ON THE STUDY OF THE POLYNOMIAL FUNCTION $p x^{2}+b x+c$ EXPRESSING PRIME NUMBERS

VÍCTOR JULIO RAMÍREZ VIÑAS

Communicated by Alexandru Zaharescu

Let d be a positive integer, $m=\frac{d-1}{4}$ if $d \equiv 1(\bmod 4)$ and $m=d$ otherwise. Let p, b, c and x_{0} be integers, where p is a prime. Suppose that $b^{2}-4 p c=t^{2} d$, for some integer $t \geq 1$, and there exist integers x and y such that $p=\left|x^{2}-d y^{2}\right|$. We prove that if $\left|p n^{2}+b n+c\right|$ is prime or 1 for all integer n with $x_{0} \leq n \leq x_{0}+\sqrt{\frac{m}{2}}-1$, then the class number of the field $\mathbb{Q}(\sqrt{d})$ must necessarily be one.

AMS 2010 Subject Classification: 11N32, 11R29, 13A05.
Key words: Unique factorization domain, primes, prime producing polynomial.

1. INTRODUCTION

It has been known for a long time that there exists a close connection between prime producing polynomials and the class number one problem for quadratic fields. Lehmer [2] observed in 1936 that if $x^{2}+x+q$ is prime for $x=0,1, \ldots, q-2$, then the class number of the field $\mathbb{Q}(\sqrt{1-4 q})$ must necessarily be one. In 1980 Kutsuna [1] proved the following for real quadratic fields: if $-n^{2}+n+q$ is prime for all positive $n<\sqrt{q}-1$, then the class number of the field $\mathbb{Q}(\sqrt{1+4 q})$ must necessarily be one. After this, many authors have studied analogous criteria. For this matter, we refer to the book of Mollin [3].

The aim of this paper is to prove the following theorems:
Theorem 1. Let $d=1+4 m$ be a positive integer. Let p, b, c and x_{0} be integers, where p is a prime. Suppose that $\sqrt{\frac{d}{5}}$ is not prime, and that $b^{2}-4 p c=u^{2} d$, for some integer $u \geq 1$. Suppose that there exist integers $r_{1}, s_{1}, r_{2}, s_{2}$ such that

$$
p=\left|r_{1}^{2}-d s_{1}^{2}\right|, \quad \delta=\left|r_{2}^{2}-d s_{2}^{2}\right|,
$$

where $\delta=1$ if m is odd and $\delta=2$ otherwise. If $\left|p n^{2}+b n+c\right|$ is prime or 1 for all integers n with $x_{0} \leq n \leq x_{0}+\sqrt{\frac{|m-2|}{2}}-1$, then $\mathbb{Z}\left[\frac{-1+\sqrt{d}}{2}\right]$ is a unique factorization domain.

Theorem 2. Let d be a positive integer, with $d \neq 5$. Let p, b, c and x_{0} be integers, where p is a prime. Suppose that $b^{2}-4 p c=v^{2} d$, for some integer $v \geq 1$. Suppose that there exist integers $r_{1}, s_{1}, r_{2}, s_{2}$ such that

$$
p=\left|r_{1}^{2}-d s_{1}^{2}\right|, \quad 2=\left|r_{2}^{2}-d s_{2}^{2}\right|
$$

If $\left|p n^{2}+b n+c\right|$ is prime or 1 for all integers n with $x_{0} \leq n \leq x_{0}+\sqrt{\frac{d}{2}}-1$, then $\mathbb{Z}[\sqrt{d}]$ is a unique factorization domain.

2. PRELIMINARIES

Lemma 1. Let α be a quadratic integer, let q and n be positive integers, where q is a prime number. Suppose that there are $\delta, \beta \in \mathbb{Z}[\alpha]$ such that $q=|N(\delta)|$ and $q n=|N(\beta)|$, where N stands for the norm map. Then, there exists $\gamma \in \mathbb{Z}[\alpha]$ such that $n=|N(\gamma)|$.

