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The aim of this paper is to develop some well-adapted formulations for numer-
ically solving the scattering problem of an incident time-harmonic wave by a
cluster of circular cylinders. These formulations are illustrated by numerical
simulations for different physical situations involving various kinds of boundary
conditions.
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1. INTRODUCTION

Multiple scattering by clusters of obstacles is a complex physical and
computational challenge. It indeed results from the nontrivial scattering in-
teractions between the single scatterers that compose the structure, yielding
then to complex patterns of the wave field that are difficult to predict. Re-
lated to this specific behavior emerge some new physical properties of waves
that are used to create some technological devices or to explain some obser-
vations in the nature. From the perspective of numerical methods, quite a
lot of recent computational approaches were developed over the years. We
refer e.g. to [2, 3, 4, 8, 9, 14, 15, 17, 18, 22, 30, 32, 34] where methods are
available to solve scattering by complex structures. In the present paper, we
consider the two-dimensional case where we have M sound-soft, sound-hard or
homogeneous dielectric/penetrable circular cylinders. Even if the shape of the
obstacles is simple, numerically solving this problem for many obstacles and
for large frequencies remains nontrivial. In particular, getting efficient and
accurate computational solutions is of utmost importance for important ap-
plications (electromagnetics, optics, nanophotonics for instance) where a huge
number of diffraction objects are considered to model structured or disordered
media (see e.g. [7, 12, 13, 16, 20, 21, 22, 26, 29, 31, 33]).
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To solve this class of problem, we first consider in Section 2 how to formu-
late the problem after writing the boundary-value problem. The formulation is
developed following the Mie series expansion theory since the obstacles are cir-
cular cylinders. We then use the Dirichlet or Neumann boundary conditions to
write the set of equations to solve. These equations are next suitably truncated
and we explain quickly how to numerically solve them by spectral methods.
We report some numerical examples (scattered/total fields and Radar Cross
Sections) by using the Matlab toolbox µ-diff dedicated to solve such prob-
lems. Then we extend the methodology in Section 3 by using integral equation
techniques in the case of dielectric circular cylinders combined with a reduced
Schur complement, which is a main difference with the full approach that we
developed in [30]. A numerical example is provided to illustrate the method.
We end by a short conclusion in Section 4.

2. MULTIPLE SCATTERING BY A CLUSTER OF M
CIRCULAR CYLINDERS: DIRICHLET AND NEUMANN

BOUNDARY CONDITIONS

2.1. Formulation

Let us consider a homogeneous medium for the whole space R2 in which
M disjoint scatterers Ω−1 , . . . ,Ω

−
M are included. We suppose that each of the

scatterers Ω−p , p = 1, . . . ,M , is a bounded domain in R2 with boundary Γp :=

∂Ω−p . We define Ω− = ∪Mp=1Ω−p as the global domain built from these separated
obstacles. To start, we propose to analyze the case of the scattering problem of
an incident plane wave uinc(x) = eikβ·x (with x = (x, y) ∈ R2), with direction
β, by Ω− (assuming that the time dependence has the form e−iωt and for a
real-valued wavenumber k). Concretely, this means that we wish to solve the
following boundary-value problem: compute the scattered field u solution to

(P)


∆u+ k2u = 0, in Ω+ := R2 \ Ω−,

γ(u) = −γ(uinc), on Γ := ∂Ω−,

lim
||x||→+∞

||x||1/2(∇u · x

||x||
− iku) = 0.

The operator ∆ = ∂2
x + ∂2

y is the Laplace operator and (∆ + k2) is the
Helmholtz operator. The gradient operator is ∇ and ||x|| =

√
x · x, where x ·y

is the scalar product of two vectors x and y of R2. In practice, for sound-soft
obstacles, the boundary operator γ is given by the zeroth-order trace operator,
i.e. the boundary condition writes: u = −uinc on Γ. In the case of sound-hard
obstacles, then the Neumann trace is involved leading to ∂nu = −∂nuinc on Γ,
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where n is the unit normal vector outwardly directed to the bounded scatterers
Ω−p . The last equation is the well-known Sommerfeld’s radiation condition at
infinity which is needed to prove the existence of the solution [11, 27].

