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In this paper, we solve forward and control problems for telegrapher’s equation
on metric graphs. The forward problem is considered on general graphs, and
an efficient algorithm for solving the equations for a constant inductance and
capacitance and for a variable resistance and conductance is developed. The
control problem is considered on tree graphs, i.e. graphs without cycles, with some
restrictions on the coefficients. In particular, we consider equations with constant
coefficients which do not depend on the edge. We obtained the necessary and
sufficient conditions of the exact controllability and indicate the minimal control
time.
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1. INTRODUCTION

The telegrapher’s equations, also known as transmission line equations,
are coupled, linear first-order partial differential equations that describe the
change of voltage and current on an electrical transmission line with distance
and time. It first appeared in a paper by Kirchhoff [17] in 1857, and sub-
sequently, by Heaviside [16] in 1876. The telegraph equation attracted close
attention when it was treated by Poincaré [21] in 1893. It is widely used in
the study of the propagation of electric signals in a cable transmission line
as well as in wave phenomena. The transmission line is thought to be com-
posed of millions of tiny little circuit elements, such as distributed resistance R
per unit length, distributed inductance L per unit length, and the distributed
capacitance between the conductors of shunt capacitance C per unit length.
Meanwhile the leakage conductance of the dielectric material separating the
two conductors is denoted by a conductance G per unit length. If the line
voltage is denoted by V (x, t) and the current — by I(x, t), where x is the dis-
placement and t is the time, then the relationship between the voltage V (x, t)
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and the current I(x, t) along the transmission line can be described by the
following coupled equations

L∂tI + ∂xV +RI = 0,(1)

C∂tV + ∂xI +GV = 0.(2)

In this paper, we consider forward and control problems for the telegraph
equation networks or, in other words, telegraph equations on metric graphs.
The forward problem is solved on a non-homogeneous network, that is, for a
constant inductance and capacitance and for a variable resistance and conduc-
tance. On the other hand, the control problem is solved in the case of constant
parameters.

Networks of the telegrapher equations have been recently used for model-
ing electrical circuits, see, e.g. [1, 19, 23], and arterial blood flows [13, 14, 24].
Very little is known about the controllability of such networks. Some results
of this kind were obtained in [24] for star graphs of three edges. Exact con-
trollability results for tree graphs, i.e. graphs without cycles, of the telegraph
equations were obtained in [20] without an estimate of the controllability time.
On the other hand, controllability of the wave equation on trees is studied
pretty well, see, e.g. monographs [18, 8, 15], surveys [4, 25] and references
therein.

In the present paper, we demonstrate that, for homogeneous networks, the
control problem for the telegraph equation can be reduced to a control problem
for the wave equation for current. For the current equation, we obtain the
Neumann control problem with non-standard, so-called delta-prime matching
conditions. We study this problem developing the method recently proposed
in [12]. We give constructive algorithms to solve control problems on a tree
graphs. We prove that the systems of current and telegraph equations are
exactly controllable if and only if the control is supported at all or at all but
one of the boundary vertices of the tree. We also obtain a sharp estimate of
the controllability time. Some of these results (without the detailed proofs)
were presented in [3].

If the coefficients of the equations are constants, then eliminating V (x, t)
in the system (1), (2) we obtain the second order equation for I :

(3) (CL)Itt − Ixx + (CR+ LG)It + (RG)I = 0.

The same equation is valid for V. If CL 6= 0, then using a simple change of
variables this equation can be transformed to the wave equation with potential:

(4) utt − uxx + qu = 0

with some constant q. Controllability of this equation on graphs (for q depen-
dent on x) was studied in many papers, see e. g. [18, 8, 15, 4, 10, 25] and
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references therein.
If there is no inductance in the transmission line, i.e. L = 0, then equation

(3) takes the form

(5) ut −
1

RC
uxx +

G

C
u = 0.

This occurs in the case of transmission line of axons and dendrites of nerve cells.
In that case (5) is called the cable equation; it describes the dynamics of trans-
membrane potential u(x, t). Control and inverse problems for this equation on
tree graphs were studied in [5] and [6]. In the case of no resistance and leakage,
equation (3) takes the form

(6) utt − c2uxx = 0,

which is the equation of wave motion with the phase speed of 1√
CL

. On the

other hand, when the inductance is negligible compared with the resistance
and there is no leakage, equation (3) takes the form

(7) ut − kuxx = 0,

which is the equation of diffusion with diffusivity k = 1
RC . The control prob-

lems for equations (6) and (7) on graphs were considered, e.g. in [10], for the
case of variable coefficients.

2. PRELIMINARIES

Let Ω = {V, E} be a finite compact and connected metric graph, where
V = {v1, v2, . . . , vM} is a set of vertices and E = {e1, e2, . . . , eN} is a set of
edges. We recall that a graph is called a metric graph if every edge ek ∈ E, k =
1, . . . , N, is identified with an interval (0, lk) of the real line with a positive
length lk. We denote the boundary vertices (i.e. vertices of degree one) by
Γ = {γ1, γ2, . . . , γm}. We write k ∈ J(v) if ek ∈ E(v), where E(v) is the set
of edges incident to v. The graph Ω determines naturally the Hilbert space of
square integrable functions H := L2(Ω) = ⊕kL2(ek). When convenient, we will
denote the restriction of a function w on Ω to ek by wk. Let Γ be a union
of two disjoint sets: Γ1 = {γ1, ..., γm1}, Γ0 = {γm1+1, ..., γm}, and Γ0 may be
empty. We consider a system described by the following initial boundary value
problem (IBVP) on Ω with Kirchhoff’s conditions at each internal vertex vj :

