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1. INTRODUCTION

The framework of switched systems [16, 19] has been introduced to model
dynamics that are governed by non-autonomous fields, whose dependence on
time cannot be determined apriori. It can be used to account for time-dependent
perturbations, or phenomena whose dynamics are either not precisely known
or too impractical to include in the model.

An important feature of switched systems is that they describe a family
of non-autonomous dynamics rather than a single one. The properties that
one seeks to prove about a switched system are therefore in the same spirit as
those of ensemble control [1, 2, 10, 14, 15].

The focus of this paper is on the stability properties of linear switched
systems. A linear switched system is characterized by the set M collecting all
the matrices M such that ẋ = Mx is one of the possible dynamics among which
the system switches. An important quantity capturing the asymptotic behavior
of a system is its maximal Lyapunov exponent λ(M ), which is the largest
possible rate of exponential growth of its trajectories (see Section 2 for precise
definitions). The sign of λ(M ) measures the exponential stability or instability
of the switched system associated with M . In particular, exponentially stable
switched systems correspond to strictly negative Lyapunov exponents.

It is not difficult to check that, if a positively homogeneous Lyapunov
function V exists that is common to all the matrices in M , in the sense that
there exists α > 0 such that ∇V (x) ·Mx ≤ −αV (x) for every M ∈ M , then
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λ(M ) ≤ −α. Such an observation is usually called a direct Lyapunov property.
The main contribution that we present in this note is a converse Lyapunov
result for switched system asserting that, under some technical conditions, a
tight version of common Lyapunov function, called Barabanov norm, exists.
Referring to the next sections for precise definitions, let us say that a norm
is extremal for the switched system if it is a common Lyapunov function that
is tight in the sense that α = −λ(M ). A Barabanov norm (a notion first
introduced in [3]) is then an extremal norm such that, starting from every
initial condition x0, there exists an admissible trajectory of the switched system
saturating the differential bound on the Lyapunov function, i.e., whose norm
coincides with t 7→ ‖x0‖eλ(M )t.

In our main result (Theorem 14) we provide necessary and sufficient con-
ditions for the existence of a Barabanov norm in terms of the irreducible com-
ponents of the linear switched system. Our proof adapts some of the ideas
introduced in [20], where a construction of Barabanov norm alternative to the
one give in [3] was proposed. A remarkable contribution of [20] is also to show
how Barabanov norms can be used to prove the local Lipschitz continuity of the
maximal Lyapunov exponent in the set of compact irreducible sets of matrices.

This note is organized as follows: in Section 2 we introduce the framework
of linear switched systems and we discuss how its stability is measured by the
maximal Lyapunov exponent. The notion of extremal and Barabanov norms
is recalled with some examples and basic properties in Section 3. Finally,
Section 4 contains the characterization of linear systems admitting a Barabanov
norm.

2. LINEAR SWITCHED SYSTEMS AND THEIR MAXIMAL
LYAPUNOV EXPONENT

Throughout this note we deal with the simplest switched dynamics,
namely linear and uncontrolled finite-dimensional switched systems. More pre-
cisely, we consider systems (ΣS) of the type

ẋ(t) = A(t)x(t), t ≥ 0, A(·) ∈ S, x(t) ∈ Rn, (ΣS)

where S denotes a set of M -valued functions defined on [0,+∞), with M
a bounded subset of the space Mn(R) of n × n real matrices. Then (ΣS) is
viewed as a family of non-autonomous systems parameterized by A(·) ∈ S. The
elements of S are called signals or switching laws. Each matrix M ∈M (and,
by extension, each associated autonomous linear system ẋ = Mx) is referred
to as a mode of (ΣS).
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From now on the set S is assumed to be positive time-shift-invariant
(shift-invariant for short), i.e., for every h ≥ 0 and A(·) ∈ S, the signal
A(·+ h) : [0,+∞)→M belongs to S.

Let us comment on the assumptions made on M and S. The boundedness
of M ensures that all trajectories of System (ΣS) have at most exponential
growth, with a common upper bound on their growth rates, whereas the shift-
invariance of S encodes the fact that the switching laws obey rules which do
not change over time.