One possible and physically direct way to try solving the multiple scat-
tering problem (P) is to interpret it as a collection of M single scattering
problems that are next coupled through multiple scattering phenomena. This
means that we can rewrite equivalently the problem by introducing the scat-
tered fields u1, . . . , uM , considering that each field up is given as the wave
reflected only by the obstacle p illuminated by the combination of the incident
wave and the M − 1 scattered waves uq, for q = 1, . . . ,M , with q 6= p. In
fact it can be proved [6] that the following result holds. We consider u as the
solution to the multiple scattering problem (P). Then, we can show that the
M coupled scattering problems, for p = 1, . . . ,M , given by

(Pp)



∆up + k2up = 0, in R2 \ Ω−p ,

γ(up) = −γ(uinc +

M∑
q=1,q 6=p

uq) on Γp,

lim
||x||→+∞

||x||1/2(∇u · x

||x||
− iku) = 0,

have a unique solution given by (u1, . . . , uM ). In addition, we also have the
following decomposition of the wave field

(1) u =

M∑
p=1

up.

We now consider the specific case where the scatterers Ω−p are circular
cylinders of radius ap and centered at Op = (xp, yp) of a given orthonormal

system of coordinates (
−→
Ox,
−→
Oy). Let us introduce the following notations: for

all p = 1, . . . ,M : bp =
−−→
OOp, bp = |bp|, αp = Angle(Ox,bp) and for all

q = 1, . . . ,M , with q 6= p: bpq =
−−−→
OqOp, bpq = |bpq|, αpq = Angle(Ox,bpq). Let

us consider a point P of the plane described by its cartesian coordinates (x, y),

or alternatively by its polar coordinates: r =
−−→
OP, r = |r|, θ = Angle(Ox, r). In

the sequel, we will also need the local polar coordinates of P in the orthonormal

system of coordinates associated to the p-th scatterer, i.e. rp =
−−→
OpP, rp = |rp|,

θp = Angle(Ox, rp). We define, for all m ∈ Z, the following cylindrical wave
functions that are particular solutions to the Helmholtz equations for r > 0

(2)

{
ψm(r) = H(1)

m (kr)eimθ,

ψ̂m(r) = Jm(kr)eimθ.
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In the above relations, Jn is known as the n-th order Bessel function while

H
(1)
n is the n-th order first-kind Hankel function [1]. For all m ∈ Z, it can be

shown that ψm satisfies the outgoing Sommerfeld radiation condition. We also
need, for all m ∈ Z, the local cylindrical wave functions related to the p-th
scatterer, for p = 1, . . . ,M ,

(3)

{
ψpm(r) = ψm(rp) = H(1)

m (krp)e
imθp ,

ψ̂pm(r) = ψ̂m(rp) = Jm(krp)e
imθp ,

∀ m ∈ Z.

Because up is an outgoing solution to a single scattering problem outside
a circular cylinder, we have the decomposition

(4) up(r) =
∑
m∈Z

cpmψ
p
m(r), ∀ p = 1, . . . ,M, ∀rp > ap.

The complex coefficients (cpm)m∈Z are obtained by simply using the boundary
condition on Γp

(5) γ(up) = −γ(uinc)−
M∑

q=1,q 6=p
γ(uq).

To get a more explicit expression of this relation, we need to write the
fields uinc and uq, for q 6= p, in the local system of coordinates of the scatterer
p. If β = (cosβ, sinβ), then we have [25]

