ON THE STUDY OF THE POLYNOMIAL FUNCTION $px^2 + bx + c$ EXPRESSING PRIME NUMBERS

VÍCTOR JULIO RAMÍREZ VIÑAS

Communicated by Alexandru Zaharescu

Let d be a positive integer, $m = \frac{d-1}{4}$ if $d \equiv 1 \pmod{4}$ and m = d otherwise. Let p, b, c and x_0 be integers, where p is a prime. Suppose that $b^2 - 4pc = t^2d$, for some integer $t \geq 1$, and there exist integers x and y such that $p = |x^2 - dy^2|$. We prove that if $|pn^2 + bn + c|$ is prime or 1 for all integer n with $x_0 \leq n \leq x_0 + \sqrt{\frac{m}{2}} - 1$, then the class number of the field $\mathbb{Q}(\sqrt{d})$ must necessarily be one.

AMS 2010 Subject Classification: 11N32, 11R29, 13A05.

Key words: Unique factorization domain, primes, prime producing polynomial.

1. INTRODUCTION

It has been known for a long time that there exists a close connection between prime producing polynomials and the class number one problem for quadratic fields. Lehmer [2] observed in 1936 that if $x^2 + x + q$ is prime for x = 0, 1, ..., q-2, then the class number of the field $\mathbb{Q}(\sqrt{1-4q})$ must necessarily be one. In 1980 Kutsuna [1] proved the following for real quadratic fields: if $-n^2 + n + q$ is prime for all positive $n < \sqrt{q} - 1$, then the class number of the field $\mathbb{Q}(\sqrt{1+4q})$ must necessarily be one. After this, many authors have studied analogous criteria. For this matter, we refer to the book of Mollin [3].

The aim of this paper is to prove the following theorems:

THEOREM 1. Let d = 1 + 4m be a positive integer. Let p, b, c and x_0 be integers, where p is a prime. Suppose that $\sqrt{\frac{d}{5}}$ is not prime, and that $b^2 - 4pc = u^2d$, for some integer $u \ge 1$. Suppose that there exist integers r_1, s_1, r_2, s_2 such that

$$p = |r_1^2 - ds_1^2|, \qquad \delta = |r_2^2 - ds_2^2|,$$

where $\delta = 1$ if *m* is odd and $\delta = 2$ otherwise. If $|pn^2 + bn + c|$ is prime or 1 for all integers *n* with $x_0 \leq n \leq x_0 + \sqrt{\frac{|m-2|}{2}} - 1$, then $\mathbb{Z}[\frac{-1+\sqrt{d}}{2}]$ is a unique factorization domain.

MATH. REPORTS 24(74) (2022), 3, 339-347

THEOREM 2. Let d be a positive integer, with $d \neq 5$. Let p, b, c and x_0 be integers, where p is a prime. Suppose that $b^2 - 4pc = v^2d$, for some integer $v \geq 1$. Suppose that there exist integers r_1, s_1, r_2, s_2 such that

$$p = |r_1^2 - ds_1^2|, \qquad 2 = |r_2^2 - ds_2^2|.$$

If $|pn^2 + bn + c|$ is prime or 1 for all integers n with $x_0 \le n \le x_0 + \sqrt{\frac{d}{2}} - 1$, then $\mathbb{Z}[\sqrt{d}]$ is a unique factorization domain.

2. PRELIMINARIES

LEMMA 1. Let α be a quadratic integer, let q and n be positive integers, where q is a prime number. Suppose that there are $\delta, \beta \in \mathbb{Z}[\alpha]$ such that $q = |N(\delta)|$ and $qn = |N(\beta)|$, where N stands for the norm map. Then, there exists $\gamma \in \mathbb{Z}[\alpha]$ such that $n = |N(\gamma)|$.

