primal weak formulations for closed hyperbolic sys-
tems [24] to perform structure-preserving spatial discretization, the Partitioned
Finite Element Method (PFEM) [15] transforms the Stokes-Dirac structure of
the continuous open system into a Dirac structure at the semi-discrete level.
The structure-preserving nature of the approximation implies that the semi-
discrete Hamiltonian (defined as the continuous Hamiltonian evaluated on the
approximated solution) satisfies a semi-discrete power balance that mimics the
continuous one. This semi-discretization methodology can be applied to a large
class of structured evolution systems, not necessarily hyperbolic (see e.g. [31]),
and handles boundary controls and observations.

The pHs formalism seems suited to computer codes since each subsystem
can be independently discretized before interconnection. As long as the spa-
tial discretization is structure-preserving, the coupled semi-discrete model is
also a pHs. One drawback is that this methodology typically results in index-2
differential-algebraic equation (DAE) [8, 35] with both boundary Lagrange mul-
tipliers and boundary algebraic equations. This makes consistent initialization
of high-order time-integration schemes a challenge.

1.3. Contributions and outline

It is proven in [38] that the nature of the energy decay of the coupled heat-
wave system is driven by whether the Geometrical Control Condition (GCC) [6]
holds. Although the control and stabilization of the wave equation in isolation
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is well-understood, especially in the framework of finite-differences discretiza-
tion [39], this is not the case for the coupled heat-wave system. In particular,
the stabilization of the wave equation by a heat domain has not been explored
numerically, to the best of the authors’ knowledge.

This work is a numerical investigation, using a structure-preserving finite
element method, of the heat-wave system studied theoretically in [38]. In the
frequency domain, the employed semi-discretization is shown to capture the
finite accumulation point in the spectrum, associated with highly-oscillatory
eigenfunctions localized at the interconnection interface. In the time domain,
the polynomial and logarithmic energy decays proved in [38] are recovered using
a Crank-Nicolson scheme. This work extends [20] by: giving a time-harmonic
validation case; investigating the spectrum of the coupled system; employing
an alternative sparse implementation.

This paper is organized as follows. Section 2 summarizes the heat-wave
system considered and the stability results from [38]. Section 3 formulates
the heat-wave system as a boundary interconnection of two open pHs through
a so-called gyrator interconnection. Section 4 covers the structure-preserving
discretization. Numerical results in both time and frequency domains are gath-
ered in Section 5.

2. ENERGY DECAY OF A HEAT-WAVE SYSTEM

The purpose of this section is to summarize the stability results proven
in [38].

Let Ω ⊂ Rn be a bounded domain with a C2 boundary Γ := ∂Ω. Choose
two open subsets of Ω that satisfy:

Ω1 ⊂ Ω, Ω2 = Ω\Ω1,

and denote the three possible boundaries by:

Γint = ∂Ω1 ∩ ∂Ω2, Γi = ∂Ωi\Γint,

and nj the unit outward normal vector to Ωj , see Figure 2.1.
We consider the following coupled partial differential equations (PDEs),

∀t > 0:

(2.1)


∂tθ(t,x)−∆θ(t,x) = 0, x ∈ Ω1,

θ(t,x) = 0, x ∈ Γ1,
∂ttw(t,x)−∆w(t,x) = 0, x ∈ Ω2,

w(t,x) = 0, x ∈ Γ2,

together with transmission conditions across the boundary Γint:

(2.2)

{
θ(t,x) = ∂tw(t,x),

∂n1θ(t,x) = −∂n2w(t,x),
∀ t > 0, x ∈ Γint,
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Fig. 2.1 – Different geometrical configurations.

and initial data:

(2.3)


θ(0,x) = θ0(x),∀x ∈ Ω1,
w(0,x) = w0(x),∀x ∈ Ω2,

∂tw(0,x) = w1(x),∀x ∈ Ω2.

In [38], θ is denoted by y and w by z. However, y is usually used as
output of open systems, while z is the state of abstract systems, hence the
notation adopted in this work. From [38, Thm. 1], it is known that (2.1)-(2.2)
is well-posed in the finite energy space:

X := L2(Ω1)×H1
Γ2

(Ω2)× L2(Ω2),

endowed with the following norm:

(2.4) ‖z‖2X := ‖z1‖2L2(Ω1) + ‖z2‖2L2(Ω2) + ‖grad (z2)‖2(L2(Ω2))n + ‖z3‖2L2(Ω1) .

Clearly, the semi-norm

|z|2X := ‖z1‖2L2(Ω1) + ‖grad (z2)‖2(L2(Ω2))n + ‖z3‖2L2(Ω1) ,

is a norm on X , equivalent to (2.4), when Γ2 has strictly positive measure. In
[38], the asymptotic behaviours of these (semi-)norms have been studied for
various geometrical configurations, see Figure 2.1. The theorem below provides
a summary of the results of interest from [38].

Theorem 2.1 (Hamiltonian decay [38]). Let n ∈ N∗. Let Ω ⊂ Rn be
a bounded domain with smooth boundary. Assume that Γint is smooth and
nonempty.

• Assume Γ2 6= ∅. Then the heat-wave system is asymptotically stable,
i.e. H tends to zero as t→∞ [38, Thm. 4]. The decay is neither uniform nor
exponential [38, Thm. 6].

• Assume both Γ1 and Γ2 are nonempty. If Ω1 satisfies the GCC in Ω,
then the following polynomial decay holds [38, Thm. 11]:

(2.5) H (t) ≤ C

tα
H(0),
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with α = 1/6.

• With the alternative interconnection θ = w on Γint, the decay is loga-
rithmic [38, Thm. 13]:

(2.6) H(t) ≤ C

logα(1 + t)
H(0),

where α ∈ (0, 1/16).

The most technical assumptions have been simplified and we refer the
reader to the original paper for the fully rigorous statements. However, we can
make the following comments:

• The stability results extend to the case Γ2 = ∅; in this case, limt→∞H(t)
can be a non-null constant, due to the existence of a constant stationary solu-
tion. In that case, the estimates (2.5,2.6) apply to H(t)−H(∞).

• The lack of exponential decay is linked to the existence of solutions
that are mostly localized in the wave domain and almost completely reflected
at the interface Γint. In [38] these solutions are constructed using a WKB ap-
proximation (when the interface is flat) or Gaussian beams (when the interface
is curved).