(6) uinc(r) =
∑
m∈Z

dpmψ̂
p
m(r),

where dpm = eikβ·bp eim(π
2
−β). In addition, the separation theorem [25] implies

that, for 1 ≤ p, q ≤M , with p 6= q, we have

(7) ψqm(r) =


∑
n∈Z

Smn(bpq)ψ̂
p
n(r) for rp < bpq,∑

n∈Z
Ŝmn(bpq)ψ

p
n(r) for rp > bpq,

∀ m ∈ Z,

setting Smn(bpq) = ψm−n(bpq) and Ŝmn(bpq) = ψ̂m−n(bpq). The infinite di-

mensional matrices Sp,q = (Smn(bpq))m,n∈Z and Ŝp,q = (Ŝmn(bpq))m,n∈Z are
the so-called separation matrices. Based on (1), (4), (5) and (7), we obtain the
infinite linear systems

(8) Cp + Dp
M∑

q=1,q 6=p
(Sp,q)TCq = Bp ∀ p = 1, . . . ,M,

where Cp = (cpn)n∈Z is the infinite vector containing the coefficients of the cylin-
drical decomposition (4) of up, (Sp,q)T denotes the transpose of the separation
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matrix Sp,q between the obstacles Bp and Bq defined by Sp,q = (Sp,qmn)m∈Z,n∈Z
and Sp,qmn = ψm−n(bpq), Dp = (Dpmn)mn∈Z is the diagonal infinite matrix, with
diagonal terms

(9) Dpm,m =


Jn(kap)

H
(1)
n (kap)

for sound-soft obstacles,

J ′n(kap)

H
(1)′
n (kap)

for sound-hard obstacles,

Bp = −Dpdp, where dp = (dpm)m∈Z is the infinite dimensional vector with
coefficients (6) of the cylindrical incident field decomposition. Another way to
write (8) is

(10) AC = B

where, if I is the identity operator on `2(C),

A =


I D1

(
S1,2

)T
. . . D1

(
S1,M

)T
D2
(
S2,1

)T I . . . D2
(
S2,M

)T
...

. . .

DM
(
SM,1

)T DM
(
SM,2

)T
. . . I

 ,

C =


C1

C2

...
CM

 ,B =


B1

B2

...
BM

 .
(11)

Let us remark that the wave field u can be computed locally to Ωp

(for rp < min
1≤q≤M
q 6=p

bpq) by

(12) u(r) =
∑
m∈Z

cpmψ
p
m(r) +

∑
m∈Z

( M∑
q=1,q 6=p

∑
n∈Z

Snm(bpq)c
q
n

)
ψ̂pm(r),

while the scattering amplitude a(θ) such that

u(r) =
eikr√
r
a(θ) +O

(
1

r

)
,

for r → +∞, is

(13) a(θ) = e−iπ/4
√

2

πk

M∑
p=1

e−ibpk cos(θ−αp)(
∑
n∈Z

ein(θ−π
2

)cpn).

In addition, expressions for the traces and normal derivative traces can be
obtained with respect to the boundary conditions.
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2.2. Computational aspects

For a practical implementation, the linear system (8) must be truncated.
Let us define the number of finite modes for the truncation of the solution
up by 2Np + 1, where Np ∈ N, Cp = (cpn)n=−Np,...,Np as the finite vector with
approximations of the first 2Np + 1 coefficients cpn of the cylindrical decom-
position (6) of up, Sp,q is the (2Np + 1) × (2Nq + 1) finite dimensional sep-
aration matrix involving only the interactions between the first modes of Ω−p
and Ω−q such that Sp,q = (Sp,qmn)−Np≤m≤Np,−Nq≤n≤Nq , S

p,q
mn = ψm−n(bpq), and

Dp = (Dpmn)−Np≤m≤Np,−Nq≤n≤Nq is the diagonal finite matrix, with diagonal
terms Dpm,m = Dpm,m, Bp = −Dpdp, where dp = (dpm)−Np≤m≤Np contains the
2Np+1 first coefficients of the cylindrical incident field decomposition (4). The
M coupled finite dimensional systems writes

(14) AC = B,

with A ∈ CN,N (of size N =
M∑
p=1

(2Np + 1)) ( Ip is the identity matrix of

C2Np+1)

A =


I1 D1

(
S1,2

)T
. . . D1

(
S1,M

)T
D2
(
S2,1

)T I2 . . . D2
(
S2,M

)T
...

