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This paper is devoted to study of complex geometrical optics (CGO) solutions to
the coupled conductivity equations written in a matrix form div (Q·∇U) = 0 in
R2 for symmetric, positive definite matrix functions Q. The CGO solutions were
introduced by Faddeev in 1966 [8] to prove the uniqueness in the inverse potential
scattering problem for Schödinger equation, later Sylvester and Uhlmann in 1987
[26] use the CGO functions to study the uniqueness of the Calderón’s inverse
problem.

Following the ideas of Astala and Päivärinta [3], we compute CGO solu-
tions considering the vectorial solutions of an associated Beltrami system. In
this work, we first prove the existence of CGO solution and then use a numerical
strategy based on the method introduced by Huhtanem and Perämäki in [12]
for the Beltrami equation. Numerical experiments are considered to show the
influence of coupled equations.
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1. INTRODUCTION

Electrical Impedance Tomography (EIT) is an imaging technique in which
electrodes are placed on the surface of the body and low-frequency current is
applied on the electrodes which can then be measured. The measurement is
repeated for a specified set of current patterns, or choices of current amplitudes
at each electrode. The resulting current-to-voltage map serves as data for
the inverse problem. The mathematical model of EIT is called the inverse
conductivity problem: recover the conductivity distribution inside the body
given electric boundary measurements performed on the surface of the body.
It is a nonlinear and severely ill-posed problem.

In 1980 Alberto Calderón published a paper entitled “On an inverse
boundary value problem” [5]. Two questions were posed by Calderón in [5]
which is often pointed to as the mathematical beginnings of the inverse
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conductivity problem. The first question is, is it possible to uniquely deter-
mine the conductivity of an unknown object from boundary measurements?
The other question is, how can this conductivity be reconstructed? Calderón
shows that the linearized problem has an affirmative answer to the uniqueness
question, and he proposed a linearized reconstruction scheme.

The seminal Calderón’s problem can be described as follows. Let Ω ⊂ RN
be a bounded domain with smooth boundary. The electrical conductivity of
Ω is represented by a bounded and positive function q(x). In the absence of
sinks or sources of current, the equation for potential is given by

(1.1) div (q∇u) = 0, in Ω,

where q∇u represents the current flux.
Given a potential φ ∈ H1/2(∂Ω) on the boundary, the induced potential

u ∈ H1(Ω) solves (1.1) with the Dirichlet boundary condition

u = φ, on ∂Ω.

Thus we define the Dirichlet to Neumann map, or voltage to current map,

Λq : H1/2(∂Ω) → H−1/2(∂Ω),

φ 7→ q
∂u

∂n

∣∣∣∣
∂Ω

,

where n denotes the unit outer normal to ∂Ω. The inverse problem is to
determine q knowing Λq.

In this work we are interested in studying an extension to the above
problem to a coupled conductivity equation defined in matrix sense, that is,
let Q be a matrix and U ∈ [H1(Ω)]2, such that,

(1.2) div (Q∇U) = 0, in R2,

with the Dirichlet boundary condition

U = Φ, on ∂Ω.

If Q and ∂Ω are smooth, we can define the Dirichlet-to-Neumann, or voltage-
to-current map by

ΛQ : [H1/2(∂Ω)]2 → [H−1/2(∂Ω)]2,
Φ 7→ n ·Q∇U.

Remark 1. When considering the matrix Q = [qij ]
2
ij=1 diagonal in the

equation (1.2), we recover two decoupled equations of the form (1.1) where the
conductivities take the value q11 and q22.

The Calderón’s work has motivated many developments in inverse prob-
lems, in particular in the construction of the called Complex Geometrical Op-
tics (CGO) solutions of partial differential equations to solve several inverse
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problems. The problem that Calderón considered was whether one can deter-
mine the electrical conductivity of a medium by making voltage and current
measurements at the boundary of the medium. His methods have inspired
a multitude of research on the problem, including the use of CGO solutions
for answering both of his questions and for designing a regularized inversion
method for practical EIT. EIT also arises in medical imaging given that human
organs and tissues have quite different conductivities [16, 30, 14]. This inverse
problem has also been used to detect leaks from buried pipes [15].

It is difficult to find a systematic way of prescribing voltage measurements
at the boundary to be able to find the conductivity. Calderón took instead a
different route. Using the divergence theorem, we have

(1.3) Qq(φ) :=

∫
Ω
q|∇u|2dx =

∫
∂Ω

Λq(φ)φ dS,

where dS denotes surface measure and u is the solution of (1.1). Qq(φ) is
the quadratic form associated to the linear map Λq(φ), and knowing Λq(φ) or
Qq(φ) for all φ ∈ H1/2(∂Ω) is equivalent. Qq(φ) measures the energy needed to
maintain the potential φ at the boundary. Calderón’s point of view is that if one
looks at Qq(φ) the problem is changed to finding enough solutions u ∈ H1(Ω)
of the equation (1.1) to find q in the interior.