Notice that (ΣS) can be naturally extended to the case of nonlinear sys-
tems (considering nonlinear vector fields as modes) or to infinite-dimensional
systems, as for instance delay system with switching delay [11] or PDEs with
intermittent damping [12].

Several choices of the class S have been considered in the literature:
measurable, piecewise constant, piecewise constant with a prescribed mini-
mal elapsed time between two discontinuities (dwell time, in the engineering
literature), persistent signals, continuous signals, . . . Here, the accent is on
worst-case scenario for the stability of (ΣS) and therefore we allow for the
maximal freedom of the signals with values in M . That is, we set

S = L∞([0,+∞),M )

and we denote by (ΣM ) the system (ΣS) corresponding to such a choice of
S. Solutions to (ΣM ) are considered in the sense of Carathéodory and, given
A ∈ S and 0 ≤ t0 ≤ t1 < +∞, we denote by ΦA(t1, t0) ∈ Mn(R) the flow (or
fundamental matrix ) from time t0 to time t1. In particular, ΦA(t0, t0) = Idn
and d

dtΦA(t, t0) = A(t)ΦA(t, t0) for almost every t ∈ [t0, t1].

The stability of system (ΣM ) can be described through the following
notions.

Definition 1. The switched system (ΣM ) is said to be

• unbounded if there exists a trajectory x(·) of (ΣM ) such that
lim supt→+∞ ‖x(t)‖ = +∞;

• bounded if there exists C > 0 such that, for every A ∈ S and t ≥ 0,
‖ΦA(t, 0)‖ ≤ C;

• attractive if every trajectory of (ΣM ) converges to the origin as time goes
to +∞;

• exponentially stable if there exist C, γ > 0 such that, for every A ∈ S and
t ≥ 0, ‖ΦA(t, 0)‖ ≤ Ce−γt.
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Beside the qualitative behavior described by the properties introduced
in the previous definition, we are interested in the precise quantitative worst-
possible exponential rate, defined as follows: the maximal Lyapunov exponent
of M is

(1) λ(M ) = sup
A∈S

lim sup
t→∞

log ‖ΦA(t, 0)‖
t

.

It is well known (see, e.g., [7, Proposition 5.4.15]) that an equivalent
characterization of the maximal Lyapunov exponent of M is

(2) λ(M ) = lim sup
t→∞

sup
A∈S

log ‖ΦA(t, 0)‖
t

and that

(3) (ΣM ) attractive⇐⇒ (ΣM ) exponentially stable⇐⇒ λ(M ) < 0.

For every µ ∈ R, let us denote by M +µIdn the set {M+µIdn |M ∈M }.
Since Idn commutes with every other n× n matrix, it holds

{t 7→ x(t) | ẋ = Ax, A ∈ L∞([0,+∞),M + µIdn)}
= {t 7→ eµtx(t) | ẋ = Ax, A ∈ L∞([0,+∞),M )}

and hence
λ(M + µIdn) = λ(M ) + µ.

As a consequence, if λ(M ) > 0 then (ΣM ) is unstable, since other-
wise, if (ΣM ) were bounded, the switched system corresponding with M −
(λ(M )/2)Idn would be exponentially stable, which contradict the fact that
λ(M − (λ(M )/2)Idn) = λ(M )/2 > 0.

Hence boundedness of (ΣM ) implies that λ(M ) = 0. However, the con-
verse implication is not true. It suffices to consider

(4) M =

{(
0 1
0 0

)}
to get an unbounded switched system for which λ(M ) = 0.

3. EXTREMAL AND BARABANOV NORMS

We start this section by recalling some direct and converse Lyapunov
properties of linear switched systems.