Proof. By [4, Lemma 2.1] we have that δ is a prime in $\mathbb{Z}[\alpha]$. As $\beta \overline{\beta} = N(\beta)$ we have $\delta \mid \beta \overline{\beta}$, and so, as δ is prime, we deduce that $\delta \mid \beta$ or $\delta \mid \overline{\beta}$. Let

(1)
$$\gamma = \begin{cases} \beta/\delta, & \text{if } \delta \mid \beta\\ \bar{\beta}/\delta, & \text{if } \delta \mid \bar{\beta}. \end{cases}$$

From (1), we deduce that

$$|N(\gamma)| = \frac{|N(\beta)|}{|N(\delta)|} = n$$

LEMMA 2. Let d = 1 + 4m be a positive integer that is not a perfect square, $\alpha = \frac{-1+\sqrt{d}}{2}$. Let n be a positive integer. If there exist integers r and s such that $4n = |r^2 - ds^2|$, then there exists $\gamma \in \mathbb{Z}[\alpha]$ such that $n = |N(\gamma)|$.

Proof. It is easy to verify that $\gamma \in \mathbb{Z}[\alpha]$ and $n = |N(\gamma)|$, where

$$\gamma = (r-s)/2 + s\alpha.$$

LEMMA 3. Let d be a positive integer, with $d \neq 5$. Suppose that $\mathbb{Z}[\sqrt{d}]$ is not a unique factorization domain. Then, there is a prime q which is irreducible but not prime in $\mathbb{Z}[\sqrt{d}]$ such that $q \leq \sqrt{\frac{d}{2}}$.

Proof. Put $\alpha = \sqrt{d}$. Suppose that $\mathbb{Z}[\alpha]$ is not a unique factorization domain. Then, by [4, Lemma 2.2], there is a prime number q which is not prime in $\mathbb{Z}[\alpha]$ such that

(2)
$$\omega \in \mathbb{Z}[\alpha]$$
 and $q \mid N(\omega)$ implies that $q^2 \leq |N(\omega)|$

Since α is a root of the polynomial $x^2 - d$ and q is not prime in $\mathbb{Z}[\alpha]$, by [4, Lemma 2.3], we get that there exists $a \in \mathbb{Z}$ such that

(3)
$$0 \le a \le q/2$$
 and $a^2 - d \equiv 0 \pmod{q}$.

Let us see that

(4)
$$q \le \sqrt{\frac{d}{2}}.$$

Let b = a - q. Then, from (3) we obtain

(5)
$$b^2 - d \equiv 0 \pmod{q},$$

and

(6)
$$\frac{q}{2} \le -b \le q.$$

As

$$N(b-\alpha) = b^2 - d,$$

from (5) and (2) we deduce that

(7)
$$q^2 \le |N(b-\alpha)| = |b^2 - d|.$$

Combining (7) and (6), we get

(8)
$$|b^2 - d| = d - b^2$$

From (7), (8) and (6), we deduce that

$$4q^2 \le 4d - (2b)^2 \le 4d - q^2,$$

thus giving

 $(9) 5q^2 \le 4d.$

Let c = a + q. Then, from (3) we obtain

(10)
$$c^2 - d \equiv 0 \pmod{q},$$

and

(11)
$$q \le c \le \frac{3q}{2}.$$

As

$$N(c-\alpha) = c^2 - d,$$

from (10) and (2) we deduce that

(12)
$$q^2 \le |N(c-\alpha)| = |c^2 - d|$$

We now show that

(13)
$$|c^2 - d| = d - c^2$$
.

For otherwise $|c^2 - d| = c^2 - d$. From (12), (9) and (11), we get

$$4q^2 \le (2c)^2 - 4d \le 9q^2 - 5q^2 = 4q^2.$$

This forces that $4d = 5q^2$, which is impossible because $d \neq 5$. So

$$|c^2 - d| = d - c^2.$$

Combining (12), (13) and (11), we get

$$q^2 \le d - c^2 \le d - q^2,$$

giving

$$q \leq \sqrt{\frac{d}{2}}.$$

To show that q is irreducible in $\mathbb{Z}[\alpha]$, first suppose that it is reducible, *i.e.*, q = xy for same non-units x, y in $\mathbb{Z}[\alpha]$, then $q^2 = N(xy) = N(x)N(y)$ with |N(x)|, |N(y)| > 1. Thus,

