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In this paper we are interested in the possible values taken by the pair
(λ1(Ω), µ1(Ω)) the first eigenvalues of the Laplace operator with Dirichlet and
Neumann boundary conditions respectively of a bounded plane domain Ω. We
prove that, without any particular assumption on the class of open sets Ω, the
two classical inequalities (the Faber-Krahn inequality and the Weinberger in-
equality) provide a complete system of inequalities. Then we consider the case
of convex plane domains for which we give new inequalities for the product λ1µ1.
We plot the so-called Blaschke–Santaló diagram and give some conjectures.
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sets, sharp spectral inequalities.

1. INTRODUCTION

Let Ω ⊂ R2 be an open and bounded set in the plane and let us de-
note by λ1(Ω) its first eigenvalue for the Laplacian-Dirichlet (see below for the
precise definition) and µ1(Ω) its first non-trivial eigenvalue for the Laplacian-
Neumann. Does there exist a domain Ω of area, say π satisfying λ1(Ω) = 20
and µ1(Ω) = 3 ? Among them, is there a convex domain? For that kind of
question, it is very convenient to plot the so-called Blaschke–Santaló diagrams
defined by

(1) E = {(x, y) where x = |Ω|λ1(Ω), y = |Ω|µ1(Ω), Ω ∈ O},

and

(2) EC = {(x, y) where x = |Ω|λ1(Ω), y = |Ω|µ1(Ω), Ω ∈ K}

where O is the class of open bounded subsets of Lipschitz boundary of R2 and
K is the class of open bounded convex sets of R2 with non-empty interior.
These diagrams describe all the possible values of the couple (λ1, µ1). This
kind of diagram has been sintroduced by W. Blaschke in convex geometry and
intensively studied by L. Santaló for quantities like the area, the perimeter,
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the diameter, the inradius... For spectral quantities, this kind of work is more
recent, let us mention for example some diagrams that have been recently es-
tablished for quantities like (λ1(Ω), λ2(Ω)) (the Dirichlet eigenvalues) in [3], [7],
(µ1(Ω), µ2(Ω)) (the Neumann eigenvalues) in [3], (λ1(Ω), T (Ω)) (where T (Ω) is
the torsion of Ω ∗) in [4], [8] or [23], (P (Ω), λ1(Ω)) (here P (Ω) is the perimeter)
in [14].

Let us now fix the notations: the Laplace-Dirichlet problem on Ω consists
in solving the eigenvalue problem{

−∆u = λu in Ω

u = 0 on ∂Ω.

For Ω open and bounded, the spectrum is discrete and the sequence of eigen-
values (counted with their multiplicities) go to infinity

0 < λ1(Ω) ≤ λ2(Ω) ≤ · · · → +∞.

The Laplace-Neumann eigenvalue problem on Ω consists in solving the
eigenvalue problem {

−∆u = µu in Ω

∂νu = 0 on ∂Ω.
where ν stands for the outward unit normal at the boundary. We assume
here Ω to be a Lipschitz bounded open set. Since the Sobolev embedding
H1(Ω)→ L2(Ω) is compact in that case, the spectrum of the Neumann problem
is discrete and the eigenvalues (counted with their multiplicities) go to infinity.
The first eigenvalue is zero, associated to constant functions.

0 = µ0(Ω) ≤ µ1(Ω) ≤ µ2(Ω) ≤ · · · → +∞.

We denote by µ1(Ω) the next or first non-trivial eigenvalue. Note that µ1(Ω) =
0 if and only if Ω is disconnected. We recall the variational characterization of
the Neumann eigenvalues, that for the first non zero eigenvalue reads as follows

(3) µ1(Ω) = min
{∫

Ω |∇u|
2dx∫

Ω u
2dx

: u ∈ H1(Ω),

∫
Ω
udx = 0

}
,

and the minimum is attained at the eigenfunctions associated to µ1(Ω).

In Section 2, we describe the diagram E defined in (1). It turns out that
it is (almost) completely characterized by the two classical inequalities: the
Faber-Krahn inequality, see [12], [21]:

(4) ∀Ω∈ O, |Ω|λ1(Ω) ≥ |B|λ1(B)

∗The torsion function of the set Ω can be defined by T (Ω) := sup
w∈H1

0 (Ω)

(
∫
Ω wdx)2∫

Ω |∇w|2dx
.
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where B is any ball and the Weinberger inequality, see [31], [28]

(5) ∀Ω ∈ O, |Ω|µ1(Ω) ≤ |B|µ1(B),

where we define O to be the class of open bounded subsets of Lipschitz bound-
ary of R2.