Proof. By [4, Lemma 2.1] we have that δ is a prime in $\mathbb{Z}[\alpha]$. As $\beta \bar{\beta}=N(\beta)$ we have $\delta \mid \beta \bar{\beta}$, and so, as δ is prime, we deduce that $\delta \mid \beta$ or $\delta \mid \bar{\beta}$. Let

$$
\gamma=\left\{\begin{array}{cc}
\beta / \delta, & \text { if } \delta \mid \beta \tag{1}\\
\bar{\beta} / \delta, & \text { if } \delta \mid \bar{\beta}
\end{array}\right.
$$

From (1), we deduce that

$$
|N(\gamma)|=\frac{|N(\beta)|}{|N(\delta)|}=n
$$

Lemma 2. Let $d=1+4 m$ be a positive integer that is not a perfect square, $\alpha=\frac{-1+\sqrt{d}}{2}$. Let n be a positive integer. If there exist integers r and s such that $4 n=\left|r^{2}-d s^{2}\right|$, then there exists $\gamma \in \mathbb{Z}[\alpha]$ such that $n=|N(\gamma)|$.

Proof. It is easy to verify that $\gamma \in \mathbb{Z}[\alpha]$ and $n=|N(\gamma)|$, where

$$
\gamma=(r-s) / 2+s \alpha
$$

Lemma 3. Let d be a positive integer, with $d \neq 5$. Suppose that $\mathbb{Z}[\sqrt{d}]$ is not a unique factorization domain. Then, there is a prime q which is irreducible but not prime in $\mathbb{Z}[\sqrt{d}]$ such that $q \leq \sqrt{\frac{d}{2}}$.

Proof. Put $\alpha=\sqrt{d}$. Suppose that $\mathbb{Z}[\alpha]$ is not a unique factorization domain. Then, by [4, Lemma 2.2], there is a prime number q which is not prime in $\mathbb{Z}[\alpha]$ such that
(2) $\quad \omega \in \mathbb{Z}[\alpha] \quad$ and $\quad q \mid N(\omega) \quad$ implies that $\quad q^{2} \leq|N(\omega)|$.

Since α is a root of the polynomial $x^{2}-d$ and q is not prime in $\mathbb{Z}[\alpha]$, by $[4$, Lemma 2.3], we get that there exists $a \in \mathbb{Z}$ such that

$$
\begin{equation*}
0 \leq a \leq q / 2 \quad \text { and } \quad a^{2}-d \equiv 0 \quad(\bmod q) \tag{3}
\end{equation*}
$$

Let us see that

$$
\begin{equation*}
q \leq \sqrt{\frac{d}{2}} \tag{4}
\end{equation*}
$$

Let $b=a-q$. Then, from (3) we obtain

$$
\begin{equation*}
b^{2}-d \equiv 0 \quad(\bmod q) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{q}{2} \leq-b \leq q \tag{6}
\end{equation*}
$$

As

$$
N(b-\alpha)=b^{2}-d
$$

from (5) and (2) we deduce that

$$
\begin{equation*}
q^{2} \leq|N(b-\alpha)|=\left|b^{2}-d\right| \tag{7}
\end{equation*}
$$

Combining (7) and (6), we get

$$
\begin{equation*}
\left|b^{2}-d\right|=d-b^{2} \tag{8}
\end{equation*}
$$

From (7), (8) and (6), we deduce that

$$
4 q^{2} \leq 4 d-(2 b)^{2} \leq 4 d-q^{2}
$$

thus giving

$$
\begin{equation*}
5 q^{2} \leq 4 d \tag{9}
\end{equation*}
$$

Let $c=a+q$. Then, from (3) we obtain

$$
\begin{equation*}
c^{2}-d \equiv 0 \quad(\bmod q) \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
q \leq c \leq \frac{3 q}{2} \tag{11}
\end{equation*}
$$

As

$$
N(c-\alpha)=c^{2}-d,
$$

from (10) and (2) we deduce that

$$
\begin{equation*}
q^{2} \leq|N(c-\alpha)|=\left|c^{2}-d\right| \tag{12}
\end{equation*}
$$