• In the derivation of (2.6), the assumption that the interconnection is
given by θ = w is motivated by technical reasons. This alternative intercon-
nection is not considered in this work.

3. HEAT-WAVE SYSTEM AS INTERCONNECTED
PORT-HAMILTONIAN SYSTEM

As recalled in the introduction, infinite-dimensional pHs are related to
Stokes-Dirac structures. For example, the power balance satisfied by the
Hamiltonian functional is encoded in this structure. These abstract concepts
are recalled in Section 3.1, which also discusses the link with boundary control
systems. Section 3.2 recasts the coupled heat-wave system (2.1–2.2) as an in-
terconnection of two pHs. Section 3.3 provides the weak formulation that will
be used for the finite element discretization of Section 4.

Remark 1. The powerful feature of the port-Hamiltonion formalism being
its modularity, this section intends to draw the strategy for a systematic way
to state coupled partial differential equations within this framework. It is
indeed very useful, e.g. at the implementation level, since it is intrinsically
object-oriented (objects being pHs and interconnections).
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3.1. Infinite-dimensional pHs

Stokes-Dirac structures are the generalization to infinite dimension of
Dirac structures. Although Dirac structures can be defined in several equiv-
alent ways [36], not all these definitions carry over to the infinite-dimensional
case. The definition provided below is based on the characterization of Dirac
structures given by [36, Proposition 2.1]. We first need the following prelimi-
nary definition.

Definition 3.1 (Bond space). Let E be a pre-Hilbert space and F := E ′
its topological dual. The space B := F × E endowed with the bilinear form:

(3.1)

〈〈(
f1

e1

)
,

(
f2

e2

)〉〉
B

:=
〈
f1, e2

〉
F ,E+

〈
f2, e1

〉
F ,E , ∀

(
f1

e1

)
,

(
f2

e2

)
∈ B,

is called a bond space, where 〈·, ·〉F ,E is the duality bracket with respect to the
norm of E .

The space E is called the effort space and F is called the flow space.

Definition 3.2 ((Stokes-)Dirac structure). Let B be a bond space. A
subspace D ⊂ B is called a (Stokes-)Dirac structure if and only if D[⊥] = D,
where D[⊥] is the orthogonal companion of D in B, defined by:

(3.2) D[⊥] :=

{(
f1

e1

)
∈ B |

〈〈(
f1

e1

)
,

(
f2

e2

)〉〉
B

= 0, ∀
(
f2

e2

)
∈ D

}
.

Remark 2 (Terminology). The “Stokes” in “Stokes-Dirac” can be justified
by the fact that the Stokes divergence theorem is typically used to establish
that a function subspace satisfies (3.2), see e.g. [28].

To address boundary-controlled and -observed PDEs, the concept of port-
boundary modelling, hence (Stokes-)Dirac structures, has been extended, as
in [27]. Coupling PDEs then translates in interconnecting (Stokes-)Dirac struc-
tures, studied for instance in [26].

Let us give the definition of infinite-dimensional pHs adopted in this work,
already given in [12]. Nevertheless, as the general purpose of this work concerns
the structure-preserving semi-discretization of the coupled heat-wave system,
the rigorous functional framework will not be addressed in the sequel. Briefly,
it is based on known results about boundary control systems [33, Chapter 10].
The extended structure operator J is constructed thanks to the linear (time-
independent) systems theory (see e.g. [34] and references therein), using the
generating operators of the boundary control systems given by the boundary-
controlled and -observed PDE under study. An underlying Stokes-Dirac struc-
ture can then be obtained as the graph of this extended structure operator
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J (under suitable assumptions), see e.g. [27, Theorem 3.6]. At the semi-
discrete level, it is intended to construct a skew-symmetric extended structure
matrix Jh, i.e. a Dirac structure thanks to its graph, which approximates the
Stokes-Dirac structure.

Definition 3.3 (Infinite-dimensional pHs). Consider Hilbert spaces X 1,
X 2, U , and a Hamiltonian H := X 1 → R defining energy storage. A port-
Hamiltonian system on X 1 is given by a (constrained) dynamics:

(3.3)

(
α̇1

f2

)
= J

(
δα1H
e2

)
, γ

(
δα1H
e2

)
= u,

where δα1H is the variational derivative of H with respect to α1 in X 1, J ∈
L(D(J ),X 1 × X 2) (typically a differential operator), and γ ∈ L(D(J ),U) a
(typically boundary) control operator, such that J is formally skew-symmetric:(

J
(
e1

e2

)
,

(
e1

e2

))
X 1×X 2

= 0, ∀
(
e1

e2

)
∈ ker γ.

The variable α1 is known as the energy variable, while e1 := δα1H is known as
the co-energy variable.

With this definition at hand, provided some technical assumptions (not
discussed here) are satisfied, one formally gets the following result:

Proposition 3.1 (Power balance). The Hamiltonian of an infinite-di-
mensional port-Hamiltonian system satisfies the following power balance along
the trajectories:

(3.4)
d

dt
H(α1(t)) = −

〈
f2(t), e2(t)

〉
(X 2)′,X 2 + 〈y(t), u(t)〉(U)′,U , ∀t ≥ 0,

where y := C

(
e1

e2

)
, with C ∈ L(D(J ), (U ′)) the operator given by:(

J
(
e1

e2

)
,

(
e1

e2

))
=

〈
C

(
e1

e2

)
, γ

(
e1

e2

)〉
(U)′,U

, ∀
(
e1

e2

)
∈ D(J ).

To obtain a complete characterisation of the power balance, a constitutive
relation R(f2(t), e2(t)) = 0 is added to close the system algebraically, and
the term

〈
f2(t), e2(t)

〉
(X 2)′,X 2 is then fully determined; moreover when it is

positive, the closed dynamical system is dissipative and the open dynamical
system is lossy.

In the sequel, the heat equation will be recast as (3.3), with Fourier’s law
as constitutive relation, while the wave equation will lead to a system without
algebraic constraints (J is defined on the unique Hilbert space X 1). In other
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words, this formalism is well-suited for both parabolic and hyperbolic systems,
with boundary controls and observations, as already stated in [12].