When we say completely characterized, we mean that it is a complete
set of inequalities: in other words, the closure of the diagram E coincides
actually with the strip [|B|λ1(B),+∞) × [0, |B|µ1(B)]. We will denote by
A = (|B|λ1(B), |B|µ1(B)) = (πj2

0,1, πj
′2
11) the upper left vertex corresponding

to the ball, where j0,1 ∼ 2.405 is the first zero of the Bessel function J0 while
j′11 ∼ 1.841 is the first zero of the derivative of the Bessel function J1, see e.g.
[15].

Then we study the diagram EC defined in (2). It is more complicated, but we
give two explicit curves (hyperbola) that bound the diagram from above and
from below. In particular, coming back to the question raised at the beginning
of this Introduction, we can answer:

• yes, it could exist a plane domain of area π satisfying λ1(Ω) = 20 and
µ1(Ω) = 3. Indeed, the point (20, 3) belongs to the strip [|B|λ1(B),+∞) ×
[0, |B|µ1(B)], but since we are only able to prove that this strip is the closure
of the set E , we cannot claim that it corresponds to a set Ω.

• no, there does not exist a convex domain satisfying this.

2. THE DIAGRAM FOR THE GENERAL CASE

2.1. Convergence of eigenvalues

It will be useful in the sequel to have simple criteria ensuring convergence
of the Neumann and Dirichlet eigenvalues for a sequence of domains. In the
Dirichlet case, the situation is well understood and we can state for example
the following theorem, see [17] or [15].

Theorem 2.1 (Sverak). Let Ωn ⊂ R2 be a sequence of bounded open sets
converging for the Hausdorff metric to an open set Ω. Assume that the number
of connected components of the complement set of Ωn is uniformly bounded,
then the Dirichlet eigenvalues converge:

∀k, λk(Ωn)→ λk(Ω).

In the Neumann case, we need to put much stronger assumption on the
sequence of domains Ωn. A classical one in that context is the uniform cone
condition, see [1], [9], [17]:
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Definition 2.2. Let y be a point in RN , ξ a unit vector and ε a positive
real number. Let C(y, ξ, ε) be the cone of vertex y (without its vertex), of
direction ξ and dimension ε defined by

C(y, ξ, ε) = {z ∈ RN , (z − y, ξ) ≥ cos(ε)|z − y| and 0 < |z − y| < ε}.

An open set Ω is said to have the uniform (ε)-cone property if

∀x ∈ ∂Ω, ∃ξx unit vector such that : ∀y ∈ Ω ∩B(x, ε) C(y, ξx, ε) ⊂ Ω.

Now we work with a sequence of sets Ωn which all have the uniform (ε)-
cone property for the same ε. An equivalent definition is to say that the
domains Ωn are all uniformly Lipschitz, with the same Lipschitz constant. Let
D be a ball containing all the sets Ωn (that can be seen as an assumption).
It is well known that the cone property (or the Lipschitz regularity) ensures
an existence of an extension operator Pn : H1(Ωn) → H1(D). The important
point proved by D. Chenais in [9] is the following:

Lemma 2.3. If the sets Ωn have the uniform (ε)-cone property (for the
same ε), then there exists a constant M such that ‖Pn‖ ≤M .

We can deduce the following convergence theorem for the first Neumann
eigenvalue:

Theorem 2.4. Let Ωn ⊂ D be a sequence of open sets having the uniform
ε-cone property (for the same ε). Let us assume that there exists an open
set Ω such that χΩn (the sequence of corresponding characteristic functions)
converges in L1(D) to χΩ. Then

µ1(Ωn)→ µ1(Ω).

Actually, the convergence holds true for all eigenvalues, but here we only
need convergence of µ1, thus we state it in that case.