(14)
$$q = |N(x)|.$$

Combining (2) and (14) we get $q^2 \leq q$, which is impossible. This contradiction means that if q = xy in $\mathbb{Z}[\alpha]$ then x or y is a unit in $\mathbb{Z}[\alpha]$, *i.e.* q is irreducible in $\mathbb{Z}[\alpha]$. \Box

PROPOSITION 1. Let d = 1+4m be a positive integer. Suppose that $\sqrt{\frac{d}{5}}$ is not a prime number, and that $\mathbb{Z}[\frac{-1+\sqrt{d}}{2}]$ is not a unique factorization domain. Then, there is a prime q which is irreducible but not prime in $\mathbb{Z}[\frac{-1+\sqrt{d}}{2}]$ such that $q \leq \sqrt{\frac{|m-2|}{2}}$.

Proof. Put $\alpha = \frac{-1+\sqrt{1+4m}}{2}$. Suppose that $\mathbb{Z}[\alpha]$ is not a unique factorization domain. Then, by [4, Lemma 2.2], there is a prime number q which is not prime in $\mathbb{Z}[\alpha]$ such that

(15)
$$\omega \in \mathbb{Z}[\alpha]$$
 and $q \mid N(\omega)$ implies that $q^2 \leq |N(\omega)|$

Let us see that

(16)
$$q \le \sqrt{\frac{|m-2|}{2}}$$

Since α is a root of the polynomial $x^2 + x - m$ and q is not prime in $\mathbb{Z}[\alpha]$, by [4, Lemma 2.3], we get that there exists $a \in \mathbb{Z}$ such that

(17) $0 \le a \le (q-1)/2$ and $a^2 + a - m \equiv 0 \pmod{q}$.

Let b = a - q. Then, from (17) we obtain

(18)
$$b^2 + b - m \equiv 0 \pmod{q},$$

and

(19)
$$\frac{q+1}{2} \le -b \le q.$$

As

$$N(b-\alpha) = b^2 + b - m_z$$

from (18) and (15) we deduce that

(20)
$$4q^2 \le 4|N(b-\alpha)| = |(2b+1)^2 - 4m - 1|.$$

Combining (20) and (19), we get

(21)
$$|(2b+1)^2 - 4m - 1| = 4m + 1 - (2b+1)^2$$

From (20), (21) and (19), we deduce that

$$4q^{2} \le 4m + 1 - (2b + 1)^{2} \le 4m + 1 - q^{2},$$

thus giving

(22) $5q^2 \le 1 + 4m.$

Let c = a + q. Then, from (17) we obtain

(23)
$$c^2 + c - m \equiv 0 \pmod{q},$$

and

$$(24) q \le c \le \frac{3q-1}{2}.$$

As

$$N(c-\alpha) = c^2 + c - m,$$

from (23) and (15) we deduce that

(25)
$$4q^2 \le 4|N(c-\alpha)| = |(2c+1)^2 - 4m - 1|.$$

We now show that

(26)
$$|(2c+1)^2 - 4m - 1| = 4m + 1 - (2c+1)^2.$$

For otherwise $|(2c+1)^2 - 4m - 1| = (2c+1)^2 - 4m - 1$. From (25), (22) and (24), we get

$$4q^2 \le (2c+1)^2 - (1+4m) \le 9q^2 - 5q^2 = 4q^2.$$

This forces that $d = 5q^2$, which is impossible because $\sqrt{\frac{d}{5}}$ is not a prime number. So

$$|(2c+1)^2 - 4m - 1| = 4m + 1 - (2c+1)^2.$$

Combining (25), (26) and (24), we get

$$4q^{2} \le 4m + 1 - (2c + 1)^{2} \le 4m + 1 - (2q + 1)^{2},$$

giving

$$q \le \sqrt{\frac{|m-2|}{2}}$$

To show that q is irreducible in $\mathbb{Z}[\alpha]$, first suppose that it is reducible, i.e., q = xy for same non-units x, y in $\mathbb{Z}[\alpha]$, then $q^2 = N(xy) = N(x)N(y)$ with |N(x)|, |N(y)| > 1. Thus,

$$(27) q = |N(x)|$$

Combining (15) and (27) we get $q^2 \leq q$, which is impossible. This contradiction means that if q = xy in $\mathbb{Z}[\alpha]$ then x or y is a unit in $\mathbb{Z}[\alpha]$, i.e. q is irreducible in $\mathbb{Z}[\alpha]$. \Box