When dealing with quadratic Hamiltonians (i.e. weighted norms in Hilbert
spaces), the co-energy variable e1 is linear w.r.t. α1, given by a bounded sym-
metric positive-definite operator Q = Q? > 0 on X 1 as e1 := δα1H = Qα1.

If the constitutive relation is also given by e2 = Rf2 with R = R? > 0 a
bounded symmetric positive-definite operator on X 2, a linear port-Hamiltonian
system defined as in Definition 3.3, with quadratic Hamiltonian, rewrites equiv-
alently, in energy formulation:(

α̇1

f2

)
= J

(
Qα1

Rf2

)
, γ

(
Q−1α1

R−1f2

)
= u,

or in co-energy formulation:

(3.5)

(
Q−1ė1

R−1e2

)
= J

(
e1

e2

)
, γ

(
e1

e2

)
= u.

The former will induce matrix inversions, which are best avoided numerically.
By contrast, the latter lends itself to the finite element method [12]: taking into
account the physical parameters only consists in weighting the inner products
of X 1 and X 2, and leads to weighted mass matrices, which average the inverse
of the physical parameters in space.

3.2. Boundary control subsystems and coupling

Each subsystem is written as a boundary control system (see e.g. [33,
Chapter 10]) together with collocated observation that fits the pHs framework:
i.e. with a formally skew-symmetric operator.

3.2.a. Heat equation

The chosen representation corresponds to the Lyapunov case already pre-
sented e.g. in [30], with Hamiltonian:

H1(t) =
1

2

∫
Ω1

ρθ(x) θ2(t,x) dx,

where ρθ denotes the mass density. Denoting JQ the heat flux and using
Fourier’s law JQ = −κ · gradθ, with κ the thermal conductivity, a bounded
symmetric positive-definite tensor, the port-Hamiltonian system in co-energy
formulation (temperature and heat flux) reads:

(3.6)

(
ρθ ∂tθ

κ
−1 · JQ

)
=

[
0 −div

−grad 0

](
θ
JQ

)
.
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Added to this system are the collocated boundary controls and observations,
i.e. the boundary ports:{

JQ(t,x) · n1(x) = −u1(t,x),
y1(t,x) = θ(t,x),

∀ t > 0, x ∈ Γint,(3.7) {
θ(t,x) = uθ(t,x) = 0,

−yθ(t,x) = JQ(t,x) · n1(x),
∀ t > 0, x ∈ Γ1.(3.8)

The following result is well-known:

Lemma 3.2. The power balance of the open heat subsystem reads:

(3.9)
d

dt
H1 = −‖gradθ‖2L2

κ
(Ω1) + 〈u1, y1〉Γint

,

where ‖gradθ‖2L2
κ

(Ω1) :=
∫

Ω1
gradθ(t,x)·κ(x)·gradθ(t,x) dx, and 〈·, ·〉Γint

de-

notes the duality bracket between H−
1
2 (Γint) and H

1
2 (Γint). The open dynam-

ical subsystem is lossy, since d
dtH1 ≤ 〈u1, y1〉Γint

, (the corresponding closed
dynamical subsystem would be dissipative).

3.2.b. Wave equation

The wave equation has been widely studied as a pHs (see e.g. [25, 32] and
references therein). The Hamiltonian is the sum of the kinetic and potential
energies:

H2(t) =
1

2

∫
Ω2

ρw(x) (∂tw(t,x))2 + gradw(t,x) · T (x) · gradw(t,x) dx,

where ρw is the mass density and T Young’s modulus, a bounded symmetric
positive-definite tensor. Since w is the deflection, v := ∂tw is the deflection

velocity, gradw the strain and σ := T ·gradw the stress. The pHs in co-energy
formulation (velocity and stress) then reads:

(3.10)

(
ρw ∂tv

T
−1
· ∂tσ

)
=

[
0 div

grad 0

](
v
σ

)
,

together with collocated boundary ports:{
v(t,x) = u2(t,x),
y2(t,x) = σ(t,x) · n2(x),

∀ t > 0, x ∈ Γint,(3.11) {
v(t,x) = uw(t,x) = 0,
yw(t,x) = σ(t,x) · n2(x),

∀ t > 0, x ∈ Γ2.(3.12)
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Lemma 3.3. The power balance of the open wave subsystem is:

(3.13)
d

dt
H2 = 〈y2, u2〉Γint

.

This open dynamical subsystem is lossless (the corresponding closed dynamical
subsystem would be conservative).

3.2.c. Interconnection

The coupling is obtained by a gyrator interconnection of the boundary
ports on Γint, meaning that the input of one system is given by the output of the
other one. This interconnection is known to preserve the pHs structure [36], in
the sense that the coupled system remains a pHs. More precisely, the boundary
controls are taken as:

(3.14)

{
u1(t,x) = −y2(t,x),
u2(t,x) = y1(t,x),

∀ t > 0, x ∈ Γint.

As a consequence, one easily gets:

Lemma 3.4. The power balance for the global Hamiltonian, H := H1+H2

for the closed coupled system reads:

(3.15)
d

dt
H = −‖gradθ‖2L2

κ
(Ω1) ≤ 0.

The closed coupled system is dissipative.

3.3. Weak formulation

We gather below the weak formulations suitable for the structure-pre-
serving discretization of Section 4, implemented in Section 5.

3.3.a. Heat equation

Let ψ1, ϕ1 be smooth test functions (respectively vector-valued and
scalar). The weak form of (3.6) reads, after integration by parts of the second
line:

(3.16)


(
∂tθ, ρθ ϕ

1
)
L2(Ω1)

= −
(
div(JQ), ϕ1

)
L2(Ω1)

,(
JQ, κ

−1 ·ψ1
)
L2(Ω1)

=
(
θ, div(ψ1)

)
L2(Ω1)

−
〈
ψ1 · n1, uθ

〉
Γ1
−
〈
ψ1 · n1, y1

〉
Γint

.
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It has been shown in [11] that the output y1 is the Lagrange multiplier of the
Dirichlet constraint imposing u1. In Section 5, a finite element method will be
applied. This requires informations about functional spaces for efficiency or
ease (e.g. for using conforming finite elements). The above weak form (3.16)
proves well-defined in the following functional spaces:

θ ∈ L2
ρθ

(Ω1) ∩H1(Ω1), ϕ1 ∈ L2(Ω1),

for the temperature, where L2
ρθ

(Ω1) is the ρθ-weighted L2(Ω1) space. Equiv-

alently, this means that ρθ θ has to be in L2(Ω1) ∩ ρ−1
θ H1(Ω1). Indeed, while

L2
ρθ

(Ω1) is clear from the first term of the weak formulation, H1(Ω1) is required
for the control uθ and the observation y1 to be well-defined (by (3.7) and (3.8)).
Similarly one gets for the heat flux:

JQ ∈ L2

T
−1(Ω1) ∩Hdiv(Ω1), ψ1 ∈ Hdiv(Ω1).