It is well known (and it can be deduced from a simple comparison argu-
ment) that if there exist a Lipschitz continuous function V : Rn → [0,+∞)
and a constant α > 0 such that

V (x) = 0 if and only if x = 0,
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lim
‖x‖→+∞

V (x) = +∞,

and

(5) ∇V (x) ·Ax ≤ −αV (x), for almost every x ∈ Rn, ∀A ∈M ,

then (ΣM ) is exponentially stable. Such a function V is called common Lya-
punov function for the switched system (ΣM ) and a converse Lyapunov result
holds, namely, if (ΣM ) is exponentially stable then it admits a smooth and
convex common Lyapunov function [18]. Moreover, provided that the convex
hull of M is a polyhedron, the common Lyapunov function can be taken poly-
hedral or polynomial (see [18] and also [5, 9]) albeit with an a priori arbitrarily
large degree [17].

Geometrically, one can restrict by homogeneity the search of a Lyapunov
function to the class of positively homogeneous functions and the existence of
a positive constant α as in (5) is equivalent to the fact that each linear vector
field x 7→ Ax, A ∈ M , points strictly inwards the sublevel sets of V . For V
convex, and up to setting to 1 its order of positive homogeneity, the converse
Lyapunov result ensures that there exists a norm v on Rn satisfying (5). Notice
that the trajectories of (ΣM ) then satisfy

v(x(t)) ≤ e−αtv(x(0)),

meaning, in particular, that λ(M ) ≤ −α.

For a general set of modes M , by applying the previous observation to
M − (λ(M ) + ε)Idn with ε > 0, we deduce that there exist α > 0 and a norm
v = vε on Rn such that

v(x(t)) ≤ e(λ(M )+ε−α)tv(x(0)) ≤ e(λ(M )+ε)tv(x(0)).

This leads to the question of whether a norm v exists that is uniform with
respect to ε in the sense of the following definition.

Definition 2. A norm v in Rn is said to be extremal for M if, for every
trajectory x(·) of (ΣM ) and every t ≥ 0, v(x(t)) ≤ v(x(0))eλ(M )t.

The existence of an extremal norm is not guaranteed even in the case
where M is a singleton {M}, as it follows by considering the case (4) considered
above, for which λ(M ) = 0 and (ΣM ) has unbounded trajectories.

Let us introduce the following useful notion.

Definition 3. The set M is said to be nondefective if (ΣM−λ(M )Id) is

bounded, that is, if there exists C > 0 such that ‖ΦA(t, 0)‖ ≤ Cetλ(M ) for
every t ≥ 0 and every A ∈ S.
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The following characterization can be found, e.g., in [13, Theorem 3] for
the discrete-time case. The continuous-time equivalent is well known but we
were not able to find an explicit proof in the literature and we provide one for
completeness.

Lemma 4. The set M admits an extremal norm if and only if it is non-
defective.

Proof. Assume that M admits an extremal norm v and denote by ‖ · ‖v
the induced matrix norm. Then

(6) ‖ΦA(t+ s, s)‖v ≤ eλ(M )t, s, t ≥ 0, A ∈ Sarb(M ).

We conclude that M is nondefective by equivalence of the norms ‖·‖ and ‖·‖v.
In order to prove the converse, define

v(x) = sup
A∈S, t≥0

e−tλ(M )‖ΦA(t, 0)x‖, x ∈ Rn.

Then v is finite by the nondefectiveness assumption and positive definite be-
cause v(x) ≥ ‖x‖ for every x ∈ Rn. Let us show that v is a norm. The
homogeneity is obvious. The subadditivity follows from the inequality

‖ΦA(t, 0)(x+ y)‖ ≤ ‖ΦA(t, 0)x‖+ ‖ΦA(t, 0)y‖, ∀A ∈ S, t ≥ 0.

In order to show that v is extremal, consider B ∈ S, x0 ∈ Rn, and notice that

v(ΦB(t, 0)x0) = sup
A∈S, s≥0

e−sλ(M )‖ΦA(s, 0)ΦB(t, 0)x0‖

= etλ(M ) sup
A∈S, s≥0

e−(t+s)λ(M )‖ΦA(s, 0)ΦB(t, 0)x0‖

≤ etλ(M ) sup
Ã∈S, s̃≥0

e−s̃λ(M )‖ΦÃ(s̃, 0)x0‖

= etλ(M )v(x0).