Lk∂tIk + ∂xVk +RkIk = 0, (x, t) ∈ (0, lk)×(0, T ), k = 1, . . . , N,(8)

Ck∂tVk + ∂xIk +GkVk = 0, (x, t) ∈ (0, lk)×(0, T ), k = 1, . . . , N,(9)

Vk|t=0 = Ik|t=0 = 0, x ∈ (0, lk), k = 1, . . . , N,(10)

Vi(vj , t) = Vk(vj , t), i, k ∈ J(vj), vj ∈ V \ Γ, t ∈ (0, T ),(11)
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κkjIk(vj , t) = 0, vj ∈ V \ Γ, t ∈ (0, T ),(12)

Vk(γj , t) = fj(t), k ∈ J(γj), j = 1, . . . ,m1, t ∈ (0, T ),(13)

Vk(γj , t) = 0, k ∈ J(γj), j = m1 + 1, . . . ,m, t ∈ (0, T ).(14)

Here T is arbitrary positive number, κkj = 1 if vj coincides with 0 and κkj =
−1 if vj coincides with lk in the representation of the edge ek = (0, lk), and fj ∈
L2(0, T ) for all k and j. The coefficients Rk(x), Gk(x), Lk(x), Ck(x) represent
distributed resistance, inductance, conductance and capacitance respectively.
The function Ik(x, t) represents current and Vk(x, t) represents voltage on each
edge ek; the vector function f = {fj} ∈ L2(0, T ;Rm1) =: FT is referred to as
boundary control. We assume that Rk(x), Gk(x) ∈ C[0, lk], and Lk(x), Ck(x) ∈
C1[0, lk] such that Lk(x), Ck(x) ≥ 0.

The well-posedness of this system was studied e.g. in [20] (see also [9]; it
was proved that for any f ∈ FT , there exists a unique (generalized) solution of
the IBVP (8)–(14) such that V, I ∈ C([0, T ];H). It means that V (·, t) and I(·, t)
belong to H for any t ∈ [0, T ] and continuously depend on t in H norm. In the
next section we propose a new proof of this result together with a constructive
way solving the problem. We consider also the solution of the IBVP (8)–(14)
for more smooth controls, fk ∈ H1(0, T ), fk(0) = 0, ∀k.

3. FORWARD PROBLEM ON GRAPHS

We start with the discussion of the solution of the system (8)–(14) on a
finite interval and a star-shaped network.

3.1. Telegrapher’s Equation on a Finite Interval [0, l]

Consider the system (8)–(14) where Ω is a single interval [0, l] and the
control f(t) is applied at x = 0. Introducing the transformations ξ(x) =∫ x

0

√
C(s)L(s)ds, I(x, t) =

√
C(x)u(ξ(x), t), V (x, t) =

√
L(x)y(ξ(x), t) and

putting U(ξ, t) =

(
u(ξ, t)
y(ξ, t)

)
we obtain the IBVP:

∂tU(ξ, t) +A∂ξU(ξ, t) +QU(ξ, t) = 0, (ξ, t) ∈ (0, `)× (0, T ),(15)

u|t=0 = y|t=0 = 0, ξ ∈ (0, `),(16)

y(0, t) =
1√
L(0)

f(t), t ∈ (0, T ),(17)

y(`, t) = 0, t ∈ (0, T ).(18)
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Here, ` = ξ(l), A =

(
0 1
1 0

)
, Q(ξ) =

(
q11(ξ) q12(ξ)
q21(ξ) q22(ξ)

)
with q11(ξ) = R(x(ξ))

L(x(ξ)) ,

q12(ξ) = C′(x(ξ))

2C(x(ξ))
√
L(x(ξ))C(x(ξ))

, q21(ξ) = L′(x(ξ))

2L(x(ξ))
√
L(x(ξ))C(x(ξ))

, and q22(ξ) =

G(x(ξ))
C(x(ξ)) . For simplicity of presentation, we denote the right hand side of (17)

by f(t) again. We use the notation Uf
−

(ξ, t) =

(
uf
−

(ξ, t)

yf
−

(ξ, t)

)
to represent the

solution if the control f(t) is applied at the left end ξ = 0.
By direct substitution one can prove the following proposition.

Proposition 3.1. If 0 ≤ t < T ≤ `, Q ∈ C1(0, `), and f ∈ L2(0, T ) then
the system (15)–(18) has a unique generalized solution U ∈ C([0, T ];L2(0, `;R2))

given by

(
uf
−

(ξ, t)

yf
−

(ξ, t)

)
=

(
0
0

)
for t ≤ ξ and

(
uf
−

(ξ, t)

yf
−

(ξ, t)

)
=

(
1
1

)
f(t− ξ) +

∫ t

ξ

(
w1(ξ, s)
w2(ξ, s)

)
f(t− s)ds, ξ < t,(19)

where the vector kernel, W (ξ, s) =

(
w1(ξ, s)
w2(ξ, s)

)
, is the solution of the Goursat

problem

∂sW (ξ, s) +A∂ξW (ξ, s) +QW (ξ, s) = 0, 0 < ξ < s ≤ T,(20)

w1|s<ξ = w2|s<ξ = 0, 0 < ξ < T,(21)

w2(0, s) = 0, 0 < s < T,(22)

with

(23) w2(ξ, ξ)− w1(ξ, ξ) =
1

2
(q11(ξ) + q12(ξ)− q21(ξ)− q22(ξ)) .