The control u1 and the observation yθ in (3.7)–(3.8) that do not appear in the
above weak formulation (3.16) are also written in a weak form: let ξ1 and ξint

be smooth test functions on Γ1 and Γint respectively, one obtains:

(3.17)

{ 〈
JQ · n1, ξ

int
〉

Γint
= −

〈
u1, ξ

int
〉

Γint
,〈

yθ, ξ
1
〉

Γ1
= −

〈
JQ · n1, ξ

1
〉

Γ1
.

As a consequence for the regularity of θ and JQ, the appropriate functional
spaces to be found for ξint and ξ1 are:

ξint ∈ H
1
2 (Γint), ξ1 ∈ H

1
2 (Γ1).

3.3.b. Wave equation

The wave equation, studied in e.g. [32], does not present the difficulty of
mixed boundary conditions: the same integration by parts will make appear
both controls uw and u2 directly. Let ψ2, ϕ2 be smooth test functions. The
weak form of (3.10) reads, after integration by parts of the second line:

(3.18)


(
∂tv, ρw ϕ

2
)
L2(Ω2)

=
(
div(σ), ϕ2

)
L2(Ω2)

,(
∂tσ,T

−1
·ψ2

)
L2(Ω2)

= −
(
v, div(ψ2)

)
L2(Ω2)

+
〈
ψ2 · n2, uw

〉
Γ2

+
〈
ψ2 · n2, u2

〉
Γint

.

One can deduce the functional spaces from this weak formulation, as already
given in [25]:

v ∈ L2
ρw(Ω2) ∩H1(Ω2), ϕ2 ∈ L2(Ω2),

σ ∈ L2

κ
−1(Ω2) ∩Hdiv(Ω2), ψ2 ∈ Hdiv(Ω2).
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For the observations y2 and yw in (3.11)–(3.12): let ξ2 be smooth test functions
on Γ2, one obtains:

(3.19)

{ 〈
y2, ξ

int
〉

Γint
=

〈
σ · n2, ξ

int
〉

Γint
,〈

yw, ξ
2
〉

Γ2
=

〈
σ · n2, ξ

2
〉

Γ2
,

from which one deduces:
ξ2 ∈ H

1
2 (Γ2).

Note that the required regularity for ξint is the same as that found for the heat
subsystem.

3.3.c. Interconnection

Finally, the weak form of the gyrator interconnection (3.14) reads:

(3.20)

{ 〈
u1, ξ

int
〉

Γint
= −

〈
y2, ξ

int
〉

Γint
,〈

ξint, u2

〉
Γint

=
〈
ξint, y1

〉
Γint

.

The last line requires ξint ∈ H−
1
2 (Γint), which is less restrictive than before.

In order to use conforming finite elements, it will then be sufficient to consider
H1(Γ?) for every boundary finite element bases.

4. SEMI-DISCRETIZATION OF HEAT-WAVE SYSTEM

This section derives the semi-discrete coupled system, as used in the
numerical applications of Section 5. The presentation seeks to highlight the
generality of the proposed discretization methodology, while avoiding techni-
cal results on Dirac structures. Section 4.1 surveys elementary properties of
finite-dimensional pHs and is essentially the finite-dimensional variant of 3.1.
Section 4.2 summarizes the core principles of PFEM, the employed structure-
preserving discretization method. Section 4.3 gathers the semi-discrete formu-
lation.

The main take-away from this section is that application of the PFEM
to the coupled heat-wave system leads to (4.9), which is a finite-dimensional
pHs endowed with the semi-discrete power balance (4.10), analogous to the
continuous one (3.15).

4.1. Finite-dimensional pHs

The standard definition of a finite-dimensional pHs is as follows (contrast
with Definition 3.3).
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Definition 4.1 (Finite-dimensional pHs [36]). Consider a state space X 1 '
RN , a resistive space X 2 ' RN , a control space U ' RP , N,P ∈ N, and
H := X 1 → R a Hamiltonian defining energy storage. A port-Hamiltonian
system on X 1 is defined by a Dirac structure:

D ⊂ B := (X 1 ×X 2 × U)× (X 1 ×X 2 × U),

and a (constrained) dynamics:α̇1(t)
f2(t)
−y

 ,

gradα1H(t)
e2(t)
u

 ∈ C([0,∞);D),

together with a constitutive relation R(f2, e2) = 0.

The definition [36, Definition 2.3] deals with so-called modulated Dirac
structures, i.e. Dirac structures that have a dependency upon the energy
variable α. The present work does not need such generality, as the heat-wave
system leads to a constant Dirac structure.

Proposition 4.1 (Power balance). The Hamiltonian of a finite-dimen-
sional pHs satisfies the following power-balance along the trajectories:

(4.1)
d

dt
H(α1(t)) = −e2(t)> f2(t) + u(t)> y(t), ∀t ≥ 0.

In practice, the constitutive relation R(f2(t), e2(t)) = 0 fully determines
the power-balance (4.1). The following result will prove enough to exhibit the
Dirac structure of the semi-discrete coupled system.

Proposition 4.2. Consider a port-Hamiltonian system and assume that
the trajectories are solutions of the following system:

(4.2)

(
α̇1(t)
f2(t)

)
= J

(
gradα1

H(t)
e2(t)

)
+Bu(t), y(t) = B>

(
gradα1

H(t)
e2(t)

)
,

where J is a skew-symmetric matrix and B a control matrix, with appropriate
sizes.

Then the Dirac structure is given as the graph of the extended structure
matrix:

J :=

[
J B
−B> 0

]
.