As stated in the following lemma, a useful linear algebra criterion to check
the nondefectiveness of a set M of matrices is its irreducibility. Recall that M
is said to be irreducible if the only subspaces that are preserved by all matrices
in M are {0} and Rn. A proof of the lemma can be found in [20, Proposition
3.2(i)].

Lemma 5. If M is irreducible, then it is nondefective.

It is useful to recall the following result on the reduction of a switched
system in irreducible blocks.
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Proposition 6. Let M be a bounded subset of Mn(R) and consider a
finite sequence

(7) {0} = E0 ( E1 ( · · · ( Er−1 ( Er = Rn

such that every Ei is an invariant subspace for M . For every i = 1, . . . , r
denote by ni the dimension of Ei and assume that there exists no invariant
subspace W for M such that Ei−1 ( W ( Ei. Then the integer r is indepen-
dent on the choices of the sequence (7) and there exists P ∈ GLn(R) such that
for every matrix A ∈M one has

(8) PAP−1 =


A11 A12 · · ·
0 A22 A23 · · ·
0 0 A33 A34 · · ·
...

. . .
. . .

. . .

0 · · · · · · 0 Arr

 ,

where each Aij is a (ni−ni−1)×(nj−nj−1) matrix. Moreover, for i = 1, . . . , r,
the set of matrices Mi := {Aii | A ∈ M } is irreducible and unique up to
reordering, i.e., if M1, . . . ,Mr and N1, . . . ,Nr are obtained as above, then
there exist a permutation γ of {1, . . . , r} and P1, . . . , Pr invertible matrices so
that Ni = PiMγ(i)P

−1
i for i = 1, . . . , r.

The reduction into the block form (8) simply follows from the definition
of invariant flag. As for the uniqueness of the Mi (up to reordering), it is a
consequence of the Jordan–Hölder theorem for R-modules (see for instance [8,
Theorem 13.7]). It can be used to characterize sets M which are nondefective
(see [6, Theorem 10]).

The relation between the maximal Lyapunov exponent of M and those
of the blocks Mi is the following:

λ(M ) = max
i=1,...,r

λ(Mi).

(See [4, Lemma 2(c)]).
We now recall the notion of Barabanov norm.

Definition 7. A norm v in Rn is said to be Barabanov for M if it is
extremal for M and, in addition, for every x0 ∈ Rn \ {0}, there exists a
trajectory x(·) of (ΣM ) starting from x0 satisfying v(x(t)) = v(x0)e

λ(M )t, for
every t ≥ 0. Any such trajectory is called an extremal trajectory for v.

The following remarks are immediate consequences of the above defini-
tion.

Remark 8. If v is a Barabanov norm for M , then, for every α ∈ R, v is
also a Barabanov norm for M + αIdn.
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Remark 9. When M = {M} andM =

(
0 0
0 −1

)
, we have that λ(M ) = 0

and the Euclidean norm is clearly extremal, but M admits no Barabanov norm,
since t 7→ x(t) = (0, e−t) is the only trajectory starting from the point (0, 1)
and cannot be extremal by homogeneity of any norm.

Remark 10. An example of singleton M = {M} for which a Barabanov

norm v exists is given by M =

(
0 1
−1 0

)
and v equal to the Euclidean norm.

Remark 11. It is clear that if v is a Barabanov norm, then νv is a Bara-
banov norm as well for every positive ν. Therefore, uniqueness of Barabanov
norms can only hold up to homogeneity.

Even in that sense a Barabanov norm is not in general unique. Consider,
for instance, M = co{M1,M2,M3} with

M1 =

(
−1 0
0 0

)
, M2 =

(
0 0
0 −1

)
, M3 =

(
−a 1
−1 −a

)
.

It is easy to see that if a ≥ 1 then λ(M ) = 0 and any norm vβ(x) :=
max{|x1|, β|x2|} with β ∈ [ 1a , a] is a Barabanov norm.

Example 12. Even when a Barabanov norm exists, it cannot in general
be taken polyhedral, polynomial, nor smooth, as illustrated by the following
example.