The system (20) – (23) can be solved by the standard iteration method
after diagonalizing the matrix A and then using the transformation ξ = s− x
and η = s + x for smooth Q (see, [2] for details). For the solution of scalar
Goursat problem, see, e.g., [22] for smooth q and [11] for q ∈ L1(0, `).

To find the solution of (15) – (18) for T > ` we use the idea proposed
in [12] for the wave equation. This method does not work on Telegrapher’s
equation with variable L and C. As a result, L and C are considered constants
for solutions on finite intervals if T > ` and on metric graphs. We extend
Q(ξ) to the semi-axis ξ > 0 by the rule Q(2n` ± ξ) = Q(ξ) for all n ∈ N and
solve the problem (20) – (23) with extended Q(ξ). Then the solution of the
system (15)–(18) is given by the following proposition which can be proved by
substitution.
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Proposition 3.2. If Q ∈ C1(0, `), f ∈ L2(0, T ), and t ≥ 0, then the
system (15)–(18) has a unique generalized solution U ∈ C([0, T ];L2(0, `;R2))
given by the formula(

uf
−

(ξ, t)

yf
−

(ξ, t)

)
=

b t−ξ2` c∑
n=0

[(
1
1

)
f(t− 2n`− ξ)

+

∫ t

2n`+ξ

(
w1(2n`+ ξ, s)
w2(2n`+ ξ, s)

)
f(t− s)ds

]

+

b t+ξ2` c∑
n=1

[(
1
−1

)
f(t− 2n`+ ξ)

+

∫ t

2n`−ξ

(
w1(2n`− ξ, s)
−w2(2n`− ξ, s)

)
f(t− s)ds

]
,

(24)

where b·c is the floor function.

Here and everywhere below we assume that control functions are extended
by zero to the negative semi-axis, i.e. f(t) = 0 for t < 0.

Now we consider the case when the control function f(t) is applied at the
right endpoint ξ = `:

∂tU(ξ, t) +A∂ξU(ξ, t) +QU(ξ, t) = 0, (ξ, t) ∈ (0, `)× (0, T ),(25)

u|t=0 = y|t=0 = 0, ξ ∈ (0, `),(26)

y(0, t) = 0, t ∈ (0, T ),(27)

y(`, t) = f(t), t ∈ (0, T ).(28)

In order to solve the system (25)–(28) we construct Q̃(ξ) = Q(`−ξ) and denote

by K(ξ, s) =

(
k1(ξ, s)
k2(ξ, s)

)
the solution to the Goursat problem

∂sK(ξ, s) +A∂ξK(ξ, s) + Q̃K(ξ, s) = 0, 0 < ξ < s ≤ T,(29)

k1|s<ξ = k2|s<ξ = 0, 0 < ξ < T,(30)

k2(0, s) = 0, 0 < s < T,(31)

with

(32) k2(ξ, ξ)− k1(ξ, ξ) =
1

2
(q̃11(ξ) + q̃12(ξ)− q̃21(ξ)− q̃22(ξ)) .

We extend Q̃ to the semi-axis by letting Q̃(2n` ± ξ) = Q̃(ξ) for all n ∈ N.
Let the vector kernel K satisfies the Goursat system (29)–(31) with extended

Q̃(ξ). We use the notation Uf
+

(ξ, t) =

(
uf

+
(ξ, t)

yf
+

(ξ, t)

)
to represent the solution if
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the control is applied at the right end ξ = `. Then the solution of the system
(25)–(28) is given by the following proposition.

Proposition 3.3. If Q ∈ C1(0, `), f ∈ L2(0, T ), and t ≥ 0 then the
system (25)–(28) has a unique generalized solution U ∈ C([0, T ];L2(0, `;R2))

given by

(
uf

+
(ξ, t)

yf
+

(ξ, t)

)
=

(
0
0

)
for t ≤ `− ξ and

(
uf

+
(ξ, t)

yf
+

(ξ, t)

)
=

b t−`+ξ2` c∑
n=0

[(
−1
1

)
f(t− (2n+ 1)`+ ξ)

+

∫ t

(2n+1)`−ξ

(
−k1((2n+ 1)`− ξ, s)
k2((2n+ 1)`− ξ, s)

)
f(t− s)ds

]

−
b t−`−ξ2` c∑
n=0

[(
1
1

)
f(t− (2n+ 1)`− ξ)

−
∫ t

(2n+1)`+ξ

(
k1((2n+ 1)`+ ξ, s)
k2((2n+ 1)`+ ξ, s)

)
f(t− s)ds

]
, `− ξ < t ≤ T.(33)

In the next section we will discuss the forward problem on a star-shaped
network.