Proof. [36, Exercise 2, p 17].
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4.2. Basics of PFEM

The principle of the PFEM [12] is to use a mixed finite element approx-
imation space [9] to discretize a partitioned weak formulation, i.e. a weak
formulation where: (a) only one line has been integrated by parts; (b) bound-
ary traces have been substituted by either an input u or an output y; (c) for
each input u (resp. output y) introduced, the corresponding collocated out-
put y (resp. intput u) is introduced in an additional equation. The obtained
semi-discrete system is (informally) a boundary-controlled system, where the
boundary inputs and outputs are collocated.

The choice of which line is to be integrated by parts is dictated by the
desired boundary control [15]. In the terminology of [24] (which focus on closed
hyperbolic systems), the choice is between a primal–dual or a dual–primal weak
formulation. As recalled in the introduction, this methodology can (and has
been) applied to a wide range of systems.

The PFEM is structure-preserving in the sense that it is associated with
a semi-discrete power balance that mimics the continuous one. The passive
interconnection of semi-discrete pHs leads to another semi-discrete pHs, thus
ensuring an accurate discretization of the power balance for the coupled system.

The partitioned formulation is easy to implement since: (a) each PDE
is implemented only once as a pHs with domain (α, e, f) and boundary (u, y)
variables; (b) at common boundaries, the passive interconnection of two pHs
is reduced to two additional algebraic equations that have standardized forms
(namely gyrator or transformer [14, § 4.3.1]). The systematic nature of this ap-
proach enables to couple any number of systems without dramatically increas-
ing the development burden. This flexibility comes at the cost of introducing
additional algebraic equations in the weak formulation.

4.3. Semi-discrete formulation

To derive the semi-discrete system, we follow the PFEM, whose principles
have been outlined in the previous section. The partitioned weak formulation
has already been given in Section 3.3. This section is organized as follows. Af-
ter introducing the employed standard approximation spaces, we explicit the
system matrices for the heat equation, the wave equation, and the intercon-
nection law. Lastly, the semi-discrete formulation and power-balance of the
coupled heat-wave system are written out.
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4.3.a. Mixed finite element approximation spaces

For any k ∈ N, let us introduce the standard approximation spaces [9]

RTk(Ω, Th) :=
{
uh ∈ H(div,Ω) | ∀K ∈ Th(Ω), uh|K ∈ RTk(K)

}
,

CGk(Ω, Th) :=
{
uh ∈ H1(Ω) | ∀K ∈ Th(Ω), uh|K ∈ Pk(K)

}
,

DGk(Ω, Th) :=
{
uh ∈ L2(Ω) | ∀K ∈ Th(Ω), uh|K ∈ Pk(K)

}
,

where Th(Ω) denote a triangulation of Ω, RTk(K) denotes the Raviart-Thomas
element of maximum degree k + 1 [9, (3.12)], and Pk(K) denote the space of
polynomials of degree k.

The domain variables are approximated as
(4.3)
(θh,JQ

h, vh,σh) ∈ DGk(Ω1, Th)×RTk(Ω1, Th)×DGk(Ω2, Th)×RTk(Ω2, Th),

while the collocated boundary inputs and outputs are approximated as

(4.4) (uh1 , y
h
1 ) ∈ CGk+1(Γint, Th), (uh2 , y

h
2 ) ∈ CGk+1(Γint, Th),

for the interconnection boundary and

(4.5) (uhθ , y
h
θ ) ∈ CGk+1(Γ1, Th), (uhw, y

h
w) ∈ CGk+1(Γ2, Th),

for the external boundaries.

4.3.b. Heat equation

The considered heat equation has mixed Dirichlet–Neumann boundary
conditions on ∂Ω1; as recalled in Section 3.2 it defines a pHs when equipped
with the Hamiltonian H1. Let

(ϕ1
j )1≤j≤NT , (ψ1

i )1≤i≤NQ , (ξ1
k)1≤k≤NΓ1

, (ξint
k )1≤k≤NΓint

,

be the standard bases of

DGk(Ω1, Th), RTk(Ω1, Th), CGk+1(Γ1, Th), CGk+1(Γint, Th).

The finite element approximation of the partitioned weak formulation (3.16–
3.17) leads to a DAE of the form:
(4.6)

Mθ 0 0 0
0 MQ 0 0
0 0 M1 0
0 0 0 Mint




θ̇
JQ
−yθ
−u1

 =


0 D1 0 0
−D>1 0 B1 Bint

0 −B>1 0 0
0 −B>int 0 0



θ
JQ
uθ
y1

 ,
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known as a port-Hamiltonian Differential Algebraic Equation (pHDAE) [8],
where ? is the column vector that collects the coefficients of the approximation
of ? in its respective finite element basis. The matrices are

(Mθ)j,i :=
(
ϕ1
i , ρθ ϕ

1
j

)
L2(Ω1)

, (MQ)j,i :=
(
ψ1
i ,κ

−1 ·ψ1
j

)
L2(Ω1)

,

(D1)j,i := −
(
div(ψ1

i ), ϕ1
j

)
L2(Ω1)

, (B?)i,k := −
(
ψ1
i · n1, ξ

?
k

)
L2(Γ?)

Note that the boundary output y1 plays the role of a Lagrange multiplier
[11]. Alternative semi-discretizations of the heat equation based on different
Hamiltonians are considered in [30].

Let us now summarize the power balance. By introducing the semi-
discrete Hamiltonian Hh1 as the evaluation of H1 on the approximation θh :=∑NT

j=1 θjϕ
1
j , one obtains Hh1 = 1

2θ
>Mθ θ so that using the structure of (4.6):

d

dt
Hh1 = −JQ>MQ JQ + u1

>Mint y1 + uθ
>M1 yθ.

Under Dirichlet boundary conditions uθ = 0, the semi-discrete Hamilto-
nian therefore satisfies a semi-discrete counterpart to (3.9).

4.3.c. Wave equation

Similarly, the finite element approximation of the partitioned weak for-
mulation (3.18–3.19) yields the pHDAE:
(4.7)

Mv 0 0 0
0 Mσ 0 0
0 0 M2 0
0 0 0 Mint




v̇
σ̇
−yw
−y2

 =


0 D2 0 0
−D>2 0 B2 Bint

0 −B>2 0 0
0 −B>int 0 0



v
σ
uw
u2

 .