3. PROOF OF THEOREM 1

Put $\alpha = \frac{-1+\sqrt{d}}{2}$. Suppose that $\mathbb{Z}[\alpha]$ is not a unique factorization domain. Then, by Proposition 1, there is a prime q which is irreducible but not prime in $\mathbb{Z}[\alpha]$ such that

$$(28) q \le \sqrt{\frac{|m-2|}{2}}.$$

Since α is a root of the polynomial $x^2 + x - m$ and q is not prime in $\mathbb{Z}[\alpha]$, by [4, Lemma 2.3], we get that there exists $t \in \mathbb{Z}$ such that

(29)
$$t^2 + t - m \equiv 0 \pmod{q}.$$

As q is irreducible in $\mathbb{Z}[\alpha]$ and

$$p = |r_1^2 - ds_1^2| = |N(r_1 + s_1\sqrt{d})|,$$

we get that $q \neq p$. As

$$\delta = |r_2^2 - ds_2^2| = |N(r_2 + s_2\sqrt{d})|,$$

and $\delta = 2$ if *m* is even, from (29) we get that $q \neq 2$. Thus (30) $q \nmid 2p$,

and so we deduce that there exists $n \in \mathbb{Z}$ such that

(31)
$$x_0 \le n \le x_0 + q - 1$$
 and $2pn + b \equiv u(2t + 1) \pmod{q}$.

As $b^2 - 4pc = u^2 d$ from (30), (29) and (31), we deduce that

(32)
$$pn^2 + bn + c \equiv 0 \pmod{q}.$$

From (28) and (31), we get

$$x_0 \le n \le x_0 + \sqrt{\frac{|m-2|}{2}} - 1,$$

and so, according to our hypotheses $|pn^2 + bn + c|$ is 1 or prime. Thus, from (32) we get

$$(33) q = |pn^2 + bn + c|$$

From (33) we deduce that

$$4pq = |(2pn + b)^{2} - (b^{2} - 4pc)| = |(2pn + b)^{2} - du^{2}|$$

and so, by Lemma 2 there exists $\beta \in \mathbb{Z}[\alpha]$ such that

$$pq = |N(\beta)|.$$

As $p = |N(r_1 + s_1\sqrt{d})|$, by Lemma 1, we deduce that there exists $\gamma \in \mathbb{Z}[\alpha]$ such that

$$q = |N(\gamma)|,$$

which is impossible because q is irreducible in $\mathbb{Z}[\alpha]$. Thus, $\mathbb{Z}[\alpha]$ must be a unique factorization domain.

4. PROOF OF THEOREM 2

Put $\alpha = \sqrt{d}$. Suppose that $\mathbb{Z}[\alpha]$ is not a unique factorization domain. Then, by Lemma 3, there is a prime q which is irreducible but not prime in $\mathbb{Z}[\alpha]$ such that

$$(34) q \le \sqrt{\frac{d}{2}}.$$

Since α is a root of the polynomial $x^2 - d$ and q is not prime in $\mathbb{Z}[\alpha]$, by [4, Lemma 2.3], we get that there exists $t \in \mathbb{Z}$ such that

(35)
$$t^2 - d \equiv 0 \pmod{q}.$$

As q is irreducible in $\mathbb{Z}[\alpha]$ and

(36)
$$p = |r_1^2 - ds_1^2| = |N(r_1 + s_1\alpha)|, \quad 2 = |r_2^2 - ds_2^2| = |N(r_2 + s_2\alpha)|,$$

we deduce that

and so we get that there exists $n \in \mathbb{Z}$ such that

(38)
$$x_0 \le n \le x_0 + q - 1$$
 and $2pn + b \equiv vt \pmod{q}$.