3.2. Telegrapher’s Equation on a Star-shaped Network

Consider a star-shaped network Ω = {V,E} with V = {v, γ1, γ2, . . . , γm},
Γ = {γ1, ..., γm}, Γ1 = {γ1} and Γ0 = {γ2, ..., γm}. Each edge ek, k = 1, . . . ,m,
is identified with the interval (0, lk), the vertex v is identified with x = 0 and
γk is identified with x = lk. The transformed system on Ω takes the following
form:

∂tUk(ξ, t) +A∂ξUk(ξ, t) +QUk(ξ, t) = 0, (ξ, t) ∈ (0, `k)× (0, T ),(34)

k = 1, . . . ,m,

uk|t=0 = yk|t=0 = 0, ξ ∈ (0, `k), k = 1, . . . ,m,(35)

αiyi(0, t) = αkyk(0, t), i, k ∈ J(v), t ∈ (0, T ),(36) ∑
k∈J(v)

βkuk(0, t) = 0, t ∈ (0, T ),(37)

y1(`1, t) = f(t), t ∈ (0, T ),(38)

yk(`k, t) = 0, k = 2, 3, . . . ,m, t ∈ (0, T ).(39)
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Here, `k = ξ(lk), αi =
√
Li, and βk =

√
Ck. We put hk(t) := yk(0, t), k =

1, 2, 3, . . . ,m. Using the notations of the previous section we present the solu-
tion of the system (34)–(39) in the form:

U1(ξ, t) = U
h−1
1 (ξ, t) + Uf

+

1 (ξ, t),(40)

Uk(ξ, t) = U
h−k
k (ξ, t), for k = 2, 3, . . . ,m.(41)

Using (24) and (33) for computing U1(ξ, t), we obtain:

u1(0, t) = h1(t) +

∫ t

0
w11(0, s)h1(t− s)ds

+ 2

⌊
t

2`1

⌋∑
n=1

[
h1(t− 2n`1) +

∫ t

2n`1

w11(2n`1, s)h1(t− s)ds
]

− 2

⌊
t−`1
2`1

⌋∑
n=0

[
f(t−(2n+1)`1) +

∫ t

(2n+1)`1

k11((2n+1)`1, s)f(t−s)ds

]
.

(42)

Here w11 is the first component of the solution of the system (20)–(22) with
extended Q1 and k11 is the first component of the solution of the system (29)–
(31) with extended Q̃1. On ek, k = 2, 3, . . . ,m, at v(ξ = 0) we have

uk(0, t) = hk(t) +

∫ t

0
w1k(0, s)hk(t− s)ds

+ 2

⌊
t

2`k

⌋∑
n=1

[
hk(t− 2n`k) +

∫ t

2n`k

w1k(2n`k, s)hk(t− s)ds
]
.

Here w1k is the first component of the solution of the system (20)–(22) with
extended Qk. The vertex matching conditions (36) and (37) give us

(43) hk(t) =
α1

αk
h1(t)(k = 2, 3, . . . ,m)

and

(44) ah1(t) +

∫ t

0
G1(0, s)h1(t− s)ds = F (t)

where, a =
∑m

k=1
βk
αk

, G1(0, s) =
∑m

k=1
βk
αk
w1k(0, s) and

F (t) = −2a

⌊
t

2`k

⌋∑
n=1

[
h1(t− 2n`k) +

∫ t

2n`k

w1k(2n`k, s)h1(t− s)ds
]
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+2
β1

α1

⌊
t−`1
2`1

⌋∑
n=0

[
f(t− (2n+ 1)`1) +

∫ t

(2n+1)`1

k11((2n+ 1)`1, s)f(t− s)ds

]
.

If in lieu of one boundary control f(t) at γ1, m1 boundary controls fk(t) are
applied at the vertices γk, k = 1, 2, 3, . . . ,m1, then the RHS of the equation
(44) takes the form

F (t) =− 2a

⌊
t

2`k

⌋∑
n=1

[
h1(t− 2n`k) +

∫ t

2n`k

w1k(2n`k, s)h1(t− s)ds
]

+
2

α1

m1∑
k=1

βk

⌊
t−`k
2`k

⌋∑
n=0

[
fk(t− (2n+ 1)`k)

+

∫ t

(2n+1)`k

k1k((2n+ 1)`k, s)fk(t− s)ds

]
.

(45)

The coefficients Lk and Ck are strictly positive for all k, so αk =
√
Lk >

0, βk =
√
Ck > 0 ∀k. As a result the coefficient a in equation (44) is positive.

Equation (44) is a delay integral equation for h1, its RHS depends on h1 of the
delayed argument. We will demonstrate now that this equation can be solved
by the method of steps.

Proposition 3.4. Suppose that in the IBVP (34)–(39), fk(t)∈L2
loc(0,∞),

k = 1, 2, . . . ,m1. Then h1 can be computed from (44), and h1 ∈ L2
loc(0,∞).

Proof. Let ∆ := min
k=1,2,...,m

`k. In equation (44), the kernel G1(0, s) is

known and F depends h1 with arguments delayed by at least 2∆ and on fk, k =
1, 2, . . . ,m1. Since fk(s) are known for all s, if h1(s) is known for 0 ≤ s ≤ t−2∆,
then for h1 on the interval [t− 2∆, t] we obtain the Volterra integral equation
of the second kind. Taking into account that h1(t) = 0 for t ≤ ∆, one can solve
equation (44) in steps with a step size of 2∆.

The other controls hk, k = 2, 3, . . . ,m1, can be obtained from the equa-
tion (43). Finally the solution of the system (34)–(39) on the star graph is
given by (40) and (41).

