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Let d be a positive integer, m = d−1
4

if d ≡ 1 (mod 4) and m = d otherwise. Let
p, b, c and x0 be integers, where p is a prime. Suppose that b2−4pc = t2d, for some
integer t ≥ 1, and there exist integers x and y such that p = |x2−dy2|. We prove
that if |pn2 + bn+ c| is prime or 1 for all integer n with x0 ≤ n ≤ x0 +

√
m
2
− 1,

then the class number of the field Q(
√
d) must necessarily be one.
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1. INTRODUCTION

It has been known for a long time that there exists a close connection
between prime producing polynomials and the class number one problem for
quadratic fields. Lehmer [2] observed in 1936 that if x2 + x + q is prime for
x = 0, 1, ..., q−2, then the class number of the fieldQ(

√
1− 4q) must necessarily

be one. In 1980 Kutsuna [1] proved the following for real quadratic fields: if
−n2 + n + q is prime for all positive n <

√
q − 1, then the class number of

the field Q(
√
1 + 4q) must necessarily be one. After this, many authors have

studied analogous criteria. For this matter, we refer to the book of Mollin [3].

The aim of this paper is to prove the following theorems:

Theorem 1. Let d = 1 + 4m be a positive integer. Let p, b, c and x0

be integers, where p is a prime. Suppose that
√

d
5 is not prime, and that

b2 − 4pc = u2d, for some integer u ≥ 1. Suppose that there exist integers
r1, s1, r2, s2 such that

p = |r21 − ds21|, δ = |r22 − ds22|,

where δ = 1 if m is odd and δ = 2 otherwise. If |pn2 + bn + c| is prime or 1

for all integers n with x0 ≤ n ≤ x0 +

√
|m−2|

2 − 1, then Z[−1+
√
d

2 ] is a unique
factorization domain.
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Theorem 2. Let d be a positive integer, with d ̸= 5. Let p, b, c and x0
be integers, where p is a prime. Suppose that b2 − 4pc = v2d, for some integer
v ≥ 1. Suppose that there exist integers r1, s1, r2, s2 such that

p = |r21 − ds21|, 2 = |r22 − ds22|.

If |pn2 + bn + c| is prime or 1 for all integers n with x0 ≤ n ≤ x0 +
√

d
2 − 1,

then Z[
√
d] is a unique factorization domain.

2. PRELIMINARIES

Lemma 1. Let α be a quadratic integer, let q and n be positive integers,
where q is a prime number. Suppose that there are δ, β ∈ Z[α] such that
q = |N(δ)| and qn = |N(β)|, where N stands for the norm map. Then, there
exists γ ∈ Z[α] such that n = |N(γ)|.

Proof. By [4, Lemma 2.1] we have that δ is a prime in Z[α]. As ββ̄ = N(β)
we have δ | ββ̄, and so, as δ is prime, we deduce that δ | β or δ | β̄. Let

(1) γ =

{
β/δ, if δ | β
β̄/δ, if δ | β̄.

From (1), we deduce that

|N(γ)| = |N(β)|
|N(δ)|

= n.

Lemma 2. Let d = 1 + 4m be a positive integer that is not a perfect

square, α = −1+
√
d

2 . Let n be a positive integer. If there exist integers r and s
such that 4n = |r2 − ds2|, then there exists γ ∈ Z[α] such that n = |N(γ)|.

Proof. It is easy to verify that γ ∈ Z[α] and n = |N(γ)|, where

γ = (r − s)/2 + sα.

Lemma 3. Let d be a positive integer, with d ̸= 5. Suppose that Z[
√
d] is

not a unique factorization domain. Then, there is a prime q which is irreducible

but not prime in Z[
√
d] such that q ≤

√
d
2 .
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Proof. Put α =
√
d. Suppose that Z[α] is not a unique factorization

domain. Then, by [4, Lemma 2.2], there is a prime number q which is not
prime in Z[α] such that

(2) ω ∈ Z[α] and q | N(ω) implies that q2 ≤ |N(ω)|.

Since α is a root of the polynomial x2 − d and q is not prime in Z[α], by [4,
Lemma 2.3], we get that there exists a ∈ Z such that

(3) 0 ≤ a ≤ q/2 and a2 − d ≡ 0 (mod q).

Let us see that

(4) q ≤
√

d

2
.

Let b = a− q. Then, from (3) we obtain

(5) b2 − d ≡ 0 (mod q),

and

(6)
q

2
≤ −b ≤ q.

As

N(b− α) = b2 − d,

from (5) and (2) we deduce that

(7) q2 ≤ |N(b− α)| = |b2 − d|.

Combining (7) and (6), we get

(8) |b2 − d| = d− b2.

From (7), (8) and (6), we deduce that

4q2 ≤ 4d− (2b)2 ≤ 4d− q2,

thus giving

(9) 5q2 ≤ 4d.