In [5], Calderón used complex exponential harmonic functions u = ex·ρ

and v = e−x·ρ, where ρ ∈ CN and ρ · ρ = 0, to prove that the linearization
of (1.3) is injective at constant conductivities. He also gave an approximation
formula to reconstruct a conductivity which is, a priori, close to a constant
conductivity.

Several uniqueness results have been obtained for the inverse conductivity
problem, for example, in dimension higher than two for smooth conductivities
by Sylvester and Uhlmann in 1987 [26]. In dimension two, Nachman [20]
produced in 1995 a uniqueness result for conductivities with two derivatives.
Earlier, the problem was solved for piecewise analytic conductivities by Koh
and Vogelius in [17, 18] and the generic uniqueness was established by Sun
and Uhlmann [25]. In dimension two, Astala and Päivärinta in [3] proved
that the Dirichlet-to-Neumann map, Λσ, uniquely determines the conductivity
σ ∈ L∞(Ω), 0 < c ≤ σ. In [24], Santacesaria proposes an idea to tackle
Calderon’s problem in Rn, based in the Astala and Päivärinta method [3] and
Clifford algebras.

The crucial technical tools for the uniqueness results are Complex Geo-
metrical Optics (CGO) solutions, sometimes also called exponentially growing
solutions. These solutions have their origin in optics, and the complex-valued
CGO solutions have exponential growth in certain directions and exponen-
tial decay in others. Faddeev in 1966 [8] proposed the idea of using complex
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exponential solutions to demonstrate uniqueness in the inverse potential scat-
tering problem for Schödinger equation and later used in the context of inverse
problems. CGO solutions are a valuable tool both theoretically and computa-
tionally points of view since many proofs involving them are constructive and
lend themselves well to computational algorithms. For a thorough survey see
[27].

In dimension two, Astala and Päivärinta [3] use the CGO solutions to
solve Calderón’s problem. In this case, considering L∞-conductivities, the
CGO solutions need to be constructed via the Beltrami equation

(1.4) ∂fµ = µ∂fµ,

where µ is a compactly supported L∞ function, connected to q by the identity

µ =
1− q
1 + q

.

Indeed, the respective complex CGO solutions are related by the equation

2u(z, k) = fµ(z, k) + f−µ(z, k) + fµ(z, k)− f−µ(z, k).

The simple reason behind these identities is that the real part u(z, k) of fµ(x, k)
solves the equation (1.1) while the imaginary part solves the same equation with
q replaced by 1/q.

Then, an asymptotic condition is required as well

(1.5) f(z, k) = eikz(1 + ω(z, k)), ω(z, k) = O

(
1

z

)
, |z| → ∞.

The numerical computation of the CGO solutions of the equation (1.4)
was first time introduced in [2], the authors proposed a complicated method to
compute ω(z, k) in (1.5) via the solution of a R-linear integral equation based
on periodization, truncation of a Neumann series, discretization, Fast Fourier
Transform (FFT), and the GMRES method [23]. In [7], a simpler numerical
method for solving the same R-linear integral equation was proposed, which
solves the R-linear integral equation in the unit disc directly, based on the
fast algorithm in [6]. In [12] Huhtanen and Perämäki introduced an efficient
method for the computation of the CGO, where they considered a new way to
discretize the R-linear integral equation.

Compared to the identification of the conductivity q in (1.1), the problem
of identifying the matrix Q not only has not been demonstrated but also it
has received less attention than scalar problems. However, there are some
contributions treating the following problem:

(1.6)
div (Q∇u) =

2∑
i,j=1

∂

∂zi
(qij(z))

∂

∂zj
u = 0, in Ω,

u = φ, on ∂Ω.
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Hoffmann and Sprekels in [11] proposed a dynamical system approach
to reconstruct the matrix Q in equation (1.6). In [22], Rannacher and Vexler
employed the finite element method and showed error estimates for a matrix
identification problem from pointwise measurements of the state variable, pro-
vided that the sought matrix is constant, and the exact data is smooth enough.
Astala et al. [4] showed that it is possible to determine a L∞ smooth anisotropic
conductivity up to a W 1,2 diffeomorphism φ. In [10], an alternative method
for reconstructing a matrix coefficient is proposed, based on convex energy
functional method with Tikhonov regularization.