We now show that

$$
\begin{equation*}
\left|c^{2}-d\right|=d-c^{2} \tag{13}
\end{equation*}
$$

For otherwise $\left|c^{2}-d\right|=c^{2}-d$. From (12), (9) and (11), we get

$$
4 q^{2} \leq(2 c)^{2}-4 d \leq 9 q^{2}-5 q^{2}=4 q^{2}
$$

This forces that $4 d=5 q^{2}$, which is impossible because $d \neq 5$. So

$$
\left|c^{2}-d\right|=d-c^{2}
$$

Combining (12), (13) and (11), we get

$$
q^{2} \leq d-c^{2} \leq d-q^{2},
$$

giving

$$
q \leq \sqrt{\frac{d}{2}}
$$

To show that q is irreducible in $\mathbb{Z}[\alpha]$, first suppose that it is reducible, i.e., $q=x y$ for same non-units x, y in $\mathbb{Z}[\alpha]$, then $q^{2}=N(x y)=N(x) N(y)$ with $|N(x)|,|N(y)|>1$. Thus,

$$
\begin{equation*}
q=|N(x)| . \tag{14}
\end{equation*}
$$

Combining (2) and (14) we get $q^{2} \leq q$, which is impossible. This contradiction means that if $q=x y$ in $\mathbb{Z}[\alpha]$ then x or y is a unit in $\mathbb{Z}[\alpha]$, i.e. q is irreducible in $\mathbb{Z}[\alpha]$.

Proposition 1. Let $d=1+4 m$ be a positive integer. Suppose that $\sqrt{\frac{d}{5}}$ is not a prime number, and that $\mathbb{Z}\left[\frac{-1+\sqrt{d}}{2}\right]$ is not a unique factorization domain. Then, there is a prime q which is irreducible but not prime in $\mathbb{Z}\left[\frac{-1+\sqrt{d}}{2}\right]$ such that $q \leq \sqrt{\frac{|m-2|}{2}}$.

Proof. Put $\alpha=\frac{-1+\sqrt{1+4 m}}{2}$. Suppose that $\mathbb{Z}[\alpha]$ is not a unique factorization domain. Then, by [4, Lemma 2.2], there is a prime number q which is not prime in $\mathbb{Z}[\alpha]$ such that

$$
\begin{equation*}
\omega \in \mathbb{Z}[\alpha] \quad \text { and } \quad q \mid N(\omega) \quad \text { implies that } \quad q^{2} \leq|N(\omega)| . \tag{15}
\end{equation*}
$$

Let us see that

$$
\begin{equation*}
q \leq \sqrt{\frac{|m-2|}{2}} \tag{16}
\end{equation*}
$$

Since α is a root of the polynomial $x^{2}+x-m$ and q is not prime in $\mathbb{Z}[\alpha]$, by [4, Lemma 2.3], we get that there exists $a \in \mathbb{Z}$ such that

$$
\begin{equation*}
0 \leq a \leq(q-1) / 2 \quad \text { and } \quad a^{2}+a-m \equiv 0 \quad(\bmod q) \tag{17}
\end{equation*}
$$

Let $b=a-q$. Then, from (17) we obtain

$$
\begin{equation*}
b^{2}+b-m \equiv 0 \quad(\bmod q) \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{q+1}{2} \leq-b \leq q \tag{19}
\end{equation*}
$$

As

$$
N(b-\alpha)=b^{2}+b-m
$$

from (18) and (15) we deduce that

$$
\begin{equation*}
4 q^{2} \leq 4|N(b-\alpha)|=\left|(2 b+1)^{2}-4 m-1\right| \tag{20}
\end{equation*}
$$

Combining (20) and (19), we get

$$
\begin{equation*}
\left|(2 b+1)^{2}-4 m-1\right|=4 m+1-(2 b+1)^{2} . \tag{21}
\end{equation*}
$$