Proof. Since χΩn → χΩ, we have |Ωn| → |Ω| and then, we can assume
|Ωn| ≥ |Ω|/2. Let us observe first that, according to Weinberger inequality (5),
the sequence µ1(Ωn) is bounded by a constant M1 = 2πj′11

2/|Ω|. Thus, we
can assume that, up to a subsequence that we still index by n, we have µ1(Ωn)
converges to some number µ. Let us denote by un the normalized eigenfunction
associated to µ1(Ωn) i.e.,∫

Ωn

u2
ndx = 1,

∫
Ωn

|∇un|2dx = µ1(Ωn),

∫
Ωn

undx = 0

and ũn = Pn(un) its extension to D through the extension operator Pn.
From Lemma 2.3, we get

‖ũn‖H1(D) ≤M‖un‖H1(Ωn) = M
√

1 + µ1(Ωn) ≤M
√

1 +M1.
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Therefore, there exists a function u∞ ∈ H1(D) and a subsequence, still denoted
with the same index, such that ũn converges strongly in L2(D) and weakly in
H1(D) to u∞. Let us consider a fixed v ∈ H1(D), passing to the limit in the
variational formulation∫

Ωn

∇un.∇v dx =

∫
D
χΩn∇ũn.∇v dx = µ1(Ωn)

∫
D
χΩn ũnv dx

yields ∫
Ω
∇u∞.∇v dx = µ

∫
Ω
u∞v dx.

Moreover, passing to the limit in the same way provides the following identities∫
Ω
u∞ dx = 0

∫
Ω
u2
∞ dx = 1

this shows that u∞ is neither zero, nor constant. It follows that µ is a nontrivial
Neumann eigenfunction of Ω and therefore

(6) µ1(Ω) ≤ lim inf µ1(Ωn).

On the other hand, let u be the normalized eigenfunction associated to µ1(Ω),
P (u) its extension to D and let us consider vn the restriction of P (u) to Ωn

(which is a function in H1(Ωn)). We denote by Mn its mean value defined as
1
|Ωn|

∫
Ωn
vndx. We observe that we have the following convergences:

Mn →
1

|Ω|

∫
Ω
udx = 0,

∫
Ωn

v2
n dx→

∫
Ω
u2 dx = 1

and ∫
Ωn

|∇vn|2 dx→
∫

Ω
|∇P (u)|2 dx =

∫
Ω
|∇u|2 dx = µ1(Ω).

Thus taking vn−Mn as a test function in the variational formulation of µ1(Ωn)
and passing to the limit provides

lim supµ1(Ωn) ≤ lim sup

∫
Ωn
|∇vn|2dx∫

Ωn
(vn −Mn)2dx

= µ1(Ω)

together with (6) this provides the expected continuity.

2.2. The diagram E

We recall that the diagram we want to plot is

E = {(x, y) where x = |Ω|λ1(Ω), y = |Ω|µ1(Ω), Ω ⊂ R2}
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where Ω is any bounded, open set suitably smooth (e.g. Lipschitz) in order
that the Neumann spectrum is well defined. Faber-Krahn (4) and Weinberger
(5) inequalities imply that the upper left vertex of the diagram is the point

A = (|B|λ1(B), |B|µ1(B)) = (πj2
0,1, πj

′
1,1

2
).

We begin with the following lemma that is based on homogenization theory:

Lemma 2.5. Let (x0, y0) ∈ E, then the half line {(x, y0), x ≥ x0} ⊂ Ē,
where Ē is the closure of E.

Proof. For the proof, we recall the construction of a sequence of perforated
domains introduced by Cioranescu-Murat in [10] (we give the statement in two
dimensions, but it is true in any dimension with a different normalization). Let
C0 > 0 be fixed. For every ε > 0, consider the ball Tε = Brε(0) with a radius
given by rε = exp(−C0/ε

2). Now we consider the perforated domain

(7) Ωε = Ω \ ∪z∈Z2(2εz + T ε) .

Note that the removed holes form a periodic set in the plane, with period 2ε.
Now it is proved in [10] that the torsion functions on the domains Ωε (that is
the solution of −∆u = 1 in Ωε and u = 0 on the boundary) converge weakly
in H1

0 (Ω) (and strongly in L2(Ω)) to the solution u∗ of{
−∆u∗ + π

2C0
u∗ = 1 in Ω

u∗ ∈ H1
0 (Ω) .

.

As a consequence we have (see [15, Theorem 2.3.2])

λ1(Ωε)→ λ1(Ω) +
π

2C0

while a simple computation of the total area of the holes provides |Ωε| → |Ω|.
Therefore, x(Ωε)→ x0 + π|Ω|

2C0
and C0 being arbitrary, we can attain any value

of x greater than x0.