Let c = a+ q. Then, from (3) we obtain

(10) c2 − d ≡ 0 (mod q),

and

(11) q ≤ c ≤ 3q

2
.

As

N(c− α) = c2 − d,
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from (10) and (2) we deduce that

(12) q2 ≤ |N(c− α)| = |c2 − d|.

We now show that

(13) |c2 − d| = d− c2.

For otherwise |c2 − d| = c2 − d. From (12), (9) and (11), we get

4q2 ≤ (2c)2 − 4d ≤ 9q2 − 5q2 = 4q2.

This forces that 4d = 5q2, which is impossible because d ̸= 5. So

|c2 − d| = d− c2.

Combining (12), (13) and (11), we get

q2 ≤ d− c2 ≤ d− q2,

giving

q ≤
√

d

2
.

To show that q is irreducible in Z[α], first suppose that it is reducible, i.e.,
q = xy for same non-units x, y in Z[α], then q2 = N(xy) = N(x)N(y) with
|N(x)|, |N(y)| > 1. Thus,

(14) q = |N(x)|.

Combining (2) and (14) we get q2 ≤ q, which is impossible. This con-
tradiction means that if q = xy in Z[α] then x or y is a unit in Z[α], i.e. q is
irreducible in Z[α].

Proposition 1. Let d = 1+4m be a positive integer. Suppose that
√

d
5 is

not a prime number, and that Z[−1+
√
d

2 ] is not a unique factorization domain.

Then, there is a prime q which is irreducible but not prime in Z[−1+
√
d

2 ] such

that q ≤
√

|m−2|
2 .

Proof. Put α = −1+
√
1+4m
2 . Suppose that Z[α] is not a unique factoriza-

tion domain. Then, by [4, Lemma 2.2], there is a prime number q which is not
prime in Z[α] such that

(15) ω ∈ Z[α] and q | N(ω) implies that q2 ≤ |N(ω)|.

Let us see that

(16) q ≤
√

|m− 2|
2

.
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Since α is a root of the polynomial x2+x−m and q is not prime in Z[α],
by [4, Lemma 2.3], we get that there exists a ∈ Z such that

(17) 0 ≤ a ≤ (q − 1)/2 and a2 + a−m ≡ 0 (mod q).

Let b = a− q. Then, from (17) we obtain

(18) b2 + b−m ≡ 0 (mod q),

and

(19)
q + 1

2
≤ −b ≤ q.

As
N(b− α) = b2 + b−m,

from (18) and (15) we deduce that

(20) 4q2 ≤ 4|N(b− α)| = |(2b+ 1)2 − 4m− 1|.

Combining (20) and (19), we get

(21) |(2b+ 1)2 − 4m− 1| = 4m+ 1− (2b+ 1)2.

From (20), (21) and (19), we deduce that

4q2 ≤ 4m+ 1− (2b+ 1)2 ≤ 4m+ 1− q2,

thus giving

(22) 5q2 ≤ 1 + 4m.

Let c = a+ q. Then, from (17) we obtain

(23) c2 + c−m ≡ 0 (mod q),

and

(24) q ≤ c ≤ 3q − 1

2
.

As
N(c− α) = c2 + c−m,

from (23) and (15) we deduce that

(25) 4q2 ≤ 4|N(c− α)| = |(2c+ 1)2 − 4m− 1|.

We now show that

(26) |(2c+ 1)2 − 4m− 1| = 4m+ 1− (2c+ 1)2.

For otherwise |(2c+ 1)2 − 4m− 1| = (2c+ 1)2 − 4m− 1. From (25), (22) and
(24), we get

4q2 ≤ (2c+ 1)2 − (1 + 4m) ≤ 9q2 − 5q2 = 4q2.
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This forces that d = 5q2, which is impossible because
√

d
5 is not a prime

number. So
|(2c+ 1)2 − 4m− 1| = 4m+ 1− (2c+ 1)2.

Combining (25), (26) and (24), we get

4q2 ≤ 4m+ 1− (2c+ 1)2 ≤ 4m+ 1− (2q + 1)2,

giving

q ≤
√

|m− 2|
2

.

To show that q is irreducible in Z[α], first suppose that it is reducible,
i.e., q = xy for same non-units x, y in Z[α], then q2 = N(xy) = N(x)N(y) with
|N(x)|, |N(y)| > 1. Thus,

(27) q = |N(x)|.

Combining (15) and (27) we get q2 ≤ q, which is impossible. This con-
tradiction means that if q = xy in Z[α] then x or y is a unit in Z[α], i.e. q is
irreducible in Z[α].

3. PROOF OF THEOREM 1

Put α = −1+
√
d

2 . Suppose that Z[α] is not a unique factorization domain.
Then, by Proposition 1, there is a prime q which is irreducible but not prime
in Z[α] such that

(28) q ≤
√

|m− 2|
2

.