Suppose that M = co{M1,M2} with

M1 =

(
0 0
0 −1

)
, M2 =

(
a 3
−0.6 0.7

)
,

where a ∼ 0.8896 is chosen in such a way that λ(M ) = 0. The latter condition
is equivalent to the fact that the trajectory of t 7→ etM2x0 with x0 = (−1, 0)T

touches tangentially the line x1 = 1. In this case, it is easy to see that the
closed curve constructed in Figure 1 by gluing together four trajectories of the
system is the level set Λ of a Barabanov norm for M .

Moreover, the extremal trajectories of the system on Λ converge either to
(1, 0)T or to (−1, 0)T . On the other hand it is possible to construct trajectories
of the system starting from Λ, turning around the origin an infinite number
of times and staying arbitrarily close to Λ. One deduces that any Barabanov
norm for M must have Λ as level set and henceforth is uniquely defined up to
a multiplicative constant. Finally, note that the fact that Λ contains segments
implies that such a Barabanov norm is not strictly convex.

We have the following fundamental result due to Barabanov [3], which can
be seen as a converse nonstrict Lyapunov result (for the system (ΣM−λ(M )Idn)).
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Fig. 1 – Barabanov norm construction for the switched system of Example 12.

Theorem 13. Let M be convex, irreducible, and compact. Then there
exists a Barabanov norm for M .

4. NECESSARY AND SUFFICIENT CONDITIONS ENSURING
THE EXISTENCE OF A BARABANOV NORM

Our main result, presented in this section, is the following characterization
of linear systems admitting a Barabanov norm, which generalizes Theorem 13.

Theorem 14. Let M be compact and convex. Then the following three
conditions are equivalent:

(C1) There exists a Barabanov norm for M ;

(C2) M is nondefective and for every proper invariant subspace W of Rn for
M , λ(M |W ) = λ(M );

(C3) M is nondefective and for every proper invariant subspace W of Rn for
M such that M |W is irreducible, λ(M |W ) = λ(M ).

Proof. Without loss of generality we can assume that λ(M ) = 0.

Assume that (C1) holds true and let us prove (C2). Denote by v a Bara-
banov norm for M . The extremality of v implies, by Lemma 4, that M is
nondefective. Assume by contradiction that λ(M |W ) < 0 for some proper in-
variant subspace W for M . Then for every nonzero initial condition x0 in W
and every trajectory x(·) of (ΣM ) starting from x0, limt→+∞ x(t) = 0. This
contradicts the existence of an extremal trajectory starting from x0.

Notice that (C2) trivially implies (C3).
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Assume now that (C3) holds true and let us prove (C1). Let us associate
with the set M the semigroup of matrices

S = ∪t≥0St, where St = {ΦA(t, 0) | A ∈ S} ∀t ≥ 0.

Following the approach proposed by Wirth in [20], we define, moreover, the
limit semigroup S∞ ⊂Mn(R) as

S∞ = {M |M = lim
k→∞

Mk with Mk ∈ Stk ∀k ∈ N and tk → +∞}.

Notice that S∞ is indeed a semigroup, since for every A ∈ S and every τ, t ≥ 0,
SτΦA(t, 0) ⊂ Sτ+t, which leads to

(9) MΦA(t, 0) ∈ S∞ ∀M ∈ S∞, A ∈ S, t ≥ 0

and to the semigroup property of S∞. We claim, moreover, that S∞ is com-
pact and nonempty. Closedness is easily checked by rewriting S∞ as

S∞ = ∩s>0{ΦA(t, 0) | A ∈ S, t > s},

while boundedness and nonemptiness follow from the boundedness of S, which
is a consequence of Lemma 5.

Define v by

(10) v(x) = max
M∈S∞

‖Mx‖, x ∈ Rn.

We conclude the proof by showing that v is a Barabanov norm. Its
homogeneity is obvious, while its subadditivity follows by noticing that

v(x+ y) ≤ max
M∈S∞

(‖Mx‖+‖My‖) ≤ max
M∈S∞

‖Mx‖+ max
M∈S∞

‖My‖ = v(x)+v(y).