From (20), (21) and (19), we deduce that

$$
4 q^{2} \leq 4 m+1-(2 b+1)^{2} \leq 4 m+1-q^{2}
$$

thus giving

$$
\begin{equation*}
5 q^{2} \leq 1+4 m \tag{22}
\end{equation*}
$$

Let $c=a+q$. Then, from (17) we obtain

$$
\begin{equation*}
c^{2}+c-m \equiv 0 \quad(\bmod q) \tag{23}
\end{equation*}
$$

and

$$
\begin{equation*}
q \leq c \leq \frac{3 q-1}{2} \tag{24}
\end{equation*}
$$

As

$$
N(c-\alpha)=c^{2}+c-m
$$

from (23) and (15) we deduce that

$$
\begin{equation*}
4 q^{2} \leq 4|N(c-\alpha)|=\left|(2 c+1)^{2}-4 m-1\right| \tag{25}
\end{equation*}
$$

We now show that

$$
\begin{equation*}
\left|(2 c+1)^{2}-4 m-1\right|=4 m+1-(2 c+1)^{2} \tag{26}
\end{equation*}
$$

For otherwise $\left|(2 c+1)^{2}-4 m-1\right|=(2 c+1)^{2}-4 m-1$. From (25), (22) and (24), we get

$$
4 q^{2} \leq(2 c+1)^{2}-(1+4 m) \leq 9 q^{2}-5 q^{2}=4 q^{2}
$$

This forces that $d=5 q^{2}$, which is impossible because $\sqrt{\frac{d}{5}}$ is not a prime number. So

$$
\left|(2 c+1)^{2}-4 m-1\right|=4 m+1-(2 c+1)^{2}
$$

Combining (25), (26) and (24), we get

$$
4 q^{2} \leq 4 m+1-(2 c+1)^{2} \leq 4 m+1-(2 q+1)^{2}
$$

giving

$$
q \leq \sqrt{\frac{|m-2|}{2}}
$$

To show that q is irreducible in $\mathbb{Z}[\alpha]$, first suppose that it is reducible, i.e., $q=x y$ for same non-units x, y in $\mathbb{Z}[\alpha]$, then $q^{2}=N(x y)=N(x) N(y)$ with $|N(x)|,|N(y)|>1$. Thus,

$$
\begin{equation*}
q=|N(x)| \tag{27}
\end{equation*}
$$

Combining (15) and (27) we get $q^{2} \leq q$, which is impossible. This contradiction means that if $q=x y$ in $\mathbb{Z}[\alpha]$ then x or y is a unit in $\mathbb{Z}[\alpha]$, i.e. q is irreducible in $\mathbb{Z}[\alpha]$.

3. PROOF OF THEOREM 1

Put $\alpha=\frac{-1+\sqrt{d}}{2}$. Suppose that $\mathbb{Z}[\alpha]$ is not a unique factorization domain. Then, by Proposition 1, there is a prime q which is irreducible but not prime in $\mathbb{Z}[\alpha]$ such that

$$
\begin{equation*}
q \leq \sqrt{\frac{|m-2|}{2}} \tag{28}
\end{equation*}
$$

Since α is a root of the polynomial $x^{2}+x-m$ and q is not prime in $\mathbb{Z}[\alpha]$, by [4, Lemma 2.3], we get that there exists $t \in \mathbb{Z}$ such that

$$
\begin{equation*}
t^{2}+t-m \equiv 0 \quad(\bmod q) \tag{29}
\end{equation*}
$$

As q is irreducible in $\mathbb{Z}[\alpha]$ and

$$
p=\left|r_{1}^{2}-d s_{1}^{2}\right|=\left|N\left(r_{1}+s_{1} \sqrt{d}\right)\right|
$$

we get that $q \neq p$. As

$$
\delta=\left|r_{2}^{2}-d s_{2}^{2}\right|=\left|N\left(r_{2}+s_{2} \sqrt{d}\right)\right|,
$$

and $\delta=2$ if m is even, from (29) we get that $q \neq 2$. Thus

$$
\begin{equation*}
q \nmid 2 p \tag{30}
\end{equation*}
$$

and so we deduce that there exists $n \in \mathbb{Z}$ such that

$$
\begin{equation*}
x_{0} \leq n \leq x_{0}+q-1 \quad \text { and } \quad 2 p n+b \equiv u(2 t+1) \quad(\bmod q) \tag{31}
\end{equation*}
$$