This work gives a first step to extend the Calderon problem to coupled
conductivity systems by Astala Päivärinta method for L∞ matrix coefficients.
It can give the possibility to extend the problem to other vector equations,
such as elasticity equation and Stokes equations, using the same method. The
main idea of this work is to reconstruct numerically the CGO solutions for
the matrix conductivity case where we consider diverse types of conductivities
which represent distinct types of materials. Indeed, suppose that Ω ⊂ R2 is
the unit disc and Q is a symmetric 2 × 2-matrix. Let U ∈ [H1(Ω)]2 be the
unique solution to

div (Q∇U) = 0, in Ω,
U = Φ, on ∂Ω

where, these solutions are specified by their asymptotics

(1.7) U(z, k) =

(
u1

u2

)
= eikz

(
1 + W1(z)
1 + W2(z)

)
,

with

Wi(z) = O

(
1

z

)
, as |z| → ∞, for i = 1, 2.

Here k is a complex parameter, i is the imaginary unit, the conductivity
Q = [qij ]

2
ij=1 is a given symmetric, positive definite real matrix function, with

qij(z) = 1, for i = j, and qij(z) = 0, for i 6= j, outside a compact set Ω.
For simplicity let us take Ω as the unit disc, this is not a significant loss of
generality, as a large class of more general setting can be reduced to this case.

Other interesting works in the context to vectorial equations are the fol-
lowing. In [28], Uhlmann and Wang construct CGO solutions for the isotropic
elasticity system concentrated near spheres, where the domain is modeled as an
inhomogeneous, isotropic, elastic medium characterized by the Lamé parame-
ters λ(x) ∈ C2(Ω) and µ ∈ C4(Ω). In [9], Heck et al., transform the Stokes
equations into a decoupled system which is a matrix-valued Schrödinger equa-
tion. In [13], Imanuvilov and Yamamoto considered an inverse source problem
for the Stokes equation, when the main result is the Lipschitz stability in the
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inverse problem and the proof is based on a Carleman estimate for the Stokes
system.

This paper is organized as follows. In Section 2, we present the principal
definitions and properties used in our problem. Section 3 concerns the proof
of the existence of the CGO solutions for the Beltrami system associated to
conductivities in a matrix form. In Section 4, we introduce the algorithm of
reconstruction for the CGO of Beltrami Systems. In Section 5, we reduce the
problem to a periodic integral equation and define the discretization. Finally
in Section 6 we show several examples for this reconstruction.

2. VECTORIAL CONDUCTIVITY EQUATION

We consider the coupled conductivity equation in the open unit disc
Ω ⊆ R2

div (Q∇U) = 0, in Ω,(2.1)

where Q = [qjk]
2
j,k=1 ∈M2×2(R) is such that

[qjk] ∈ L∞(Ω;R2×2), [qjk]
t = [qjk], C−1I ≤ [qjk] ≤ CI,

with j = 1, 2 and j 6= k. Here, and in what follows, we consider that Q
belongs to the set of symmetric 2×2-matrices, equipped with the inner product
M ·N = trace(M>N) and the norm

‖M‖ = (M ·M)1/2 =

 2∑
i,j=1

m2
ij

1/2

.

For two symmetric matrices M,N ∈M2×2(R), let us consider the order relation
M ≤ N by

Mξ · ξ ≤ Nξ · ξ, for all ξ ∈ R2.

Finally, in the space L∞(Ω;R2×2) we use the norm

‖H‖L∞(Ω;R2×2) := max
1≤i,j≤2

‖hij‖L∞(Ω),

where H = [hij ]
2
i,j=1 ∈ L∞(Ω;R2×2).

In this work we identify R2 and C by the map (x1, x2) 7→ x1 + ix2 and
denote z = x1 + ix2, with i satisfying i2 = −1. We use the standard notations
for complex derivatives:

∂ = ∂z =
1

2
(∂1 − i∂2)

∂ = ∂z =
1

2
(∂1 + i∂2)
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where ∂j =
∂

∂xj
, j = 1, 2. We let D and D be the operators

D =

(
∂ 0
0 ∂

)
, D =

(
∂ 0

0 ∂

)
,

and let us consider

Di =

(
∂i 0
0 ∂i

)
, for i = 1, 2.

Following [3], the aim of this work is, for k ∈ C, to compute the unique
solutions U1 and U2 of the following equations

div (Q(z)∇U1(z, k)) = 0,

div
(
Q(z)−1∇U2(z, k)

)
= 0,

where U1 and U2 have asymptotic behavior in sense of (1.7). To get the solu-
tions U1 and U2, let us consider the following Beltrami system

(2.2) DF = MDF,

where

(2.3) M(z) = (I −Q(z)) (I +Q(z))−1 .

Here, the connection between the equations (2.1) and (2.2) is given by
the following Lemma.

Lemma 2.1. Suppose U ∈ [H1(Ω)]2 satisfies the equation (2.1). Then
there exists a function V ∈ [H1(Ω)]2, such that, F = U + iV satisfies the
Beltrami system (2.2), where M is defined by (2.3).