. . .

DM
(
SM,1

)T DM
(
SM,2

)T
. . . IM

 ,

C =


C1

C2

...
CM

 ,B =


B1

B2

...
BM

 .
(15)

In practice, a suitable choice of the truncation parameter is given by (see e.g.
[30])

(16) Np =

[
kap +

(
1

2
√

2
ln(2
√

2πkapε
−1)

) 2
3

(kap)
1/3 + 1

]
,

setting [x] as the integer part of a real number x, and ε is the error bound on
the Fourier coefficients. Finally, the numerical solution to the linear system
(14) is obtained by a direct solver for dense linear systems or a preconditioned
Krylov subspace iterative solver [28] combined with fast Toeplitz acceleration
techniques [10]. In this case, a low memory storage of the system can be
considered. The choice mainly depends on the physical configuration [30].
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2.3. Numerical examples

To illustrate the method, we present two numerical examples based on
the Matlab toolbox µ-diff [30]. Similar experiments can be reproduced based
on available scripts that can be run on any computer. We consider the square
box ]−8; 8[2 in which we randomly distribute M = 200 circular scatterers with
radii such that 0.1 ≤ ap ≤ 0.2, for p = 1, ...,M . The incident field is a plane
wave with wavenumber k = 10 and angle of incidence β = 180 degrees. Let us
remain that the circles are not sticky and that a minimal distance of 0.01 is fixed
here between their boundary to avoid such a situation. We report on Figure
1 the results. On Figure 1a, we represent the scattering configuration for the
M = 200 disks. On plots 1b and 1c, we draw the amplitude of the scattered and
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(a) Scattering configuration. (b) Amplitude of the scattered field.

(c) Amplitude of the total field.
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(d) RCS (dB).

Fig. 1 – Scattering by M = 200 sound-soft disks randomly distributed in the
box ] − 8; 8[2. The incident plane is fixed by k = 10 and β = (−1, 0).

total wave fields, respectively. We can observe the strong interaction between
the scatterers (with of course no penetration of the field inside the obstacles).
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Finally, we give the bistatic Radar Cross Section (RCS) in the direction θ on
Figure 1d which allows to analyze where the main lobs related to the diffraction
problem arise. Its definition is given by

RCS(θ) := 10 log10(|a(θ)|2) (dB),

where a is given by (13).

Similarly, with the same parameters (but for a different location of the
scatterers), we report on Figures 2a – d the case of a Neumann problem which
corresponds to the sound-hard case. We observe that the physical behavior of
the wave field is strongly dependent on the kind of boundary condition that
is involved. In particular, the Dirichlet boundary conditions reflects the field
mainly in the forward direction while the field penetrates inside the cluster for
the Neumann case, generating some important backscattering propagation.
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(a) Scattering configuration. (b) Amplitude of the scattered field.

(c) Amplitude of the total field.
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(d) RCS (dB).

Fig. 2 – Scattering by M = 100 sound-hard disks randomly distributed in the
box ] − 8; 8[2. The incident plane is fixed by k = 2π and β = (−1, 0).
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3. MULTIPLE SCATTERING BY A COLLECTION OF
PENETRABLE CYLINDERS

3.1. Physical problem

We consider now M regular bounded and non intersecting circular dielec-
tric ElectroMagnetic (EM) scatterers Ω−p , p = 1, ...,M . They are assumed to
be distributed in R2, with boundary Γp := ∂Ω−p . The global dielectric scatterer
Ω− is then built as the collection of the M separate single dielectric obstacles,
i.e. Ω− = ∪Mp=1Ω−p , with boundary Γ = ∪Mp=1Γp. The homogeneous isotropic

exterior domain of propagation is Ω+ = R2 \ Ω−. We assume that we have a
time-harmonic incident plane wave uinc(x) = eik

+β·x illuminating Ω−, with in-
cidence direction β = (cosβ, sinβ) and time dependence e−iωt, where ω is the
wave pulsation. The exterior wave number is k+ = ω