On the other hand, the behavior of the Neumann eigenvalues is simpler:
it can be proved, see [30] that µ1(Ωε) → µ1(Ω), therefore y(Ωε) → y0, this
concludes the proof of Lemma 2.5.

Following Lemma 2.5, we need now to have a precise look on the left of
the diagram. For that purpose, we prove:

Lemma 2.6. Let η > 0 be given, then there is a path in E connecting the
points A = (|B|λ1(B), |B|µ1(B)) corresponding to the ball with the point C =
(|B|λ1(B), 0) that is completely contained in the rectangle [|B|λ1(B), |B|λ1(B)+
η]× [0, |B|µ1(B)].
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Proof. The proof is based on an explicit construction together with a
sequence of domains à la Courant-Hilbert whose Neumann eigenvalue goes to
zero while its Dirichlet eigenvalue goes to the eigenvalue of the ball.

Let us start with the unit disc D and, for a given (small) number ε > 0,
let us denote by Ωε the union of the unit disc with the rectangle (0, 1 + 2ε)×
(−ε6/2,+ε6/2) and the small disc of center (1+2ε, 0) and radius ε, see Figure 1.

× ×

1

ε
ε6

ε

Fig. 1 – The domain Ωε.

The area of Ωε is less than π(1 + ε2) + ε7 while, by monotonicity of
Dirichlet eigenvalues with respect to inclusion λ1(Ωε) ≤ λ1(D). Therefore, if
we choose ε such that ε2 ≤ η/(2πλ1(D)) we ensure x(Ωε) ≤ |B|λ1(B) + η.

Now, in a first step, we continuously deform the unit disc up to arriving on
Ωε. We can assume that the sequence we make is increasing (for inclusion) and
we can also do it by preserving the uniform ε-cone property (see Definition 2.2)
ensuring continuity of the Neumann eigenvalue and of the Dirichlet eigenvalue.
This continuous deformation makes a first continuous path between the point
A and the point Aε = (x(Ωε), y(Ωε)) and by monotonicity, this path stays
inside the rectangle [|B|λ1(B), |B|λ1(B) + η]× [0, |B|µ1(B)].

In a second step, we make ε goes to zero. By Sverak’s theorem 2.1, we
infer λ1(Ωε) → λ1(D) continuously (and the same for the areas), so x(Ωε) →
πλ1(D) continuously. The Neumann eigenvalue µ1(Ωε) also varies continuously,
according to Theorem 2.4 since for each fixed ε, the family of domains satisfy
a uniform cone condition in a neighborhood of Ωε. Now, let us consider, as a
test function, the following continuous function v defined on Ωε and depending
only on the variable x:

vε(x) =


−1 in D

aε(x− 1)− 1 in the channel
εaε − 1 in the small disc of radius ε

where we choose aε in order to have
∫

Ωε
vεdX = 0. A simple computation
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provides aε ∼ 1/ε3 when ε→ 0. Moreover,∫
Ωε

v2
ε(X)dX ≥

∫
D
v2
ε(X)dx = π,

therefore, the variational characterization (3) of µ1 yields

µ1(Ωε) ≤
ε7a2

ε

π
→ 0 when ε goes to 0.

This finishes the proof.

From Lemmas 2.5 and 2.6, we infer:

Theorem 2.7. The closure of the diagram E defined by

E = {(x, y) where x = |Ω|λ1(Ω), y = |Ω|µ1(Ω), Ω ⊂ R2}

is the strip [|B|λ1(B),+∞)× [0, |B|µ1(B)] (where B is any disc).

Remark 2.8. It is not clear to see whether the set E is closed in the
general case, see Theorem 3.1 below for the convex case. In the case of purely
Dirichlet eigenvalues (the diagram (λ1(Ω), λ2(Ω)) in [7] the authors can prove
the closeness of the diagram using arguments of weak γ-convergence that are
not true for Neumann eigenvalues. The difficulty comes mainly from the weird
behavior of Neumann eigenvalues with respect to set variations.

Remark 2.9. For sake of simplicity, we have stated all the previous results
for plane domains. It is straightforward to extend these results in any dimen-
sion. In particular Theorem 2.7 remains true in any dimension. We leave the
details to the reader.

3. THE DIAGRAM FOR THE CONVEX CASE

3.1. Qualitative properties

As we will see, the diagram EC corresponding to plane convex subsets
cannot be found explicitly, but we are going to give some qualitative properties
and bounds allowing to have a more precise idea of this diagram. We will also
give some numerical experiments. We define K to be the class of open bounded
convex sets of R2 with non-empty interior.