Conversely, if F ∈ [H1(Ω)]2 satisfies (2.2) with M ∈ L∞(Ω;R2×2), then
U = Re(F ) and V = Im(F ) satisfy

div(Q∇U) = 0

div(Q−1∇V ) = 0,

respectively, where

Q = (I +M)−1(I −M).

Proof. Let W be the vector W = (−QD2U,QD1U). By (2.1),

0 = div(Q∇U),

= div
(
Q
(
D1U

∣∣D2U
))
,

= D1(QD1U) +D2(QD2U),
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then D2W1 = D1W2. Therefore, there exists V ∈ [H1(Ω)]2, unique up to a
constant such that

(2.4)

{
D1V = −QD2U,
D2V = QD1U.

Then, using (2.4)

DF =
1

2
(I −Q)(I +Q)−1(I +Q) (D1U + iD2U) .

Considering M = (I −Q) (I +Q)−1 and (2.4), the equation above can
be written as

DF =
1

2
M(I +Q) (D1U + iD2U) =

1

2
M(D1 − iD2) (U + iV ) = MDF.

Hence F satisfies the Beltrami system (2.2).
Conversely, let F satisfying the Beltrami system (2.2) with U = Re(F )

and V = Im(F ). Then

DF = MDF ⇒ D1U −D2V + i (D1V −D2U)

= M (D1U +D2V ) + iM (D1V −D2U) .

According to the above, it follows that{
D1V = −(I +M)−1(I −M)D2U,
D2V = (I +M)−1(I −M)D1U.

Then taking Q = (I +M)−1(I −M), we conclude that

div(Q∇U) = 0 and div(Q−1∇V ) = 0.

Remark 2. We note that the condition for Q and M implies the existence
of a constant 0 ≤ κ < 1 such that

‖M‖L∞(Ω;R2×2) ≤ κ,

holds for almost every z ∈ C and for Q ∈ L∞(Ω;R2×2).

3. EXISTENCE OF CGO SOLUTION

Following the ideas of the scalar case [3, 2], we consider that the Beltrami
system (2.2) and its solutions are governed and controlled by the extension of
the two basic operators, the Cauchy and the Beurling transforms.

The Cauchy transform is extended for the vectorial case by

PG(z) =

(
P 0
0 P

)(
G1(z)
G2(z)

)
=

(
PG1(z)
PG2(z)

)
,
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where the scalar Cauchy transform is defined by

Pg(z) = − 1

π

∫
C

g(ω)

ω − z
dω.

Remark 3. The vectorial Cauchy transform P acts as the inverse operator
to D, i.e., PDG = DPG = G for G ∈ [C∞0 (C)]2.

The operator P has some properties in an appropriate Lebesgue, Sobolev
and Lipschitz space as it is shown in [3, 29]. The extension of these properties
can be easily extended to the operator P, where we consider

‖(f, g)‖ = max (‖f‖Lp→Lp , ‖f‖Lp→Lp) , ∀(f, g) ∈ [Lp(Ω)]2.

Proposition 1. Let Ω ⊂ C be a bounded domain and let 1 < q < 2 and
2 < p <∞. Then

1. P : [Lp(C)]2 → [Lipα(C)]2, where α = 1− 2
p .

2. P : [Lp(Ω)]2 → [W 1,p(C)]2 is bounded.

3. P : [Lp(Ω)]2 → [Lp(C)]2 is compact.

4. P : [Lp(C) ∩ Lq(C)]2 → [C0(C)]2 is bounded, where C0 is the closure of
C∞0 in L∞.

Here, we denote

[Lp(Ω)]2 =
{
G ∈ [Lp(C)]2 : Gi

∣∣
C\Ω ≡ 0, i = 1, 2

}
.

On the other hand, the Beurling transform is also extended for the vec-
torial case by

SG(z) =

(
S 0
0 S

)(
G1(z)
G2(z)

)
=

(
SG1(z)
SG2(z)

)
=

(
DPG1(z)
DPG2(z)

)
= DPG(z),

where S is determined as a principal-value integral

Sg(z) = − 1

π

∫
C

g(ω)

(ω − z)2
dω.

Remark 4. In particular, the operator S transforms D derivatives into D
derivatives, that is, S

(
DG

)
= DG.

The following proposition is an extension for the vectorial case of the
useful result shown in [1], where we consider that S denotes the operator S(G) =
S(G).
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Proposition 2. Let M,N ∈ L∞(C;C2×2) such that

2
(
‖M‖L∞(C;C2×2) + ‖N‖L∞(C;C2×2)

)
≤ κ,

holds with a constant 0 ≤ κ < 1. Suppose that 1 + κ < p < 1 + 1/κ. Then the
operator

(3.1) B = I−MS−NS

is invertible in [Lp(C)]2, where I is the extension of the identity operator for
the vectorial case, that is

I =

(
I 0
0 I

)
Proof. Let us consider

‖MS +NS‖ ≤ ‖MS‖+ ‖NS‖ ≤
(
‖M‖L∞(C;C2×2) + ‖N‖L∞(C;C2×2)

)
‖S‖.