As $b^2 - 4pc = v^2 d$ from (37), (35) and (38), we deduce that

(39)
$$pn^2 + bn + c \equiv 0 \pmod{q}$$

From (34) and (38), we get

$$x_0 \le n \le x_0 + \sqrt{\frac{d}{2}} - 1,$$

and so, according to our hypotheses $|pn^2 + bn + c|$ is 1 or prime. Thus, from (39) we get

$$(40) q = |pn^2 + bn + c|$$

From (40) we deduce that

$$4pq = |(2pn + b)^{2} - (b^{2} - 4pc)| = |(2pn + b)^{2} - dv^{2}|,$$

and from (36), and Lemma 1, we deduce that there exists $\gamma \in \mathbb{Z}[\alpha]$ such that

 $q = |N(\gamma)|,$

which is impossible because q is irreducible in $\mathbb{Z}[\alpha]$. Thus, $\mathbb{Z}[\alpha]$ must be a unique factorization domain.

5. APPLICATIONS

THEOREM 3. Let d = 1 + 4m be a positive integer. Let u and x_0 be integers, where u is odd. Suppose that $d = pq \equiv 5 \pmod{8}$, where $p \neq q$ are primes congruent to 3 (mod 4), and that $|pn^2 + pn + \frac{p-u^2q}{4}|$ is prime or equal to 1 whenever $x_0 \leq n \leq x_0 + \sqrt{\frac{|m-2|}{2}} - 1$. Then $\mathbb{Z}[\frac{-1+\sqrt{d}}{2}]$ is a unique factorization domain.

Proof. By [5, Lemma 2.4] we get that the equation

$$p = |x^2 - dy^2|$$

is solvable in integers x, y. Thus, by Theorem 1, we get that $\mathbb{Z}[\frac{-1+\sqrt{d}}{2}]$ is a unique factorization domain. \Box

THEOREM 4. Let u and x_0 be integers, where u is odd. Suppose that d = 2q where q is a prime congruent to 3 (mod 4), and that $|2n^2 - u^2q|$ is prime or equal to 1 whenever $x_0 \le n \le x_0 + \sqrt{\frac{d}{2}} - 1$. Then $\mathbb{Z}[\sqrt{d}]$ is a unique factorization domain.

Proof. By [5, Lemma 2.3] we get that the equation

$$2 = |x^2 - dy^2|$$

is solvable in integers x, y. Thus, by Theorem 2, we get that $\mathbb{Z}[\sqrt{d}]$ is a unique factorization domain. \Box

THEOREM 5. Let u, x_0 be integers, where u is odd. Suppose that d is a prime congruent to 3 (mod 4), and that $|2n^2 + 2n + \frac{1-u^2d}{2}|$ is prime or equal to 1 whenever $x_0 \leq n \leq x_0 + \sqrt{\frac{d}{2}} - 1$. Then $\mathbb{Z}[\sqrt{d}]$ is a unique factorization domain.

Proof. By [5, Lemma 2.2] we get that the equation

$$2 = |x^2 - dy^2|$$

is solvable in integers x, y. Thus, by Theorem 2, we get that $\mathbb{Z}[\sqrt{d}]$ is a unique factorization domain. \Box

Acknowledgments. The author wishes to thank the referees for so carefully checking the manuscript.

REFERENCES

- M. Kutsuna, On a criterion for the class number of a quadratic number field to be one. Nagoya Math. J. 79 (1980), 123–129.
- [2] D. H. Lehmer, On the function $x^2 + x + A$ Sphinx 6 (1936), 212–214.
- [3] R. A. Mollin, Quadratics. CRC Press, Boca Raton, 1996.
- [4] V. J. Ramírez, A new proof of the Unique Factorization of $\mathbb{Z}\left[\frac{1+\sqrt{-d}}{2}\right]$ for d = 3, 7, 11, 19, 43, 67, 163. Rev. Colombiana Mat. (2) **50** (2016), 139–143.
- [5] P. G. Walsh, A note on class number one criteria of Sirola for real quadratic fields. Glasnik Matematicki 40 (60) (2005), 21–27.

Received February 12, 2018

Universidad Simón Bolívar Departamento de Matemáticas Puras y Aplicadas ramirezv@usb.ve