We are now ready to solve the forward problem on a general metric graph.
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3.3. Telegrapher’s Equation on a Metric Graph

The transformed telegrapher’s equations with Kirchhoff’s conditions at
each internal vertex vj take the form:

∂tUk(ξ, t) +A∂ξUk(ξ, t) +QkUk(ξ, t) = 0, (ξ, t) ∈ (0, `k)× (0, T ),(46)

k = 1, . . . , N,

uk|t=0 = yk|t=0 = 0, ξ ∈ (0, `k), k = 1, . . . , N,(47)

αijyi(vj , t) = αkjyk(vj , t), i, k ∈ J(vj), vj ∈ V \ Γ, t ∈ (0, T ),(48) ∑
k∈J(vj)

κkjβkjuk(vj , t) = 0, vj ∈ V \ Γ, t ∈ (0, T ),(49)

y1(γ1, t) = f(t), t ∈ (0, T ),(50)

yk(γk, t) = 0, k = 2, 3, . . . ,m, t ∈ (0, T )(51)

where `k = ξ(lk), αkj =
√
Lk(vj), and βkj =

√
Ck(vj). The new graph is

denoted by Ω̃. Let Uk be the solution of the system (46) – (51) on the edge ek
of Ω̃. If the values of yk(vj) are known for all k and j, one can use (24) and
(33) and the principle of superposition to find the solution U on each edge ek
of Ω̃. Since these values are known for boundary vertices, it remains to find
them on V \ Γ. Consider an edge ek with vertices vi and vj oriented in a way
such that the vertex vi is identified as ξ = 0 and the vertex vj is identified as
ξ = `k. Define operators S±k : L2(0, T ) 7→ C([0, T ];L2(0, `k;R2)) by

(S−k f)(ξ, t) = Uf
−

k (ξ, t) and (S+
k f)(ξ, t) = Uf

+

k (ξ, t).

Here (S−k f)(ξ, t) represents the solution on the edge ek applying the control f(t)
at vi and similarly (S+

k f)(ξ, t) represents the solution on the edge ek applying
the control f(t) at vj . The operators O∓k : C([0, T ];L2(0, `k;R2)) 7→ L2(0, T )
are defined by

O−k (Uk) = uk(vi, ·) and O+
k (Uk) = uk(vj , ·).

Thus we have four combinations of O∓k and S∓k on an edge ek:

(O−k S
−
k )f = uf

−

k (vi, t)

= f(t) +

∫ t

0
w1k(0, s)f(t− s)ds

+ 2

⌊
t

2`k

⌋∑
n=1

[
f(t− 2n`k) +

∫ t

2n`k

w1k(2n`k, s)f(t− s)ds
]
,
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(O+
k S
−
k )f = uf

−

k (vj , t)

= −2

⌊
t−`k
2`k

⌋∑
n=0

[
f(t− (2n+ 1)`k)

+

∫ t

(2n+1)`k

w1k((2n+ 1)`k, s)f(t− s)ds

]
,

(O−k S
+
k )f = uf

+

k (vi, t)

= 2

⌊
t−`k
2`k

⌋∑
n=0

[
f(t− (2n+ 1)`k)

+

∫ t

(2n+1)`k

k1k((2n+ 1)`k, s)f(t− s)ds

]
,

and,

(O+
k S

+
k )f = uf

+

k (vj , t)

= −f(t)−
∫ t

0
k1k(0, s)f(t− s)ds

− 2

⌊
t

2`k

⌋∑
n=1

[
f(t− 2n`k) +

∫ t

2n`k

k1k(2n`k, s)f(t− s)ds
]
.

We introduce now vector h(t) with components hi(t), i = 1, . . . ,M :

hi(t) := y(vi, t), vi ∈ Γ; hi(t) := yki(vi, t), ki = min{k ∈ J(vi)}, vi ∈ V \ Γ,

and put γki := αki/αki, k ∈ J(vi). Now we define an N ×M matrix operator
U such that it has one row for each edge and one column for each vertex. The
entries of U are defined by analogy to the entries of the incidence matrix of
Ω : if there is an edge ek from vi to vj , then Uki = γkiS−k and Ukj = γkjS+

k .
All other entries of U are zero. According to the matching conditions (48), the
k-th entry of the vector Uh is Uk.

Next we define an M ×N matrix operator P such that it has one row for
each vertex and one column for each edge. Its entries are defined by analogy
to the entries of the transpose to the incidence matrix of Ω : if there is an edge
ek from vertex vi to vj , then Pik = κkiβkiO−k and Pjk = κkjβkjO+

k . All other
entries of P are zero. Now PUh is a column vector with M entries. The i-th
entry represents the LHS of equation (49). The M ×M diagonal matrix D is
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defined to choose the interior vertices. That is, Dij = 1 if i = j and vi ∈ V \ Γ
and Dij = 0 otherwise. Then the matching condition (49) can be represented
by

(52) DPUh = 0.

Equation (52) is a system of |V \ Γ| Volterra integral equations of 2nd kind

(53) Ah(t) +

∫ t

o
G(0, s)h(t− s)ds = F (t)

whereA =

a1

. . .

a|Vc|

, h =

 h1
...

h|Vc|

, G =

G1

. . .

G|Vc|

, F =

 F1
...

F|V \Γ|


with

aj =
∑

k∈J(vj)

γkjβkj , Gj(0, s) =
∑

k∈J(vj)

γkjβkjηk(0, s),

and

Fj(t) = −2
∑

k∈J(vj)

γkjβkj

⌊
t

2`k

⌋∑
n=1

[
hj(t− 2n`k) +

∫ t

2n`k

ηk(2n`k, s)hj(t− s)ds
]

+2
∑

k∈J(vj) and k∈J(vr)

βkj

⌊
t−`k
2`k

⌋∑
n=0

[hr(t− (2n+ 1)`k)

+

∫ t

(2n+1)`k

ηk((2n+ 1)`k, s)hr(t− s)ds

]
.