Following the hypothesis, the first part of the right hand of the inequality
can be bounded by(

‖M‖L∞(C;C2×2) + ‖N‖L∞(C;C2×2)

)
≤ κ

2
.

For the second term of the right hand of the inequality, it can be seen
that

‖S‖ = max (‖S‖Lp→Lp , ‖S‖Lp→Lp) .
Following [21], we consider the upper bound for ‖S‖Lp→Lp of the form

‖S‖Lp→Lp ≤ 2(p∗ − 1) for

p∗ = max

(
p,

p

p− 1

)
and considering the condition for p defined in the hypothesis, the norm of the
operator S is bounded as follows

‖S‖ < 2

κ
.

Thus,
‖MS +NS‖ < 1

and therefore, the operator B is invertible.

We need the following useful proposition as well, which is a natural ex-
tension of the result shown in [3] and [29].

Proposition 3. Let F = (F1, F2)T ∈ [W 1,p
loc ]2 and Γ ∈ Lploc(C) for some

p > 2. Suppose that for some constant 0 ≤ κ < 1,

|∂Fi(z)| ≤ κ|∂Fi(z)|+ Γ(z)|Fi(z)|, i = 1, 2,

holds for almost every z ∈ C. Then, if F(z) → 0 as |z| → ∞ and Γ has a
compact support then

F(z) ≡ 0.
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Now, we can establish the existence of the CGO solutions to (2.2) of the
form

(3.2) FM (z, k) = eikz
(

1 + N1(z)
1 + N2(z)

)
with

(3.3) Ni(z, k) = O

(
1

z

)
, as |z| → ∞, for i = 1, 2.

In order to establish the existence of CGO solutions and the expression
(3.2), we begin with the following proposition.

Proposition 4. Suppose that 2 < p < 1 + 1/κ, α ∈ L∞(C;R2×2) with
supp(α) ⊂ Ω and ‖N‖L∞(C;R2×2) ≤ κχΩ(z) for almost every z ∈ Ω. Define the
operator K : [Lp(C)]2 → [Lp(C)]2 by

KG = P
(
I −NS

)−1 (
αG
)
.

Then K : [Lp(C)]2 → [W 1,p(C)]2 and I −K is invertible in [Lp(C)]2.

Proof. First, since ‖N‖L∞(C;R2×2) ≤ κχΩ(z), by Proposition 2, we have

that I − NS is invertible in Lp and, by Proposition 1, the operator K :
[Lp(C)]2 → [Lp(C)]2 is well-defined and compact. We also have

supp
(
I −NS

)−1 (
αG
)
⊂ Ω.

Finally, to prove the invertibility of I −K in [Lp(C)]2, we use the Fred-
holm’s alternative. For this, let us prove that I −K is injective in [Lp(C)]2.

Let us suppose that G = (G1, G2)T ∈ [Lp(C)]2 satisfying

G = P
((
I −NS

)−1 (
αG
))
,

by Proposition 1, we have that G ∈ [W 1,p(C)]2 and thus

DG =
(
I −NS

)−1 (
αG
)
,

which is equivalent to

(3.4) DG−NDG = αG.

Finally, from (3.4) we can conclude that DG = 0 outside Ω, and therefore
G is analytic. Then this combined with G ∈ [Lp(C)]2 implies that

Gi(z) = O

(
1

z

)
, for |z| → ∞, for i = 1, 2.

Thus, the assumptions of Proposition 3 are fulfilled and we must have
G ≡ 0.
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Finally, the following theorem establishes the existence of the Complex
Geometric Optics solutions to the Beltrami system (2.2).

Theorem 3.1. For each k ∈ C and for each 2 < p < 1 + 1/κ the system
(2.2) admits a unique solution F ∈ [W 1,p

loc (C)]2 of the form (3.2) such that the
asymptotic formula (3.3) holds true.

Proof. If we write

(3.5) FM (z, k) = eikz
((

1
1

)
+ N(z)

)
,

and plug this into the Beltrami system (2.2) we obtain

DN − e−kMDN = αN + α

(
1
1

)
,

where

(3.6)
e−k(z) = e−i(kz+kz).

α(z) = −ike−k(z)M(z).

Since S
(
DG

)
= DG, we obtain

DN =
(
I − e−kMS

)−1
(
αN + α

(
1
1

))
.

If now, K is defined, as in the Proposition 4, with N = e−kM we get

(3.7) N −KN = K (χΩ) ∈ [Lp(C)]2.