Since α is a root of the polynomial x2+x−m and q is not prime in Z[α],
by [4, Lemma 2.3], we get that there exists t ∈ Z such that

(29) t2 + t−m ≡ 0 (mod q).

As q is irreducible in Z[α] and

p = |r21 − ds21| = |N(r1 + s1
√
d)|,

we get that q ̸= p. As

δ = |r22 − ds22| = |N(r2 + s2
√
d)|,

and δ = 2 if m is even, from (29) we get that q ̸= 2. Thus

(30) q ∤ 2p,

and so we deduce that there exists n ∈ Z such that

(31) x0 ≤ n ≤ x0 + q − 1 and 2pn+ b ≡ u(2t+ 1) (mod q).
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As b2 − 4pc = u2d from (30), (29) and (31), we deduce that

(32) pn2 + bn+ c ≡ 0 (mod q).

From (28) and (31), we get

x0 ≤ n ≤ x0 +

√
|m− 2|

2
− 1,

and so, according to our hypotheses |pn2 + bn + c| is 1 or prime. Thus, from
(32) we get

(33) q = |pn2 + bn+ c|.

From (33) we deduce that

4pq = |(2pn+ b)2 − (b2 − 4pc)| = |(2pn+ b)2 − du2|

and so, by Lemma 2 there exists β ∈ Z[α] such that

pq = |N(β)|.

As p = |N(r1+s1
√
d)|, by Lemma 1, we deduce that there exists γ ∈ Z[α]

such that

q = |N(γ)|,
which is impossible because q is irreducible in Z[α]. Thus, Z[α] must be a
unique factorization domain.

4. PROOF OF THEOREM 2

Put α =
√
d. Suppose that Z[α] is not a unique factorization domain.

Then, by Lemma 3, there is a prime q which is irreducible but not prime in
Z[α] such that

(34) q ≤
√

d

2
.

Since α is a root of the polynomial x2 − d and q is not prime in Z[α], by
[4, Lemma 2.3], we get that there exists t ∈ Z such that

(35) t2 − d ≡ 0 (mod q).

As q is irreducible in Z[α] and

(36) p = |r21 − ds21| = |N(r1 + s1α)|, 2 = |r22 − ds22| = |N(r2 + s2α)|,

we deduce that

(37) q ∤ 2p,
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and so we get that there exists n ∈ Z such that

(38) x0 ≤ n ≤ x0 + q − 1 and 2pn+ b ≡ vt (mod q).

As b2 − 4pc = v2d from (37), (35) and (38), we deduce that

(39) pn2 + bn+ c ≡ 0 (mod q).

From (34) and (38), we get

x0 ≤ n ≤ x0 +

√
d

2
− 1,

and so, according to our hypotheses |pn2 + bn + c| is 1 or prime. Thus, from
(39) we get

(40) q = |pn2 + bn+ c|.

From (40) we deduce that

4pq = |(2pn+ b)2 − (b2 − 4pc)| = |(2pn+ b)2 − dv2|,

and from (36), and Lemma 1, we deduce that there exists γ ∈ Z[α] such that

q = |N(γ)|,

which is impossible because q is irreducible in Z[α]. Thus, Z[α] must be a
unique factorization domain.

5. APPLICATIONS

Theorem 3. Let d = 1 + 4m be a positive integer. Let u and x0 be
integers, where u is odd. Suppose that d = pq ≡ 5 (mod 8), where p ̸= q are

primes congruent to 3 (mod 4), and that |pn2+pn+ p−u2q
4 | is prime or equal to

1 whenever x0 ≤ n ≤ x0+

√
|m−2|

2 −1. Then Z[−1+
√
d

2 ] is a unique factorization
domain.

Proof. By [5, Lemma 2.4] we get that the equation

p = |x2 − dy2|

is solvable in integers x, y. Thus, by Theorem 1, we get that Z[−1+
√
d

2 ] is a
unique factorization domain.

Theorem 4. Let u and x0 be integers, where u is odd. Suppose that
d = 2q where q is a prime congruent to 3 (mod 4), and that |2n2 − u2q| is
prime or equal to 1 whenever x0 ≤ n ≤ x0 +

√
d
2 − 1. Then Z[

√
d] is a unique

factorization domain.
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Proof. By [5, Lemma 2.3] we get that the equation

2 = |x2 − dy2|

is solvable in integers x, y. Thus, by Theorem 2, we get that Z[
√
d] is a unique

factorization domain.

Theorem 5. Let u, x0 be integers, where u is odd. Suppose that d is a
prime congruent to 3 (mod 4), and that |2n2 + 2n + 1−u2d

2 | is prime or equal

to 1 whenever x0 ≤ n ≤ x0 +
√

d
2 − 1. Then Z[

√
d] is a unique factorization

domain.

Proof. By [5, Lemma 2.2] we get that the equation

2 = |x2 − dy2|

is solvable in integers x, y. Thus, by Theorem 2, we get that Z[
√
d] is a unique

factorization domain.
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