Here we have put hr(t) := yk(vr, t) at the vertex vr on the edge ek such that
k ∈ J(vj) (vr is a neighbouring vertex to vj on edge ek) and ηk are given by

ηk =

{
w1k, if κkj = 1

k1k, if κkj = −1

for any k. Equation (53) is a system of Volterra integral equation where each
equation is of the form

(54) ajhj(t) +

∫ t

0
Gj(0, s)hj(t− s)ds = Fj(t).

In the system (53), the kernel G(0, s) is known and the RHS, F depends on
h with arguments delayed by at least ∆, where ∆ is previously defined. If
h(s) is known for 0 ≤ s ≤ t − ∆ then F (s) is known for 0 ≤ s ≤ t. That
is, if h on [0, t − ∆] is known then one can find h on [t − ∆, t] in steps with
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a step size of ∆. Solving the system (52) we obtain hj at the internal vertex
vj(j = 1, 2, . . . , |V \ Γ|) along an edge ekj incident to vj , where kj = min{k ∈
J(vj)}, vj ∈ V \ Γ. The value of hk on the edge ek, k ∈ J(vj), k 6= kj , that
is, uk(vj , t), k ∈ J(vj), k 6= kj are obtained from the matching condition (48).
Since the boundary controls are known one can find the solution on each edge
ek with vertices vi and vj . The solution of the system (46)–(51) on each edge
ek of the metric graph Ω̃ is given by:

Uk(ξ, t) = U
h−i
k (ξ, t) + U

h+j
k (ξ, t).

It should be noted that if vi or vj is a boundary vertex then hi or hj coincides
with the given boundary controls. Finally the solution of the system (8)–(14)
is given by

Ik(x, t) =
√
Ck uk(ξ(x), t) and Vk(x, t) =

√
Lk yk(ξ(x), t).

We have proved that for L2 boundary control, f ∈ FT , the IBVP (8)–(14)
has a unique solution V, I ∈ C([0, T ];H). In the next section we study control
problems for this system, and it will be convenient to use more smooth con-
trols. More specifically, we consider the control space FT1 := {f = {fk}, fk ∈
H1(0, T ), fk(0) = 0, k = 1, . . . ,m1}. In this case, we can prove existence and
uniqueness of a more regular solution.

To describe these solutions we introduce the following Sobolev-type spaces
of functions on Ω. Let H1 is the space of functions φ on Ω such that φk ∈
H1(ek) ∀k. Let H1

v be a space of functions from H1 continuous on Ω and H1
c

— a space of functions from H1 such that∑
k∈J(vj)

κkjφk(vj) = 0, ∀ vj ∈ V \ Γ.

If f ∈ FT1 , then following the scheme described in this section one can
construct the solution of the IBVP (8)–(14) such that V ∈ C([0, T ];H1

v) and
I ∈ C([0, T ];H1

c). The details of the proof are left to the reader.

4. CONTROL PROBLEMS FOR TELEGRAPHER’S EQUATIONS

In this section we prove the exact controllability of telegrapher’s equa-
tion on metric tree graphs. For that purpose we establish its relations with
controllability of the wave equations for the current. We begin with several
definitions.

Definition 4.1. The system (8)–(14) is called (V, I)-controllable in time
T if, given arbitrary functions ϕ ∈ H1

v, ψ ∈ H1
c one can find f ∈ FT1 such that

V (·, T ) = ϕ and I(·, T ) = ψ.
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Definition 4.2. The system (8)–(14) is called (I, It)-controllable in time
T if, given arbitrary functions φ ∈ H1

c , ψ ∈ H one can find f ∈ FT1 , such that
I(·, T ) = φ and It(·, T ) = ψ.

In this section we assume that all parameters, Ck, Lk, Rk, Gk, are inde-
pendent of x. The following observation is important for constructions of this
section.

Proposition 1. If the system (8)–(14) is (I, It)-controllable in time T,
it is (V, I)-controllable in the same time interval.

Proof. Let us choose arbitrary functions φ ∈ H1
v, ψ ∈ H1

c and prove that
there exists a function f ∈ FT1 such that

(55) V (x, T ) = φ(x), I(x, T ) = ψ(x).

Keeping in mind equation (8), we define function ζ ∈ H by

(56) ζ(x) = − 1

L

[
φ′(x) +Rψ(x)

]
.

Since the system (8)–(14) is exactly (I, It)-controllable in time T, there exists
f ∈ FT1 such that

(57) I(x, T ) = ψ(x), It(x, T ) = ζ(x).

Then, according to (56) and (8), ∂xV (x, T ) = φ′(x). Taking into account
boundary conditions (13) and (14), we obtain (55).