Since I −K is invertible in [Lp(C)]2, and N is analytic in C \Ω the result
holds.

Remark 5. By the Theorem 3.1, the Complex Geometrical Optics solu-
tions FM are given by substituting the unique solution of equation (3.7) by the
formula (3.5).

4. COMPUTE THE CGO SOLUTIONS

Once the existence of the CGO solution of (2.2) has been proved, we want
to calculate this solution FM numerically. For the scalar case, the numerical
computation of CGO was introduced in [2], based on the original construction
in [3]. In [2], the difficulty of the numerical computation of CGO solutions is
the lack of complex-linearity in the equation that was compensated by keeping
the real and imaginary parts of the solution separately in a real-linear solution
process. To amend this Huhtanen and Perämäki introduced in [12] an efficient
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method for the computation of the CGO solutions. Let us describe this method
below:

First, by Theorem 3.1 we know that the function N satisfies the equation

(4.1) DN −NDN − αN − α
(

1
1

)
= 0.

Define U ∈ [Lp(Ω)]2 by U = −DN. Then N = −PU and DN = −SU .
Substituting U into (4.1) leads to the real-linear integral equation

−U −N
(
−SU

)
− α

(
−PU

)
= α

(
1
1

)
.

Then

(4.2) U +
(
−NS− αP

)
U = −α

(
1
1

)
.

Let us denote the complex conjugate G of an operator G as G = ρ(G),
then (4.2) takes the form

(4.3) (I +Aρ)U = −α
(

1
1

)
,

where A :=
(
−NS− αP

)
.

The operator I+A is invertible in [Lp(Ω)]2. Indeed, note that, by Propo-
sition 2, I −NSρ is invertible. Hence the equation(

I −
(
I −NSρ

)−1
(αPρ)

)
U =

(
I −NSρ

)−1
(
−α

(
1
1

))
is equivalent to (4.3). The operator on the left-hand side is invertible by the

fact that its null space is trivial and
(
I −NSρ

)−1
(αPρ) is compact. Therefore,

I +A is invertible as well.

Following the ideas proposed in [12], a special preconditioning step is
introduced, it consists of the transformation of the real-linear equation (4.3)
into a complex-linear equation allowing standard iterative solution by GMRES.
Consider the following equation in the space [Lp(Ω)]2:

(4.4)
(
I −AA

)
V = −α

(
1
1

)
,

where AV = AV . Now (4.4) is complex-linear, and the solution U of (4.3) can
be written as U = (I −Aρ)V .

Summarizing, the computation of the function N(z, k) defined in (3.7) for
a given k ∈ C proceeds as follows:
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Algorithm 1 Solution of NM

1: return Solution of the function N(z, k).
2: Given k, α,M ,where k ∈ C, α is computed from (3.6), M is computed

from (2.3).
3: Solve for V from (4.4). Note that V is supported in Ω.
4: Calculate U = (I −Aρ)V . Note that U is supported in Ω.
5: Compute N = −PU .
6: NM = N.

5. REDUCTION TO A PERIODIC INTEGRAL EQUATION
AND DISCRETIZATION

As shown in [12] and discussed in the previous section, the computation
of CGO solution to the real-linear Beltrami equation can be reduced to the
solution of the complex-linear equation (4.4). Furthermore, one can use the
iterative GMRES method for the solution of periodic and discrete version of
(4.4). To that end, following [2], we need to introduce a periodic version of the
operator

A :=
(
−NS− αP

)
.

Take s > 2 and define a square Q ⊂ R2 by

Q :=
{

(x, y) ∈ R2 : − s ≤ x < s,−s ≤ y < s
}
.

We consider tiling of the plane by translated copies of Q and work with
2s-periodic functions f : R2 → C satisfying

f̃(x+ 2j1s, y + 2j2s) = f̃(x, y), for j1, j2 ∈ Z,

where we indicate 2s-periodic functions adding ·̃ on top of symbols.
Choose a smooth cutoff function η satisfying

η(z) =

{
1, for |z| ≤ 2,
0, for |z| ≥ 2 + (s− 2)/2,

and 0 ≤ η(z) ≤ 1 for all z ∈ C. Define a 2s-periodic approximate Green’s
function g̃ for the D-bar operator by setting it to η(z)/(πz) inside Q and
extending periodically by

g̃(z + 2j1s+ i2j2s) =
η(z)

πz

for z ∈ Q\{0} and j1, j2 ∈ Z. Define a periodic approximate Cauchy transform
by

(5.1) P̃ f(z) := (g̃∗̃f) (z) =

∫
Q
g̃(z − w)f(w) dw1 dw2,
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where ∗̃ denotes convolution on the torus.
The Beurling transform is approximated in the periodic context by writ-

ing

β̃(z + 2j1s+ i2j2s) =
η(z)

πz2
for z ∈ Q \ 0 and j1, j2 ∈ Z, and defining

(5.2) S̃g(z) :=
(
β̃∗̃g

)
(z) =

∫
Q
β̃(z − w)g(w) dw1 dw2.