In order to show that v is positive definite (and, hence, a norm), assume by
contradiction that there exists a nonzero vector x ∈ Rn such that v(x) = 0. The
space W spanned by all the vectors ΦA(t, 0)x for A ∈ S and t ≥ 0 is invariant
for all matrices in S . Hence W is invariant for M . Moreover v is 0 at any point
ΦA(t, 0)x for A ∈ S and t ≥ 0, thus its restriction to W vanishes identically.
By Proposition 6, there exists an invariant subspace Z of W such that M |Z
is irreducible. By assumption (C3), we then have that λ(M |Z) = 0. On the
other hand, v|Z ≡ 0, which means, by definition of v and nondefectiveness of
M , that every trajectory of (ΣM ) with initial condition in Z converges to 0. It
follows from (3) that λ(M |Z) < 0, leading to a contradiction. This concludes
the proof that v is positive definite.

We conclude the proof by checking that v is a Barabanov norm on Rn.
Indeed, v is extremal as it follows from its definition and property (9).

Pick now x0 in Rn \ {0}. Consider (Ak)k∈N ⊂ S and (tk)k∈N ⊂ [0,∞)
going to infinity such that v(x) = ‖Mx‖ with M = limk→∞ΦAk

(tk, 0). By the
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Banach–Alaoglu theorem, up to extracting a subsequence, Ak weak-? converges
to some A ∈ S.

We claim that for every t ≥ 0 and k ∈ N the matrix Ek(t) = ΦAk
(t, 0)−

ΦA(t, 0) tends to zero as k goes to infinity. Indeed,

Ėk(s) = Ak(s)Ek(s) + (Ak(s)−A(s))ΦA(s, 0),

for almost every s ∈ [0, t], and Ek(0) = 0. Then,

‖Ek(t)‖ ≤ C
∫ t

0
‖Ek(s)‖ds+ ‖hk‖,

where C = supk∈N ‖Ak‖∞ and hk =
∫ t
0 (Ak(s)−A(s))ΦA(s, 0)ds. The sequence

(hk)k∈N tends to zero by weak-? convergence of Ak to A. The convergence of
ΦAk

(t, 0) to ΦA(t, 0) follows from Gronwall’s lemma.
We claim now that v(ΦA(t, 0)x) ≥ v(x) for every t ≥ 0 (hence, by ex-

tremality of v, v(ΦA(t, 0)x) ≡ v(x)). Indeed,

lim
k→∞

ΦAk(·+t)(tk − t, 0)ΦA(t, 0) = lim
k→∞

ΦAk
(tk, t)ΦA(t, 0)

= lim
k→∞

ΦAk
(tk, 0)ΦAk

(t, 0)−1ΦA(t, 0)

= M,

which implies that MΦA(t, 0)−1 is in S∞. It follows from the definition of
v that v(ΦA(t, 0)x) ≥ ‖MΦA(t, 0)−1ΦA(t, 0)x‖ = v(x) and this concludes the
proof of the theorem.

M3

M4M1

M2

M7

M5

M6

M8

M9

Fig. 2 – Representation of a graph G with 9 vertices. The sinks of the
graph are M1, M5, and M8. A Barabanov norm exists, according to

Theorem 14, if and only if M is nondefective and
λ(M1) = λ(M5) = λ(M8) = λ(M ).

Let us conclude by reformulation in terms of graphs of the statement of
Theorem 14. Given M , let us consider the directed graph G whose vertices
are the subsystems M1, . . . ,Mr introduced in Proposition 6 and for which the
vertex Mi is connected by an edge to the vertex Mj if and only if there exists
A ∈M such that, using the notation of equation (8), Aji 6= 0 (independently
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of the linear system of coordinates). Then we can restate Theorem 14 by saying
that there exists a Barabanov norm for M if and only if M is nondefective
and for every sink Mi of G it holds λ(Mi) = λ(M ). Indeed, a subsystem Mi

corresponds to a proper invariant subspace for M if and only if it is a sink of
G , i.e., there is no edge exiting from Mi (see Figure 2).
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Laboratoire Jacques-Louis Lions
75005 Paris, France

mario.sigalotti@inria.fr