Proposition 1 allows us to reduce the question about controllability of the
telegraph equations on graphs to the corresponding question for the wave equa-
tion of current. If a graph Ω has cycles, the wave or telegraph equation is not
exactly boundary controllable in any time. For the wave equation it was proved
in [8, Ch. 7]; the same argument works also for the telegraph equation. We will
consider the exact controllability question for trees, i.e. graphs without cycles.
To reduce a control problem for the system (8)–(14) to the problem for the wave
equation of current we need to impose some constraints on the coefficients of our
equations. We have already assumed that all Ck, Lk, Rk, and Gk are constant,
i.e. independent of x. It allows to eliminate Vk from the telegraph equations
and rewrite them in the form (3) or (4). To eliminate Vk form the matching
conditions (11) we assume additionally that the coefficients are independent
of k. We denote them by C,L,R, and G. Then the system (8)–(14) can be
transformed to the IBVP for uk(x, t) := Ik(x/

√
CL, t) exp{t(R/2L+G/2C)} :

∂2
t uk − ∂2

xuk + quk = 0, (x, t) ∈ (0, `k)× (0, T ), k = 1, . . . , N,(58)

uk|t=0 = ∂tuk|t=0 = 0, x ∈ (0, `k), k = 1, . . . , N,(59)
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∂ui(vj , t) = ∂uk(vj , t), i, k ∈ J(vj), vj ∈ V \ Γ, t ∈ (0, T ),(60) ∑
k∈J(vj)

κkjuk(vj , t) = 0, vj ∈ V \ Γ, t ∈ (0, T ),(61)

∂uk(γj , t) = gj(t), k ∈ J(γj), j = 1, . . . ,m1, t ∈ (0, T ),(62)

∂uk(γj , t) = 0, k ∈ J(γj), j = m1 + 1, . . . ,m, t ∈ (0, T ).(63)

Here q = RG
CL −

1
4

(
R
L + G

C

)2
, `k =

√
CLlk and ∂ui(vj , ·) is derivative of u at the

vertex vj along the edge ei in the direction outward the vertex. For simplicity
we keep the same notations for the vertices of a new graph and its vertices and
edges: Ω = (V,E). We notice that the lengths of the edges of the new graph
are equal to

√
CL lk, k = 1, . . . , N. The functions gj are connected with fj by

the equalities gj(t) = −Cf ′j(t) − Gfj(t), and therefore, a new set of control

functions g := {gj} belongs to the space FT if f ∈ FT1 .

Definition 4.3. The system (58)–(63) is called exactly controllable in time
T if, given arbitrary functions φ ∈ H1

c , ψ ∈ H, one can find g ∈ FT , such that
u(·, T ) = φ and ut(·, T ) = ψ.

Clearly, the system (8)–(14) is (I, It)-controllable in time T if the system
(58)–(63) is exactly controllable in the same time interval. In the next section
we will find the conditions for exact controllability of the system (58)–(63).
The matching conditions (60), (61) are nonstandard matching conditions, and
the authors are not aware about results on controllability of such systems in
the literature. However, the methods developed in [12] for the wave equation
on graphs with standard matching conditions can be applied to handle the
current situation.

5. CONTROLLABILITY OF THE WAVE EQUATION OF
CURRENT ON METRIC TREES

Our approach to control problem for the system (58)–(63) is based on
the relationship between exact controllability, on one hand, and shape and
velocity controllability on the other hand. First we prove the shape and ve-
locity controllability using the dynamical method — we reduce these problems
to the Volterra integral equations of the second kind. Then we prove exact
controllability using the spectral approach — the method of moments and
properties of exponential families. This approach was used in [12] for tree
graphs, with Dirichlet boundary controls and standard (Kirchhoff–Neumann)
matching conditions. In the present paper we consider Neumann type controls
and nonstandard matching conditions (60), (61).
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Let U be a union of disjoint paths (except for the end points) on Ω. Each
path P (γ) starts from a controlled boundary vertex γ ∈ Γ1 and ends anywhere
on Ω, and ∪γ∈Γ1P (γ) = Ω. In [12] it was proved that such a representation
is possible if and only if the controls act at all or all but one of the boundary
vertices.

The following result concerning controllability of the system (58)–(63) is
valid.

Theorem 5.1. Let Ω be a tree graph where |Γ1| ≥ |Γ| − 1. Let U be
the described above path union representation of Ω : Ω = ∪γ∈Γ1 P (γ), and let
T∗ = maxP∈U lengthP (γ). Then

1. For any T > T∗ and any φ ∈ H1
c , there exists a boundary control g ∈ FT

such that ug(·, T ) = φ(·).

2. For any T ≥ T∗ and any ψ ∈ H, there exists a boundary control g ∈ FT
such that ugt (·, T ) = ψ(·).

The property (1) is called shape controllability and property (2) — veloc-
ity controllability. Similar result was proved in [12] for the wave equation with
Dirichlet boundary controls and standard matching conditions, and all main
steps the proof work for the system (58)–(63). The only difference is that the
system with Neumann boundary control is not necessarily shape controllable
in the critical time interval. This is well known in the case of one interval of
length `, since u(T, T ) = 0 for T ≤ `.

We note that our result is valid for x-dependent potential q|ek ∈ C[0, `k].

Now we will prove that the shape and velocity controllability imply the
exact controllability.

Theorem 5.2. Suppose that the system (58)–(63) is both shape and ve-
locity controllable in time T . Then the system is exactly controllable in time
2T .