Then the extension of the periodic Cauchy transform P̃ and periodic
Beurling transform S̃ are defined by

P̃ =

(
P̃

P̃

)
, S̃ =

(
S̃

S̃

)
.

Set Ã :=
(
−Ñ S̃− α̃P̃

)
with the functions α̃ and Ñ being trivial periodic

extensions of functions defined in (3.6), α and N , which are both supported in
the unit disc. The periodic version of (4.4) takes the form

(5.3)
(
I − ÃÃ

)
Ṽ = α̃

(
1
1

)
.

Now, for discretization, choose a positive integer m, denote M = 2m, and
set h = 2s/M . Define a grid Gm ⊂ Q by

Gm =
{
jh : j ∈ Z2

m

}
,

Z2
m =

{
j = (j1, j2) ∈ Z2 : − 2m−1 ≤ jl < 2m−1, l = 1, 2

}
.

Note that the number of points in Gm is M2. Define the grid approxima-
tion ϕh : Z2

m → C of a function ϕ : Q→ C by

ϕh(j) = ϕ(jh).

Our strategy is to use the iterative GMRES method for the solution of
the discrete version of the periodic equation (5.3). To that end, we need to
discretize the periodic Cauchy and Beurling transforms defined in (5.1) and
(5.2), respectively.

Set

g̃h(j) =

{
g̃(jh) for j ∈ Z2

m \ 0,
0 for j = 0,

and

β̃h(j) =

{
β̃(jh) for j ∈ Z2

m \ 0,
0 for j = 0,

where the point jh ∈ R2 is interpreted as the complex number hj1 + ihj2. Now
g̃h and β̃h are M×M matrices with complex entries. Given a periodic function
ϕ, the discrete transforms P̃ϕ are defined by(

P̃ϕh

)
h

= h2IFFT (FFT(g̃h) · FFT(ϕh)) ,(5.4)
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S̃ϕh

)
h

= h2IFFT
(
FFT(β̃h) · FFT(ϕh)

)
,(5.5)

where FFT and IFFT are the Fast Fourier Transform and Inverse Fast Fourier
Transform, respectively. Thus, all the ingredients for the numerical solution
are in place.

6. NUMERICAL RESULTS

In this section we assess the ability of the proposed approach for obtain-
ing numerical approximation on several contexts. We will take strictly positive
conductivities σlm : Ω → R that models an idealized cross-section of human
chest. Since the Astala-Päivärinta theory is developed for nonsmooth con-
ductivities σ ∈ L∞(Ω) we will consider the background conductivity has the
value one and the conductive heart and resistive lungs are separated from the
background by a discontinuity.

For the first test, based on the example in [2, 19], let us consider σlm(z) =
σ(z), when the conductivity of the heart is 2 and the conductivity of the lungs
is 0.7, see Figure 1 for a graphical representation of the conductivity. In this
example we consider that the two equations act separately, that is, they are
not coupled, the equation is the following

div

(
σ(z)

(
1 0
0 1

)
∇U

)
= 0, in Ω.

Fig. 1 – Three-dimensional mesh plot of the discontinuous conductivity σ.

In the Figure 2 the two equations act independently with the same con-
ductivity, obtaining the same result for the CGO solution for N1 and N2. It
is possible to observe that the solutions in the Figure 2 are equivalent to the
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solutions shown in [19] for the case of scalar case. It’s possible to observe
that our procedure solves the fully vectorial expression and recover the scalar
case for the diagonal matrices, then our procedure is an extension of the scalar
algorithm.

(a) Real part of N1(z, 2). (b) Real part of N2(z, 2).

Fig. 2 – Three-dimensional mesh plot of the CGO solutions corresponding to the
non-smooth conductivity σ. Here k = 2 and m = 8.

For the second example we consider, as in the previous example, the
conductivity σlm(z) = σ(z) and as a diagonal matrix as well, but in this case
the conductivity is different in the diagonal, the equation that represent this
is the following

div

(
σ(z)

(
2 0
0 3

)
∇U

)
= 0, in Ω.

For this example, we will compare the results obtained by the vectorial
algorithm and the results obtained by the scalar algorithm presented in [12].
For these cases, the scalar algorithm solves the following problems:

div (λσ(z)∇u) = 0, in Ω,

where λ = 2, 3 and N1, N2 represent the scalar solution for λ = 2 and λ = 3,
respectively. In the Figures 3-4 the two equations act independently, but since
the factor that multiplies σ is different in each equation, a different solution
is observer for N1 and N2. In the Figures 3-4, it is possible to see that, the
solutions have the same form as well.