Let us start with a topological property (difficult to prove without the
convexity assumption as mentioned in Remark 2.8).

Theorem 3.1. The set EC is closed.
In particular, the shape optimization problems

min{µ1(Ω),Ω∈ K, λ1(Ω) = x0, |Ω| = A0}
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and
max{µ1(Ω),Ω∈ K, λ1(Ω) = x0, |Ω| = A0}

have a solution.

Proof. Let (xn, yn) be a sequence of points in EC corresponding to a
sequence of (bounded) convex open sets Ωn. We assume that (xn, yn) converges
to some point (x0, y0). By scale invariance of the coordinates x and y (namely x
and y are invariant by homothety: x(tΩ) = x(Ω)), we can assume without loss
of generality, that the diameter of Ωn is fixed, equal to 1. Then the sequence
Ωn stays in a fixed ball of radius 2 and from the Blaschke selection theorem (or
compactness property of the Hausdorff convergence, see [17, Theorem 2.2.25])
we know that, up to a subsequence, Ωn converges (for the Hausdorff metric or
for characteristic functions) to some convex open set Ω. Moreover, we will see
below in Theorem 3.3 that for all n, xnyn > π4/4, therefore y0 6= 0 and Ω is
not the empty set. We immediately deduce the following convergences:

• |Ωn| → |Ω| by convergence of the characteristic functions,

• λ1(Ωn)→ λ1(Ω) by Sverak Theorem 2.1.

For the Neumann eigenvalue, let us consider a fixed compact ball B included
into the limit domain Ω. By a classical stability result, see [17, Proposition
2.2.17], we know that B ⊂ Ωn for n large enough. Therefore, following [17, The-
orem 2.4.4], we see that all the convex sets Ωn satisfy a uniform ε-cone property
(with the same ε depending only on the radius of B). Using Theorem 2.4 we
conclude that µ1(Ωn) → µ1(Ω). Therefore (x0, y0) = (|Ω|λ1(Ω), |Ω|µ1(Ω)) ∈
EC proving the closeness of this set.

The result on the existence of minimizers or maximizers follows immedi-
ately from the closeness (by taking minimizing or maximizing sequences).

Remark 3.2. It is interesting to note that numerical simulations of Section
3.2 suggest that the diagram EC is simply connected and even horizontally and
vertically convex (which is a stronger statement): indeed, one can conjecture
that the diagram EC is exactly the set of points located between the curves of
two continuous and strictly decreasing functions (see Figure 2). These curves
are defined as the images of the solutions of the minimum and the maximum
problem presented at Theorem 3.1. The reader should be aware that proving
such properties can be very challenging, especially when dealing with diagrams
in the class of convex sets, we refer for example to [3, Conjecture 5] for the
couple (λ1(Ω), λ2(Ω)) (the Dirichlet eigenvalues) and [23, Open problem 2] for
the couple (λ1(Ω), T (Ω)) (where T (Ω) is the torsion). A strategy based on some
perturbation lemmas and judicious choices of continuous paths constructed
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via Mikowski sums has been introduced in [14]. Unfortunately, proving such
perturbation lemmas seems to be quite challenging for the involved functionals
λ1 and µ1. As for the case of open sets, we point out the Open Problem 3
stated in [4] and very recently solved in [8].

Now we want to bound the diagram EC by two hyperbola. To that pur-
pose, we introduce and study the following scaling invariant functional

F (Ω) := x(Ω)y(Ω) = |Ω|2λ1(Ω)µ1(Ω).

By Theorem 2.7, we have for general open sets inf F (Ω) = 0 and supF (Ω) =
+∞. Now, for planar convex sets, we have:

Theorem 3.3.

∀Ω∈ K, π4

4
< F (Ω) < 9π2j2

01 .

Proof. Lower bound
We denote by A(Ω) = A the area of a convex domain, r(Ω) = r its inradius and
D(Ω) = D its diameter. For the lower bound, we have by Hersch inequality
[19]:

λ1(Ω) ≥ π2

4
× 1

r2
,

and by Payne-Weinberger inequality [24]

µ1(Ω) >
π2

D2
,

then, we deduce F (Ω) ≥ π4A2

4r2D2 . Now, to estimate the geometric quantity in
the right-hand side, we use a result, by M. Hernandez-Cifre and G. Salinas
[18], see also [11] that can be written:

A ≥ r
√
d2 − 4r2 + r2

(
π − 2 arccos

(
2r

d

))
.