√
ε0µ0 while the interior

wavenumbers are such that k−p = ω
√
εpµp, defining (ε0, µ0) as (respectively

(εp, µp)) the electric permittivity and magnetic permeability in the vacuum
(respectively in the obstacle Ω−p ). Let us introduce the wavenumber k defined
as piecewise constant with value k+ out of the single obstacles and k− inside.
Then, the problem writes: find the scattered field u+ and the transmitted wave
u− solution to the transmission problem

(17)



∆u− + (k−)2u− = 0, in Ω−,
∆u+ + (k+)2u+ = 0, in Ω+,

u+ − u− = −uinc, on Γ,
∂nu

+ − χ∂nu− = −∂nuinc, on Γ,

lim
||x||→+∞

||x||1/2
(
∇u+ · x

||x||
− ik+u+

)
= 0.

The total physical field utot writes: utot = u+ + uinc, outside and utot = u−

inside the obstacles. In the so-called Transverse-Magnetic mode (or Transverse-
Electric mode), the unknown u := u± stands for the z-component Hz of the
magnetic field H and the transmission condition has to be read with χp =
ε0ε
−1
p , on the boundary Γp, while for TE modes (or TM mode), then u is

linked to the electric field E through u = Ez and the transmission condition
is given by χp = µ0µ

−1
p . We define ε|Γp = εp, µ|Γp = µp, and χ|Γp = χp,

accordingly to the polarization.

3.2. An integral equation formulation of the scattering problem (17)

For system (17), we will use the theory of integral equations to write the
set of equations to numerically resolve [5, 11, 27]. This can be done in the case
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of general obstacles thanks to the theory of potential. Let us remark that such
an approach could also be used for Dirichlet, Neumann and even impedance
boundary conditions.

Let k be a wavenumber. Let G be the two-dimensional free-space Green’s
function defined by

∀x,y ∈ R2,x 6= y, G(x,y) =
i

4
H

(1)
0 (k‖x− y‖).

Integral equations are essentially based upon the Helmholtz integral represen-
tation formula [11]. Indeed, if v is a solution to the Helmholtz equation in
the unbounded connected domain Ω+ and satisfies the Sommerfeld radiation
condition, then we have the following relation

(18)

∫
Γ
−G(x,y)∂nv(y) + ∂nyG(x,y)v(y) dΓ(y) =

{
v(x) if x ∈ Ω+,

0 otherwise.

If v− is now solution to the Helmholtz equation in the bounded domain Ω−,
then we have

(19)

∫
Γ
−G(x,y)∂nv

−(y)+∂nyG(x,y)v−(y) dΓ(y) =

{
0 if x ∈ Ω+,

−v−(x) otherwise.

The integrals on Γ has to be interpreted in the sense of the inner product in
L2(Γ)

〈f, g〉H−1/2,H1/2 =

∫
Γ
fg dΓ,

because both uinc and Γ are regular. Let us define the volume single- and
double-layer integral operators, respectively denoted by L and M, as, ∀x ∈
R2\Γ,

L : ρ → Lρ(x) =

∫
Γ
G(x,y)ρ(y) dΓ(y),

M : λ → Mλ(x) = −
∫

Γ
∂nyG(x,y)λ(y) dΓ(y).

Then we can express v and v− based on (18)-(19) asv(x) = −L(∂nv|Γ)(x)−M(v|Γ)(x), ∀x ∈ Ω+,

v−(x) = L(∂nv
−|Γ)(x) +M(v−|Γ)(x), ∀x ∈ Ω−.

Furthermore, the single- and double-layer integral operators provide some out-
going solutions to the Helmholtz equation [11]. Indeed, for any densities
ρ ∈ H−1/2(Γ) and λ ∈ H1/2(Γ), Lρ and Mλ, and any linear combination
of both these functions yields to outgoing solutions to the Helmholtz equation
in R2\Γ for some boundary conditions. Let us now recall the jump relations
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[11]. For any x in Γ, the trace and normal derivative traces of the operator L
are given by (the signs means that z tends towards x from the exterior or the
interior of Γ)

(20) lim
z∈Ω±→x

Lρ(z) = Lρ(x), lim
z∈Ω±→x

∂nzLρ(z) =

(
∓1

2
I +N

)
ρ(x),

where I is the identity operator, for x ∈ Γ, and where

Lρ(x) =

∫
Γ
G(x,y)ρ(y)dΓ(y), Nρ(x) =

∫
Γ
∂nxG(x,y)ρ(y)dΓ(y).