For the third example, we also take σlm(z) = σ(z), but in this case, we
consider a non-diagonal matrix, with this choice we have that the equations
are coupled. This will be represented by the following equation

div

(
σ(z)

(
2 1
1 3

)
∇U

)
= 0, in Ω.
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(a) Real part of N1(z, 2). (b) Real part of N1(z, 2).

Fig. 3 – Three-dimensional mesh plot of the CGO solutions. Here k = 2 and m = 8.

(a) Real part of N2(z, 2). (b) Real part of N2(z, 2).

Fig. 4 – Three-dimensional mesh plot of the CGO solutions. Here k = 2 and m = 8.

To assess the consistency and mesh independence of the method in this
example, we have three different mesh refinements, m = 6, 7, 8, and compare
their different results. In the Figures 5-7 can be seen that the coupled equation
gives us solutions that differ both in their magnitude and their shape, so there
is an interaction between the conductivities of each of the solutions. From
Figures 5-7 it is possible to see that, for different refinements, the solution is
the same. In the Tables 1-2 it can be seen the error between the discretization
m and m − 1, where it can be observed that as the discretization increases,
the error compared to the previous discretization is lower. To compare both
solutions, we consider only the common nodes that contain both discretization.
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(a) Real part of N1(z, 2). (b) Real part of N2(z, 2).

Fig. 5 – Three-dimensional mesh plot of the CGO solutions. Here k = 2 and m = 6.

(a) Real part of N1(z, 2). (b) Real part of N2(z, 2).

Fig. 6 – Three-dimensional mesh plot of the CGO solutions. Here k = 2 and m = 7.

(a) Real part of N1(z, 2). (b) Real part of N2(z, 2).

Fig. 7 – Three-dimensional mesh plot of the CGO solutions. Here k = 2 and m = 8.
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m ‖Nm
1 ‖∞ ‖Nm

1 −Nm−1
1 ‖∞

7 1.0990 0.2955
8 0.9603 0.1619
9 0.9837 0.0809
10 0.9833 0.0394

Table 1 – Comparison of N1 for different refinements m.

m ‖Nm
2 ‖∞ ‖Nm

2 −Nm−1
2 ‖∞

7 1.2320 0.3385
8 1.1026 0.2319
9 1.1264 0.1241
10 1.1264 0.0480

Table 2 – Comparison of N2 for different refinements m.

Finally, for the last example, we will consider different conductivities for
the matrix but with the condition that the matrix remains symmetric, see
Figure 8 for plot of the conductivities. The equation that represents this is the
following

div

((
σ11(z) σ12(z)
σ21(z) σ22(z)

)
∇U

)
= 0, in Ω.

In the Figure 9 the coupled equation gives us solutions that differ both
in their magnitude and their shape, so there is an interaction between the
conductivities of each of the solutions. In this example it is possible to consider
different conductivities that represent deformities of organs and tumors that
may have these organs.

7. CONCLUSIONS AND COMMENTS

In this paper, we have presented a numerical reconstruction of the CGO
solutions for the conductivity systems, this reconstruction is based on solving
the problem for a Beltrami system equivalent to the conductivity system. For
this, we prove the existence of the CGO solutions to the Beltrami system and
then reconstruct the solution of this system. Several examples were presented
to represent all the possible cases of conductivity systems, where we consider
a simple case of a diagonal matrix to a more complex example of anisotropic
conductivity and non-symmetric matrix.
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(a) σ11(z). (b) σ12(z).

(c) σ21(z). (d) σ22(z).

Fig. 8 – Three-dimensional mesh plot of the discontinuous conductivity σlm.

(a) Real part of N1(z, 2). (b) Real part of N2(z, 2).

Fig. 9 – Three-dimensional mesh plot of the CGO solutions corresponding to the
non-smooth conductivity σlm. Here k = 2 and m = 8.
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In the examples we have considered diverse ways to validate the method
where we can see that we can replicate the solution obtained for the scalar
case, the method converges under mesh refinements.
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Matemático (CMM) Grant ANID ACE210010 and Basal FB210005. R. Lecaros was partially

supported by FONDECYT (Chile) Grant 11180874. G. Montecinos was partially supported

by FONDECYT (Chile), in the frame of the research project for Initiation in Research Grant

11180926. J. H. Ortega was partially supported by FONDECYT (Chile) Grant 1201125.

REFERENCES

[1] K. Astala, T. Iwaniec, E. Saksman, et al., Beltrami operators in the plane. Duke Mathe-
matical Journal 107 (2001), 1, 27–56.
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IRL 2807 CNRS-UChile
and

Universidad de Chile
Departamento de Ingenieŕıa Matemática (DIM)
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