As $b^{2}-4 p c=u^{2} d$ from (30), (29) and (31), we deduce that

$$
\begin{equation*}
p n^{2}+b n+c \equiv 0 \quad(\bmod q) . \tag{32}
\end{equation*}
$$

From (28) and (31), we get

$$
x_{0} \leq n \leq x_{0}+\sqrt{\frac{|m-2|}{2}}-1,
$$

and so, according to our hypotheses $\left|p n^{2}+b n+c\right|$ is 1 or prime. Thus, from (32) we get

$$
\begin{equation*}
q=\left|p n^{2}+b n+c\right| . \tag{33}
\end{equation*}
$$

From (33) we deduce that

$$
4 p q=\left|(2 p n+b)^{2}-\left(b^{2}-4 p c\right)\right|=\left|(2 p n+b)^{2}-d u^{2}\right|
$$

and so, by Lemma 2 there exists $\beta \in \mathbb{Z}[\alpha]$ such that

$$
p q=|N(\beta)| .
$$

As $p=\left|N\left(r_{1}+s_{1} \sqrt{d}\right)\right|$, by Lemma 1 , we deduce that there exists $\gamma \in \mathbb{Z}[\alpha]$ such that

$$
q=|N(\gamma)|,
$$

which is impossible because q is irreducible in $\mathbb{Z}[\alpha]$. Thus, $\mathbb{Z}[\alpha]$ must be a unique factorization domain.

4. PROOF OF THEOREM 2

Put $\alpha=\sqrt{d}$. Suppose that $\mathbb{Z}[\alpha]$ is not a unique factorization domain. Then, by Lemma 3, there is a prime q which is irreducible but not prime in $\mathbb{Z}[\alpha]$ such that

$$
\begin{equation*}
q \leq \sqrt{\frac{d}{2}} \tag{34}
\end{equation*}
$$

Since α is a root of the polynomial $x^{2}-d$ and q is not prime in $\mathbb{Z}[\alpha]$, by [4, Lemma 2.3], we get that there exists $t \in \mathbb{Z}$ such that

$$
\begin{equation*}
t^{2}-d \equiv 0 \quad(\bmod q) \tag{35}
\end{equation*}
$$

As q is irreducible in $\mathbb{Z}[\alpha]$ and

$$
\begin{equation*}
p=\left|r_{1}^{2}-d s_{1}^{2}\right|=\left|N\left(r_{1}+s_{1} \alpha\right)\right|, \quad 2=\left|r_{2}^{2}-d s_{2}^{2}\right|=\left|N\left(r_{2}+s_{2} \alpha\right)\right| \tag{36}
\end{equation*}
$$

we deduce that
and so we get that there exists $n \in \mathbb{Z}$ such that (38) $\quad x_{0} \leq n \leq x_{0}+q-1 \quad$ and $\quad 2 p n+b \equiv v t \quad(\bmod q)$.

As $b^{2}-4 p c=v^{2} d$ from (37), (35) and (38), we deduce that

$$
\begin{equation*}
p n^{2}+b n+c \equiv 0 \quad(\bmod q) \tag{39}
\end{equation*}
$$

From (34) and (38), we get

$$
x_{0} \leq n \leq x_{0}+\sqrt{\frac{d}{2}}-1
$$

and so, according to our hypotheses $\left|p n^{2}+b n+c\right|$ is 1 or prime. Thus, from (39) we get

$$
\begin{equation*}
q=\left|p n^{2}+b n+c\right| \tag{40}
\end{equation*}
$$

From (40) we deduce that

$$
4 p q=\left|(2 p n+b)^{2}-\left(b^{2}-4 p c\right)\right|=\left|(2 p n+b)^{2}-d v^{2}\right|
$$

and from (36), and Lemma 1, we deduce that there exists $\gamma \in \mathbb{Z}[\alpha]$ such that

$$
q=|N(\gamma)|
$$

which is impossible because q is irreducible in $\mathbb{Z}[\alpha]$. Thus, $\mathbb{Z}[\alpha]$ must be a unique factorization domain.