This implies

F (Ω) >
π4

4
×
(
A

dr

)2

≥ π4

4
×

(
r
√
d2 − 4r2 + r2

(
π − 2 arccos

(
2r
d

))
dr

)2

=
π4

4
×

√1−
(

2r

d

)2

+
r

d

(
π − 2 arccos

(
2r

d

))2

≥ min
x∈
(

0, 1
4

] π4

4
×
(√

1− x2 +
x

2
(π − 2 arccos (x))

)2
=
π4

4
.
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Upper bound
For the upper bound we first give a recent result obtained in [16] and we give
the proof by sake of completeness:

Proposition 3.4. Let Ω be any smooth and bounded open set in the
plane. Let us denote by A its area and w its minimal width (the minimal
distance between two parallel lines enclosing Ω). Then

(8) µ1(Ω) ≤ π2w2

A2
,

with equality for rectangles.

Proof. Let us consider the minimal strip enclosing Ω. Without loss of
generality, we can take this strip as horizontal limited by the two lines y = 0
and y = w. Let us now consider the family of rectangles (a, a+A/w)× (0, w)
of area A = |Ω|. Let us denote by L = A/w the length of the rectangle. Let
us now consider a potential test function defined as

va(x, y) =


−1 if x ≤ a

cos
(
π
L (x− a+ L)

)
if a < x < a+ L

+1 if x ≥ a+ L.

For negative values of a with sufficiently large |a|, Ω is contained in the region
x ≥ a + L thus

∫
Ω va(x, y)dX > 0, while, for sufficiently large and positive

values of a,
∫

Ω va(x, y)dX < 0. Therefore, by continuity, there exists a value
of a for which

∫
Ω va(x, y)dX = 0. We choose this value and estimate µ1(Ω)

from above thanks to this test function va. Denoting by Ra the rectangle
(a, a + L) × (0, w) and using the fact that va is constant outside Ra, we have
on the one-hand∫

Ω
|∇va|2dX =

∫
Ω∩Ra

|∇va|2dX ≤
∫
Ra

|∇va|2dX =
π2w2

A2

A

2
.

On the other hand∫
Ω
v2
adX =

∫
Ra

v2
adX −

∫
Ra\Ω

v2
adX +

∫
Ω\Ra

v2
adX

≤
∫
Ra

v2
adX − |Ra \ Ω|+ |Ω \Ra| =

A

2
.

where we used the fact that |Ra \ Ω| = |Ω \ Ra| because Ω and Ra have the
same area. The estimate (8) follows.

We come back to the proof of the upper bound. We combine (8) with the
inequality

λ1(Ω) ≤ j2
01

r2
≤ 9j2

01

ω2
,
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the first inequality comes from the inclusion of the incircle into Ω and the second
geometric inequality, saturated by the equilateral triangle, can be found in the
classical book of convex geometry [20]. Thus, we infer

F (Ω) = |Ω|2λ1(Ω)µ1(Ω) ≤ π2ω2 × 9j2
01

ω2
= 9π2j2

01.

The following inclusion is a direct corollary of Theorem 3.3.

Corollary 3.4.1. The set EC is contained in the region{
(x, y)| x ≥ |B|λ1(B) and

π4

4x
< y ≤ min

(
|B|µ1(B),

9π2j2
01

x

)}
,

where B is any disc of R2.

Let us finish this part by a remark on the behavior of the diagram near
the point A corresponding to discs.

Proposition 3.5. The diagram EC has a vertical tangent at the point
A = (x(B), y(B)).

To see this property, it suffices to consider a sequence Ωε of convex do-
mains, converging to the unit disk D and such that the ratio

πµ1(D)− |Ωε|µ1(Ωε)

|Ωε|λ1(Ωε)− πλ1(D)
→ +∞.

For that purpose, the sequence of ellipses, centered at the origin and with semi-
axis of length 1 + ε and 1 is convenient. Indeed, it is known, see for example
[6, Section 7.2.6] and [6, Remark 7.39] that we have the following estimates

|Ωε|λ1(Ωε)− πλ1(D) ≤ C1ε
2

and
πµ1(D)− |Ωε|µ1(Ωε) ≥ C2ε,

for some positive constants C1 and C2. The result follows.