The semi-discrete Hamiltonian Hh2 satisfies, when defined as the evalua-
tion of H2 on the approximated co-energy variables σh and vh,

Hh2 =
1

2

(
v>Mv v + σ>Mσ σ

)
,

d

dt
Hh2 = uw

>M2 yw + u2
>Mint y2,

which is the semi-discrete counterpart to (3.13) when uw = 0.

4.3.d. Interconnection

The projection of (3.20) in the finite element basis (ξint
k )1≤k≤NΓint

reads

(4.8) Mint u1 = −Mint y2, Mint u2 = Mint y1.
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4.3.e. Coupled system

The whole semi-discrete coupled heat-wave system can be written as

(4.9) Diag



Mθ

MQ

M1

Mint

Mv

Mσ

M2

Mint

Mint

Mint





θ̇
JQ
−yθ
−u1

v̇
σ̇
−yw
−y2

u1

u2


= Jh



θ
JQ
0
y1

v
σ
0
u2

y1

y2


,

where:

Jh := Diag




0 D1 0 0
−D>1 0 B1 Bint

0 −B>1 0 0
0 −B>int 0 0

 ,


0 D2 0 0
−D>2 0 B2 Bint

0 −B>2 0 0
0 −B>int 0 0

 ,
[

0 −Mint

Mint 0

] .

The symmetry (resp. skew-symmetry) of the block diagonal mass matrix
(resp. Jh) induces the underlying Dirac structure. The total semi-discrete
Hamiltonian Hh = Hh1 + Hh2 then satisfies, using the gyrator interconnec-
tion (4.8) and Dirichlet boundary conditions:

(4.10)
d

dt
Hh = −JQ>MQ JQ − y2

>Mint y1 + y1
>Mint y2 = −JQ>MQ JQ,

which mimics (3.15) with no approximation (compare with [7, 18]). This
analogy implies that the employed finite element discretization is structure-
preserving for the coupled pHs.

Remark 3 (Interconnection boundary basis). The same finite element ba-
sis has been used at the common interface for both the heat and wave systems.
Choosing different bases would yield two different mass matrices for the inter-
face on the left hand-side (depending on the subsystem) and a unique rectan-
gular matrix together with its transpose in place of the two instances of Mint

in Jh.
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Remark 4 (Interconnection matrix). The algebraic constraints coming
from the gyrator interconnection could be easily reduced by defining an inter-
connection matrix. However this would involve inverting the boundary mass
matrix thus destroying the sparsity of the semi-discrete system.

In Section 5 below, numerical experiments are performed in order to verify
whether the semi-discrete system captures the long-time behaviours proved
in [38].

5. NUMERICAL RESULTS

This section gathers the numerical results obtained using the coupled
formulation from Section 4. Section 5.1 summarizes the implementation, whose
validation is covered in Section 5.2. Section 5.3 discusses the computed energy
decays by comparing them to the results in [38].

5.1. Implementation

The implementation, carried out in the Python programming language,
relies on widely used open-source scientific packages.

The generation of unstructured meshes is done with gmsh [19], where Ωi

and Γi are identified through dedicated tags. The finite element approximation
spaces are (4.3,4.4,4.5) with k = 0. Assembly is done using multiphenics [1], a
package that extends fenics [3] by implementing function spaces restricted to a
subset of the whole computation domain; this is crucial in this work to easily
define unknowns on Ωi and Γi only. The obtained finite element matrices are
in the PETSc format [13], in which all the sparse matrix computations are
done.

Time integration is done using PETSc TS [2] under the implicit form:

(5.1) F (t, z, ż) = 0 (t > 0) , z(0) = z0 ∈ RN ,

with a discrete state:

z =
(
θ, JQ, uθ, yθ, u1, y1, v,σ, uw, yw, u2, y2

)
of total length N and right-hand side F linear in both z and ż. The num-
ber of mesh triangles is denoted Nt. Note that ∇żF is not invertible due to
the presence of algebraic equations. During the implicit time integration, the
linear systems are solved using the sparse direct solver MUMPS [5], which de-
livers satisfactory performance for the values of N considered here. The main
advantage of MUMPS is that it avoids using an iterative solver, which would
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require constructing an efficient preconditioner; our experiments have shown
that standard preconditioners are not suited to the pHs form considered here.
Post-processing is done using matplotlib [23].

5.2. Validation on the eigenvalue problem

Since manufacturing a solution for the heat-wave system is not straight-
forward, we use as validation case the associated eigenvalue problem: find
(θ̂, ŵ, λ) ∈ H2(Ω1)\{0} ×H2(Ω2)\{0} × λ such that

(5.2)

λθ̂ = ∆θ̂ (x ∈ Ω1), θ̂ = 0 (x ∈ Γ1)

λ2ŵ = ∆ŵ (x ∈ Ω2), ŵ = 0 (x ∈ Γ2)

θ̂ = λŵ, ∂nθ̂ = ∂nŵ (x ∈ Γint).

We focus on the rectangular domain (see Figure 2.1c)

(5.3) Ω1 = (0, xi)× (0, Ly), Ω2 = (xi, Lx)× (0, Ly),

for which the eigenvalues are known analytically.

Proposition 5.1 (Exact eigenvalues). Let Lx > 0, Ly > 0 and xi ∈
(0, Lx). The eigenvalues of (5.2,5.3) are the solutions of

(5.4) φ
[
x2
i

(
λ+ β2

n

)]
= −λLx − xi

xi
φ
[
(Lx − xi)2

(
λ2 + β2

n

)]
(n ∈ Z∗) ,

where βn := π
Ly
n and φ(z) := tanh

√
z√

z
.

Proof. We look for a non-null solution with separated variables:

θ̂ = sin (α1x) sin (βy)

ŵ = A sin (α2(Lx − x)) sin (βy) .