Proof. We consider the following eigenvalue problem on the graph Ω:

− ϕ′′(x) + q(x)ϕ(x) = ω2ϕ(x);∑
k∈J(vj)

κkjϕ|ek(vj) = 0 ∀ vj ∈ V \ Γ;

∂ϕ|ei(vj) = ∂ϕ|ek(vj), i, k ∈ J(vj), ∀ vj ∈ V \ Γ;

∂ϕ|Γ = 0.
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It is known that the spectrum {ωn}n∈N of this problem is purely discrete and
the eigenfunctions {ϕn}n∈N form an orthonormal basis in H. The solution
u(·, t) of (58)–(63) can be represented in a form of a series with respect to
{ϕn} (see, for example, [8, 9]).

Control problems are reduced to moment problems using the Fourier
method. The shape controllability is equivalent to the solvability of the mo-
ment problem

(64) an = 〈f, sn〉FT , n ∈ N, sn(t) := ϕn|Γ1 sinωn(T − t).

(see, e.g. [8, Ch. 3]). Solvability means that for any {an} ∈ l2, there exists
f ∈ FT satisfying (64). For simplicity we assume here that ωn 6= 0 ∀n. If
ωn = 0 for some n, we use t to replace ω−1

n sinωn(T − t) in the corresponding
moment equality.

The velocity controllability in time T is equivalent to the solvability of
the moment problem

(65) bn = 〈g, cn〉FT , n ∈ N, cn(t) := ϕn|Γ1 cosωn(T − t).

Denote by f−(t) the odd extension with respect to T of f(t) from [0, T ] to
[0, 2T ] and by g+(t) the even extension of g(t). We observe that the function

h(t) =
f−(t) + g+(t)

2

solves both moment problems

(66) an = 〈h, sn〉F2T , bn = 〈h, cn〉F2T ,

where F2T := L2(0, 2T ;Rm1). It means that the moment problem (66) is
solvable for any sequences {an}, {bn} ∈ l2. Therefore, the family {sn, cn} forms
a Riesz sequence in F2T [8, Ch. 1]. It implies that both families{

ϕn|Γ1 e
±iωn(T−t)

}
and

{
ϕn|Γ1 e

±iωnt}
also form Riesz sequences in F2T , and by Theorem III.3.10 of [8] the system
(58)–(63) is exactly controllable in time 2T.

So we proved that if Ω is a tree and control functions gj act at all or at all
but one of the boundary vertices, the system (58)–(63) is exactly controllable
in any time T greater than 2T∗. This controllability time estimate is sharp, i.e.
it guarantees controllability of any tree and, generally, it cannot be improved.

Taking into account the relations between exact controllability of the
system (58)–(63) and (V, I) controllability of the original telegraph equation,
we can now formulate the main result of the paper.
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Theorem 1. If Ω is a tree, control functions act at all or at all but one
boundary vertices, and the coefficients Ck, Lk, Rk, Gk are independent of k, the
system (8)–(14) is (V, I)-controllable in time T greater than 2T∗

√
CL.

We note that T∗ in this theorem is defined by the path representation
of the original graph, where the system (8)–(14) is defined, not by the graph
corresponding the transformed system (58)–(63).

Acknowledgments. The research of Sergei Avdonin was supported in part by the

National Science Foundation, grant DMS 1909869.

REFERENCES

[1] G. Al̀ı, A. Bartel, and M. Günther, Parabolic Differential-Algebraic Models in Electrical
Network Design. Multiscale Model. Simul. 4 (2005), 3, 813–838.

[2] M. Alam, The Control Problems for the Wave and Telegrapher’s Equations on the Metric
Graphs. Ph. D. thesis, University of Alaska Fairbanks, 2022.

[3] M. Alam, S. Avdonin, and N. Avdonina, Control problems for the telegraph and wave
equation networks. Journal of Physics, Conf. Ser. 1847 (2021), 012015.

[4] S. Avdonin, Control problems on quantum graphs. In: Analysis on Graphs and Its Ap-
plications, pp. 507-521. Proceedings of Symposia in Pure Mathematics, Vol. 77, AMS,
2008.

[5] S. Avdonin and J. Bell, Determining a distributed parameter in a neural cable model via
a boundary control method. Journal of Mathematical Biology 9 (2013), 123–141.

[6] S. Avdonin and J. Bell, Determining a distributed conductance parameter for a neuronal
cable model defined on a tree graph. Inverse Problems and Imaging 9 (2015), 645–659.

[7] S. Avdonin and J. Edward, Controllability for string with attached masses and Riesz bases
for asymmetric spaces. Mathematical Control & Related Fields 9 (2019), 3, 453–494.

[8] S. Avdonin, and S. Ivanov, Families of Exponentials. The Method of Moments in Control-
lability Problems for Distributed Parameter Systems. Cambridge University Press, New
York, London, Melbourne, 1995.

[9] S. Avdonin and S. Nicaise, Source identification for the wave equation on graphs. Inverse
Problems 31 (2015), 095007.

[10] S. Avdonin and V. Mikhaylov, Controllability of partial differential equations on graphs.
Applicationes Mathematicae 35 (2008), 379–393.

[11] S. Avdonin and V. Mikhaylov, The boundary control approach to inverse spectral theory.
Inverse Problems 26 (2010), 045009.

[12] S. Avdonin and Y. Zhao, Exact controllability of the 1-d wave equation on finite metric
tree graphs. Appl. Math. Optim. 83 (2021), 3, 2303–2326.

[13] A. Bressan, Hyperbolic conservation laws: an illustrated tutorial. In: Modeling and op-
timization of flows on networks, Lecture Notes in Math. 2062, pp. 157–245. Springer,
Heidelberg, 2013.
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