In the paper, we denote the boundary integral operators by a roman letter (e.g.
L). To solve (17) for general smooth scatterers, we can consider the single-layer
representation of u+ and u−

(21) u+ = L+ρ+ and u− = L−ρ−,

where L+ (respectively L−) is the single-layer operator associated with k+ (re-
spectively k−). The unknown (ρ+, ρ−) is next solution to the integral equation

(22)

(
L+ −L−

I

2
−N+ χ(

I

2
+N−)

)(
ρ+

ρ−

)
=

(
−uinc

∂nu
inc

)
,

that we rewrite

(23) Aρ :=

(
A11 A12

A21 A22

)(
ρ+

ρ−

)
= b :=

(
b1

b2

)
.

The plus and minus superscripts in L and N refers to as the wave numbers k+

and k−. Since Ω− = ∪Mp=1Ω−p is multiply connected, all the integral operators
can be written as blocks structured systems and (23) reads

(24)


A1,1 A1,2 . . . A1,M

A2,1 A2,2 . . . A2,M
...

...
. . .

...
AM,1 AM,2 . . . AM,M




ρ1

ρ2
...
ρM

 =


b1
b2
...
bM

 ,

where Ap,qρq = (Aqρq)|Γp . After some manipulations and using a Schur com-
plement then one gets ρ+ (assuming that we are not on an interior resonance
of one of the dielectric cylinders)

AS,+ρ+ := (L+ + χ−1L−(
I

2
+N−)−1(

I

2
−N+))ρ+

= bS,+ := −uinc + χ−1L−(
I

2
+N−)−1∂nu

inc,

(25)

and ρ− is obtained by: ρ− = AS,−ρ+ + bS,− := (L−)−1(L+ρ+ + uinc).



34 S. M. Alzahrani, X. Antoine, and C. Chniti 12

In the case of circular cylinders, then a numerical approach as the previ-
ous spectral one in Section 2 allows to simplify the expression of the integral
operators and to solve the linear system efficiently by a direct or iterative solver
[30].

3.3. Numerical example

We now provide on Figure 3 an example of computation based on the use
of µ-diff. We consider M = 30 dielectric scatterers (0.5 ≤ ap ≤ 1, εp = 0.2ε0,
µp = µ0, p = 1, ...,M) illuminated by a plane wave of incidence (−1, 0), with
wave number k = 20. On plot 3a, we report the amplitude of the total field
and see that the wave inside the scatterers propagates with a lower frequency,
then producing a complex scattering pattern behind the cluster. In addition,
we report the RCS on Figure 3b showing that there is an energy peak in the
forward direction.

(a) Amplitude of the total field.
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(b) RCS (dB).

Fig. 3 – Scattering by M = 30 dielectric disks randomly distributed in the box
] − 8; 8[2. The incident plane is fixed by k = 20 and β = (−1, 0).

4. CONCLUSION

We explained in this paper how to efficiently solve scattering by a cluster
of separated circular cylinders. The methodology is relatively general and
can handle many kinds of boundary conditions. In particular, using integral
equations provides the access to a wide variety of formulations. We did not
develop much the explanations according to the numerical schemes since they
are available in the Matlab toolbox µ-diff. Because we are using the theory of
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integral equations, all the current developments can be directly applied to the
scattering by spheres for three-dimensional problems, in particular for acoustic
waves even if similar theories exist for the EM and elastic cases [5]. However,
the numerical schemes must be more deeply investigated since the structure
of the matrices defining the linear system to resolve strongly depends on the
spherical harmonics expansions [19].
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