3.2. Some numerical experiments and conjectures

In this section, we use numerical experiments to obtain more information
on the diagram EC and state some interesting conjectures.

We want to provide a numerical approximation of the diagram EC . To do
so, a natural idea is to generate a large number of convex sets (more precisely
polygons) for each we compute the first Dirichlet and Neumann eigenvalues
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via a classical finite element method. Nevertheless, the task of (properly)
generating random convex polygons is quite challenging and interesting on
its own. The main difficulty is that one wants to design an efficient and fast
algorithm that allows to obtain a uniform distribution of the generated random
convex polygons. For more clarification, let us discuss two different (naive)
approaches:

• one easy way to generate random convex polygons is by rejection sam-
pling. We generate a random set of points in a square; if they form a convex
polygon, we return it, otherwise we try again. Unfortunately, the probability
of a set of n points uniformly generated inside a given square to be in convex

position is equal to pn =

(
(2n−2

n−1 )
n!

)2

, see [29]. Thus, the random variable Xn

corresponding to the expected number of iterations needed to obtain a convex
distribution follows a geometric law of parameter pn, which means that its

expectation is given by E(Xn) = 1
pn

=

(
n!

(2n−2
n−1 )

)2

. For example, if N = 20,

the expected number of iterations is approximately equal to 2.109, and since
one iteration is performed in an average of 0.7 seconds, this means that the
algorithm will need about 50 years to provide one convex polygon with 20
sides.

• Another natural approach is to generate random points and take their
convex hull. This method is quite fast, as one can compute the convex hull
of N points in a O(N log(N)) time (see [2] for example), but it is not quite
relevant since it yields to a biased distribution.

In order to avoid the issues stated above, we use an algorithm presented
in [25], that is based on the work of P. Valtr [29], where the author computes
the probability of a set of n points uniformly generated inside a given square
to be in convex position and remarks (in Section 4) that the proof yields a
fast and non-biased method to generate random convex sets inside a given
square. We also refer to [25] for a nice description of the steps of the method
and a beautiful animation where one can follow each step, one also will find
an implementation of Valtr’s algorithm in Java that we decided to translate in
Matlab to use in the PDEtool. To obtain the different figures below, we gen-
erate 105 random convex polygons of unit area and number of sides between 3
and 30 for which we compute the first Dirichlet and Neumann eigenvalues, by a
classical finite element method. The eigenvalues computations were performed
using Matlab’s toolbox for solving partial differential equations PDEtool on a
personal computer The average time needed to compute one eigenvalue is ap-
proximately equal to 0.75 second. We then obtain a cloud of dots that provides



172 I. Ftouhi and A. Henrot 14

an approximation of the diagram EC , see Figure 2. This approach has been
used in several works, we refer for example to [3], [13] and [14].

20 30 40 50 60 70 80 90

0

2

4

6

8

10

Fig. 2 – Approximation of the diagram EC obtained by generating 105 random
convex polygon.

It is always interesting to have information on the boundaries of Blaschke–
Santaló diagrams and the extremal domains (which correspond to points of the
boundaries). For the present (λ1, µ1)-diagram EC , numerical experiments (see
Figure 3) suggest the following conjecture:

Conjecture 1. • Except for the ball, the domains laying on the upper
boundary of EC are polygonal (i.e., the solution of the problem

max{µ1(Ω),Ω convex , λ1(Ω) = x0, |Ω| = 1},

where x0 > λ1(B), is a polygon).

• The regular polygons are located on the upper boundary of the diagram EC .

• We denote by Te the equilateral triangle of unit area. There exists x0 >
λ1(Te) such that:

� ` ∈ [λ1(Te), x0), then the solution of the problem

max{µ1(Ω),Ω convex , λ1(Ω) = `, |Ω| = 1}

is given by a superequilateral triangle (which is isosceles with aperture greater
that π/3).

� If ` ∈ (x0,+∞), then the solution of the problem

max{µ1(Ω),Ω convex , λ1(Ω) = `, |Ω| = 1}
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is given by a rectangle.

� The solution of the problem

max{µ1(Ω),Ω convex , λ1(Ω) = x0, |Ω| = 1}
is given by both a rectangle and a superequilateral triangle.
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Fig. 3 – Numerical simulations that support Conjecture 1.