The Dirichlet conditions on {x = 0}, {x = Lx}, and {y = 0} are satisfied. The
Dirichlet condition at {y = Ly} is satisfied provided that β = π

Ly
n for some

n ∈ Z∗. Injecting in (5.2), we obtain that the coupled PDE is satisfied iff

(a) λ = −
(
α2

1 + β2
)

(b) λ2 = −
(
α2

2 + β2
)

(c) sin (α1xi) = λA sin (α2(Lx − xi))
(d) α1 cos (α1xi) = −α2A cos (α2(Lx − xi)) ,

which is a system of 4 equations for the 4 unknowns (A,α1, α2, λ). To derive
an equation on λ only, we eliminate A from the third equation

(5.5)
tan (α1xi)

α1
= −λtan (α2(Lx − xi))

α2
.
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From (a,b) we have α1 = ±
√
− [λ+ β2] and α2 = ±

√
− [λ2 + β2]. Since (5.5)

is even with respect to αi, we can inject to obtain

tan
(√
− [λ+ β2]xi

)
√
− [λ+ β2]

= −λ
tan

(√
− [λ2 + β2](Lx − xi)

)
√
− [λ2 + β2]

,

where
√
· stands for any branch of the square root. Using that both xi and

Lx − xi are positive, we obtain the claimed identity.

We now analyze (5.4) to compute the accumulation points of the eigen-
values; we first need the following elementary lemma.

Lemma 5.2. The map φ : C→ C, defined in Proposition 5.1, is a mero-
morphic function.

Proof. Viewed as a map C\(−∞, 0] → C, φ is meromorphic as quotient
of analytic functions [29, Thm. 15.12]. A Taylor expansion shows that z = 0 is
not a branch point, so that φ can be extended analytically to any x ∈ (−∞, 0]

with φ(−x) := tan
√
x√

x
.

Proposition 5.3 (Accumulation points). Let Lx > 0, Ly > 0 and xi ∈
(0, Lx). The eigenvalues of (5.2,5.3) form a countable set whose accumulation
points are ∞ and −1.

Proof. From Lemma 5.2, for each n ∈ Z∗ the set of solutions of (5.4) is
the zero set of a meromorphic function; as such, it is at most countable with
infinity as the only accumulation point [29, Def. 10.41]. This implies that if a
finite accumulation point exists, it must occur as |n| → ∞.

To characterize the possible finite accumulation point, we carry out an
asymptotic expansion. We first rewrite (5.4) as −λLx−xixi

= I1(βn, λ)×I2(βn, λ)
where I1 and I2 are given by

I1(βn, λ) =

√
(Lx − xi)2 (λ2 + β2

n)√
x2
i (λ+ β2

n)
, I2(βn, λ) =

tanh
√
x2
i (λ+ β2

n)

tanh
√

(Lx − xi)2 (λ2 + β2
n)
.

The first term expands as I1(βn, λ) = Lx−xi
xi

[
1 +O

(
β−2
n

)]
. Since I2 expands

as I2(βn, λ) = 1 +O(e−µβn) for some µ > 0, we obtain

λ =
|n|→∞

−1 +O
(

1

β2
n

)
,

so that the only possible finite accumulation point is λ = −1.



21 Structure-preserving discretization of heat-wave system 207

Remark 5 (Compactness). The existence of a countable sequence of eigen-
values accumulating at −1 indicates that the heat-wave system does not have
a compact resolvent. This is proven in [38, Thm. 2] for smooth domains in Rn,
n ≥ 2.

The numerical spectrum is obtained by solving the non-Hermitian sparse
generalized eigenvalue problem: find (z, λ) ∈ CN\{0} × C such that

(5.6) ∇zF · z = −λ∇żF · z.
The solution of (5.6) is obtained using the Krylov-Schur solver from SLEPc
[22]. Both computed and exact eigenvalues are plotted in Figure 5.1a, which
shows a satisfactory agreement. As required for asymptotic stability, all non-
null eigenvalues belong to the left open half plane. To conclude this section,
we discuss two features of this spectrum.

Firstly, for |λ| large enough, eigenvalues can be split in two distinct se-
quences: the first sequence consists of real negative eigenvalues, associated
with eigenfunctions oscillating in Ω1, while the other one consists of almost
purely imaginary eigenvalues, associated with slightly-damped eigenfunctions
oscillating in Ω2. The larger |λ|, the closer these eigenvalues get to those of
the uncoupled system
(5.7)

λhk,n = −

((
kπ

xi

)2

+ β2
n

)
, λwk,n = ±i

[(
kπ

Lx − xi

)2

+ β2
n

]1/2 (
(k, n) ∈ [Z∗]2

)
.

The strength of the heat-wave coupling can be qualitatively assessed by com-
paring the computed eigenvalues to (5.7). The fact that some eigenvalues get
infinitely close to iR (due to the ineffectiveness of the heat equation in damp-
ing highly-oscillating wave eigenfunctions) is a manifestation of the fact that
uniform exponential decay is not achieved [38, Thm. 6].

Secondly, the sequence of eigenvalues that accumulates at −1 is associated
with highly-oscillatory modes localized at the interface Γint. Although not
shown here, these interface eigenvalues always exist and accumulate at −1
regardless of the domain shape considered. The proposed discretization is able
to compute them for the rectangular domain, as shown in Figure 5.1b. The
accurate computation of these eigenfunctions on curved interfaces Γint is more
challenging, although it is not of concern here since they do not influence
whether the Hamiltonian decay is logarithmic or polynomial.

Remark 6 (Semi-discrete kernel). Figure 5.1a shows that (5.6) has the
additional eigenvalue λ = 0, which can be explained as follows. The eigenvalue
problem (5.6) is the time-harmonic variant of the semi-discrete pHs formulation
(4.9). In this formulation the wave equation is solved through the variables
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(v,σ) = (∂tw,T · gradw) so that the Dirichlet boundary condition w = 0 on
Γ2 is transformed into ∂tw = 0. This implies that (5.6) does not enforce ŵ = 0
on Γ2 but λŵ = 0, which is undefined for λ = 0. Numerically, this leads to a
cluster of both null and poorly-converged eigenvalues. This is not a practical
concern since the associated eigenfunctions do not influence the time-domain
behavior of the discrete system.

(a) Exact and computed eigenvalues. (b) Eigenfunction (θh, vh) localized
at interface.

Fig. 5.1 – Eigenvalues and eigenfunctions on rectangular domain (5.3) with
(Lx, Ly, xi) = (2, 5, 1).

5.3. Computation of Hamiltonian decay

This section focuses on the heat-wave system with Dirichlet boundary
conditions on Γ1 and Γ2, i.e. with boundary inputs uθ and uw set to zero. The
discretized system is written under the form (5.1), integrated in time with a
non-null initial condition z0, and the computed asymptotic decay rate of the
Hamiltonian H is compared to those stated in Theorem 2.1.