5. APPLICATIONS

Theorem 3. Let $d=1+4 m$ be a positive integer. Let u and x_{0} be integers, where u is odd. Suppose that $d=p q \equiv 5(\bmod 8)$, where $p \neq q$ are primes congruent to $3(\bmod 4)$, and that $\left|p n^{2}+p n+\frac{p-u^{2} q}{4}\right|$ is prime or equal to 1 whenever $x_{0} \leq n \leq x_{0}+\sqrt{\frac{|m-2|}{2}}-1$. Then $\mathbb{Z}\left[\frac{-1+\sqrt{d}}{2}\right]$ is a unique factorization domain.

Proof. By [5, Lemma 2.4] we get that the equation

$$
p=\left|x^{2}-d y^{2}\right|
$$

is solvable in integers x, y. Thus, by Theorem 1 , we get that $\mathbb{Z}\left[\frac{-1+\sqrt{d}}{2}\right]$ is a unique factorization domain.

Theorem 4. Let u and x_{0} be integers, where u is odd. Suppose that $d=2 q$ where q is a prime congruent to $3(\bmod 4)$, and that $\left|2 n^{2}-u^{2} q\right|$ is prime or equal to 1 whenever $x_{0} \leq n \leq x_{0}+\sqrt{\frac{d}{2}}-1$. Then $\mathbb{Z}[\sqrt{d}]$ is a unique factorization domain.

Proof. By [5, Lemma 2.3] we get that the equation

$$
2=\left|x^{2}-d y^{2}\right|
$$

is solvable in integers x, y. Thus, by Theorem 2 , we get that $\mathbb{Z}[\sqrt{d}]$ is a unique factorization domain.

Theorem 5. Let u, x_{0} be integers, where u is odd. Suppose that d is a prime congruent to $3(\bmod 4)$, and that $\left|2 n^{2}+2 n+\frac{1-u^{2} d}{2}\right|$ is prime or equal to 1 whenever $x_{0} \leq n \leq x_{0}+\sqrt{\frac{d}{2}}-1$. Then $\mathbb{Z}[\sqrt{d}]$ is a unique factorization domain.

Proof. By [5, Lemma 2.2] we get that the equation

$$
2=\left|x^{2}-d y^{2}\right|
$$

is solvable in integers x, y. Thus, by Theorem 2 , we get that $\mathbb{Z}[\sqrt{d}]$ is a unique factorization domain.

Acknowledgments. The author wishes to thank the referees for so carefully checking the manuscript.

REFERENCES

[1] M. Kutsuna, On a criterion for the class number of a quadratic number field to be one. Nagoya Math. J. 79 (1980), 123-129.
[2] D. H. Lehmer, On the function $x^{2}+x+A$ Sphinx 6 (1936), 212-214.
[3] R. A. Mollin, Quadratics. CRC Press, Boca Raton, 1996.
[4] V. J. Ramírez, A new proof of the Unique Factorization of $\mathbb{Z}\left[\frac{1+\sqrt{-d}}{2}\right]$ for $d=$ 3, 7, 11, 19, 43, 67, 163. Rev. Colombiana Mat. (2) 50 (2016), 139-143.
[5] P. G. Walsh, A note on class number one criteria of Sirola for real quadratic fields. Glasnik Matematicki 40 (60) (2005), 21-27.

Received February 12, 2018
Universidad Simón Bolívar
Departamento de Matemáticas Puras y Aplicadas ramirezv@usb.ve