Let us now focus on the inequalities of Theorem 3.3. It is interesting to vi-
sualise those inequalities in the Blaschke–Santaló diagram that helps us to guess
the optimal bounds of the scaling invariant functional F (Ω) = |Ω|2λ1(Ω)µ1(Ω)
introduced in Theorem 3.3. It is clear that inequalities of the type F (Ω) ≤ c0

(or F (Ω) ≥ c0) can be read in the diagram as the curve of a hyperbola x 7−→ c0
x

that will delimit a region which contains EC .

• The lowest hyperbola that we managed to draw above the diagram
corresponds to the choice of c0 = F (B) (where B is a ball), which suggests
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that among bounded planar convex sets, F is maximized by balls, this provides
a sharp upper bound, see Conjecture 2 and Figure 4.

• As for the lower bound, numerical evidence suggests that for thin do-
mains, rhombi are located in the lower part of the diagram EC , this suggest
that the infimum of F is asymptotically attained by vanishing thin rhombi
and seems to be given by π2j2

0,1 (see Figure 4), indeed, if we denote by Rd a

rhombus of unit area and diameter equal to d > 0, we have µ1(Rd) ∼
d→+∞

4j20,1
d2

and λ1(Rd) ∼
d→+∞

π2d2

4 (see the case of equality in [22, Theorem 1] for the first

equivalence and [5] for the second one).

We summarize the above discussion in the following conjecture:

Conjecture 2.

∀Ω∈ K, π2j2
0,1 < F (Ω) ≤ F (B) = π2j2

0,1j
′2
1,1,

where B is any disk of R2. The upper bound is an equality only for balls and the
lower bound is asymptotically reached by any family of thin vanishing rhombi.
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Fig. 4 – Graphical visualization of the inequalities of Theorem 3.3 and the
conjectures of Conjecture 2.

The following existence result supports the claim of Conjecture 2.

Proposition 3.6. There exists Ω∗ ∈ K, such that:

F (Ω∗) = max
Ω∈K

F (Ω).

Proof. The proof follows the classical method of calculus of variations.
Let (Ωk) be a maximizing sequence of elements of K of unit area (i.e., such
that |Ωk| = 1 for every k ∈ N and lim

k→+∞
F (Ωk) = sup

Ω∈K
F (Ω)).
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Let us assume that the diameter of Ωk denoted by Dk is such that
Dk −→

k→+∞
+∞. Let us prove in this case a geometric property, namely

(9) lim
Dk→+∞

wk
rk

= 2.

here wk is the minimal width of Ωk and rk its inradius. Using the classical
inequality, see [20]

w2
k ≤
√

3|Ωk| =
√

3,
we infer wk ≤ 31/4. Now, from the inequality (see [27])

√
3(
w

r
− 2)D ≤ 2w.

we see that wk/rk → 2 as soon as Dk → +∞ (because the right-hand side is
bounded). Coming back to the eigenvalues, we have:

λ1(Ωk) ∼
k→+∞

π2

4
× 1

r2
k

,

see the proof of [13, Proposition 5.1]. Thus, by combining this equivalence with
the inequality (8), we obtain:

(10) lim sup
k→+∞

F (Ωk) ≤ lim sup
k→+∞

π4

4
×
(
wk
rk

)2

= π4 < π2j′
2
1,1j

2
0,1 = F (B).

Thus, the result of (10) is a contradiction with the assumption that (Ωk) is
a maximizing sequence, which proves that (up to translations) there exists a
bounded box D ⊂ R2 that contains all the Ωk. Thus, by Blaschke selection
theorem (see for example [26, Theorem 1.8.7]), there exists a convex set Ω∗ such
that (Ωk) converges to Ω∗ (up to a subsequence) for the Hausdorff distance.
By continuity of the area and the Dirichlet and Neumann eigenvalues for the
Hausdorff distance in convex sets, we deduce that:

F (Ω∗) = lim
k→+∞

F (Ωk) = sup
Ω∈K

F (Ω).

This ends the proof.
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Blaschke-Santaló diagrams. ESAIM Control Optim. Calc. Var. 27 (2021), Paper No. 36.

[9] D. Chenais, On the existence of a solution in a domain identification problem. J. Math.
Anal. Appl. 52 (1975), 2, 189–219.

[10] D. Cioranescu and F. Murat, A strange term coming from nowhere. In: Topics in the
mathematical modelling of composite materials, Progr. Nonlinear Differential Equations
Appl., Vol. 31, pp. 45–93. Birkhäuser Boston, Boston, MA, 1997.
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