Initial condition

When trying to reproduce the asymptotic behaviors stated in Theorem 2.1
using (5.1), it is useful to keep in mind the following (obvious) remark: since
the ODE (5.1) is finite-dimensional, theoretically the computed Hamiltonian
will decay exponentially as t → ∞. Practically, this implies that (5.1) can at
best reproduce the theoretical decay rate in some interval [t1, t2], where for
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t < t1 the asymptotic region has not been entered yet and for t > t2 the decay
is exponential. Complicating matters is the use of double precision arithmetic
implying that values of Hh below 10−16 cannot be meaningfully considered.
Unsuitable choices for z0 include eigenfunctions (early exponential decay) and
constants (boundary conditions not satisfied).

Given the limitations just recalled, in all the time-domain simulations
considered below the initial condition z0 is null except for the wave variable v
which is

(5.8) v(t = 0) = e−µ|x−xc|
2
,

where the parameters µ and xc are tuned for each domain so that the support
lie approximately in the interior of Ω2. The parameter µ must be small enough
for v to be properly resolved on the mesh (otherwise an early exponential
damping is observed).

Cases definition

We will focus on the three cases defined below, illustrated in Figure 5.2.

• (Case A) Rectangular domain (5.3) with (Lx, Ly, xi) = (2, 1, 1). The
initial condition is given by (5.8) with µ = 20 and xc = (1.5, 0.5).

• (Case B) Circular domain with the heat region embedded in the wave
region: Ω1 = B(1/2) and Ω2 = A (1/2, 1) where

B (R) = {|x− xc| < R}, A (R0, R1) = {R0 < |x− xc| < R1}.

Initial condition given by (5.8) with µ = 25 and xc = (0.75, 0).

• (Case C) Circular domain with the wave region embedded in the heat
region: Ω2 = B(1/2) and Ω1 = A (1/2, 1). Initial condition is (5.8) with µ = 20
and xc = (0, 0).

For all the cases, physical parameters are set to unity.

Time-integration scheme

The main challenge in integrating (5.1) is the computation of a consistent
initial state, due to the presence of algebraic variables. We use here a small step
of backward Euler (starting from (5.8)) for its ease of implementation, although
more sophisticated techniques are available [10]. However, our initialization is
usually not accurate enough to enable a stable use of time-adapted high-order
schemes, especially for long-time integration (even by taking care of excluding
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(a) Case A.

(b) Case B. (c) Case C.

Fig. 5.2 – Initial condition on vh given by (5.8) for a coarse unstructured mesh.

algebraic variables from the local truncation error estimate). We therefore fall
back to the second-order Crank-Nicolson scheme with a small time step: this
makes for long simulation times (several hours on a laptop) but yields accurate
results.

Results

The domains of both cases A and B do not satisfy the GCC. Indeed, in
case A the vertical ray {xi = 1.5, y ∈ (0, Ly)} propagates without reaching Ω1

while in case B any ray tangential to Γint propagate in Ω2 without reaching
Ω1. As a result, Theorem 2.1 suggests that H must decay logarithmically in
both cases, i.e. following (2.6). This contrasts with the domain of case C that
does satisfy the GCC, since any ray propagating in Ω2 does reach Ω1, so that
the polynomial decay (2.5) is expected.

With the initial conditions considered, capturing the asymptotic region
in cases A and B require solving until at least t = 106. Given that we use
Crank-Nicolson with a constant time step, the trade-off between simulation
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time and accuracy leads us to choosing: in case A, a mesh with Nt = 324
(N = 2000) and a time step dt = 0.8; in case B, Nt = 2005 (N = 5520) and
dt = 0.85. Figure 5.3 plots the computed Hamiltonians. The two graphs on
the right plot (H, log(1 + t)) in logarithmic coordinates, so that the right-hand
side of (2.6) is a straight line. Both graphs show a satisfactory agreement.

For illustration, Figure 5.4 plots two eigenfunctions associated with al-
most purely imaginary eigenvalues. These are functions oscillating in Ω2 that
are poorly damped by the heat region Ω1: they are therefore close to eigenfunc-
tions of the Dirichlet Laplacian on Ω2. In case B one can recognize a so-called
whispering gallery mode, which propagates energy around the heat region with
little loss.

Fig. 5.3 – Hamiltonian decay for cases A and B.

The polynomial decay expected in case C is easier to recover since in our
experiments solving until t = 104 is enough, which enables us to use smaller
triangles than in cases A and B. Figure 5.5 plots the Hamiltonian computed
for dt = 0.3, N = 119980, and Nt = 46985. The right graph, which plots (H, t)
in logarithmic coordinates, shows a satisfactory agreement with the theory.

6. CONCLUSION

The above numerical results have shown that the structure-preserving
partitioned finite element method is able to quantitatively reproduce the long-
time behaviour expected from the theory (see Theorem 2.1). We list below, in
no particular order, theoretical and numerical perspectives of this work. The
optimality of using CGk as a boundary approximation space (for collocated out-
puts and inputs) has been investigated in [21]. Our numerical experiments have
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(a) Case A. (b) Case B.

Fig. 5.4 – Poorly-damped eigenfunctions (θh, vh).

Fig. 5.5 – Hamiltonian decay for case C.

shown that a wrong choice of boundary spaces can lead to unstable eigenvalues,
thus rendering the spatial discretization scheme unusable for time-integration
purposes. An explanation for this “boundary instability” would be of practical
interest. Secondly, although this work has solely focused on the stabilization
of the wave equation by a heat domain, additional problems of controllability
and observability could be investigated [39].

Thirdly, consistent initialization of the index-2 DAE (5.1) is a challenge,
as our experiments have shown that the use of a straightforward backward Eu-
ler step can lead to convergence issues with time-adapted schemes. Solutions
could include removing algebraic variables as much as possible (after spatial
discretization, in a manner transparent to the user) or adapting alternative
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initialization techniques designed for index-1 DAEs [10]. Lastly, the use of
MUMPS can be considered as a limitation, since it prevents considering ex-
tremely large cases (i.e. N > 106 on a modern laptop for example). The use
of an iterative solver would require the design of a preconditionner suited to
the proposed pHs formulation.
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