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Let (A,m) be a commutative quasi-local ring with non-zero identity with infinite
residue field and let I be an ideal of A. Let M be an Artinian A-module and
G(I,M) be a dual of associated graded module and we denote by s(I,M) the
analytic spread of I with respect to M . The dual of Burch’s inequality says
that s(I,M) + inf{width (0 :M In) : n ≥ 1} ≤ KdimM , and it is well known
that equality holds if G(I,M) is co-Cohen-Macaulay. Thus, in that case one can
compute the width of dual of the associated graded module I as widthG(I,M) =
s(I,M) + inf{width (0 :M In) : n ≥ 1}. We study when such an equality is also
valid when G(I,M) is not necessarily co-Cohen-Macaulay.
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1. INTRODUCTION

Throughout this paper, we assume that (A,m) is a commutative quasi-
local ring (i.e. A has exactly one maximal ideal m) with non-zero identity
and A/m is infinite and let M be a non-zero Artinian A-module. For an
ideal I of A, Kirby in [5] introduced the following two graded modules dual
to the Rees ring and associated graded ring R(I,M) =

⊕∞
n=−∞R(I,M)n,

where R(I,M)n = M/(0 :M I−n) if n ≤ 0 and R(I,M)n = 0 if n > 0, and
G(I,M) =

⊕∞
n=−∞G(I,M)n, where G(I,M)n = (0 :M I−n+1)/(0 :M I−n) if

n ≤ 0 and G(I,M)n = 0 if n > 0. Kirby used the two graded modules in the
proofs of theorems about the Artin-Rees property and Hilbert polynomials for
Artinian modules. Roberts in [10] defined the dual dimension KdimM and
proved that KdimM = 0 if and only if M has finite length and KdimM(> 0)
is equal to the least integer r for which there exists elements a1, ..., ar ∈ m
such that ℓ(0 :M (a1, ..., ar)) < ∞ (here ℓ(−) denotes length)(see also [6]). It is
well-known that if I is an ideal of A with ℓ(0 :M I) < ∞, then KdimG(I,M) =
KdimM and if KdimM > 0, then KdimR(I,M) = KdimM+1. For the proof
of these facts see [12].
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Sharp and Taherizadeh in [11] proved that the two graded modules are
very useful in the discussion of reductions and integral closures of ideals relative
to an Artinian module. They defined that an ideal J is a reduction of I relative
to M if J ⊆ I and there exists nonnegative integer n such that (0 :M JIn) =
(0 :M In+1). If J is a reduction of I relative to M and there is no reduction
of I relative to M which is strictly contained in J then it is said that J is a
minimal reduction of I relative to M . When A/m is infinite and I ⊆ m is an
ideal of A with ℓ(0 :M I) < ∞, every reduction of I relative to M contains a
minimal reduction of I relative to M and every minimal reduction of I relative
to M is generated by a system of parameters for M (see [11, Theorem 6.2]).
The least nonnegative integer n such that (0 :M JIn) = (0 :M In+1) for some
minimal reduction J of I relative to M is called the reduction number of I
relative to M and denoted by rJ(I,M) and the reduction number of I relative
to M denoted by r(I,M) and is defined as
r(I,M) = min{rJ(I,M), J is a minimal reduction of I relative to M }.

Nishitani in [7] denoted by deg(p) the degree of the polynomial function
p(i) = ℓ((0 :M Iim)/(0 :M Ii)) for any positive integer i. Sharp and Taher-
izadeh in [11] defined the analytic spread s(I,M) by 1 + deg(p). Indeed, the
analytic spread s(I,M) is defined as the minimal number of generators of a
(any) minimal reduction of I relative toM . Matlis in [8] defined that a sequence

x1, ..., xn ∈ m is an M -cosequence if 0 :M (x1, ..., xi−1)
xi−→ 0 :M (x1, ..., xi−1)

is surjective for i = 1, ..., n. The codepth of M , denoted by widthM , is de-
fined as the length of a maximal M -cosequence in m. Then it is always true
that widthM ≤ KdimM (see [9]). When the equality holds, it is said that M
is co-Cohen-Macaulay. Tang and Zakeri in [13] proved that M is co-Cohen-
Macaulay if and only if every system of parameters for M is an M -cosequence
(see also [14]). Note that for an ideal I, we use codepth of M by cograde I(M)
and when I = m we use codepth of M by widthM .

Nishitani in [7] proved the dual of Burch’s inequality

s(I,M) ≤ KdimM − width (0 :M In) (n ≫ 0).

The Burch’s inequality was given originally in [2, Corollary (i)]. Cheraghi and
Mafi in [3] proved that the equality holds if G(I,M) is co-Cohen-Macaulay.
On the other hand, Burch’s inequality says that for any ideal I,

inf{width (0 :M In), n ≥ 1}+ s(I,M) ≤ KdimM.

Hence, if G(I,M) is co-Cohen-Macaulay one can write

widthG(I,M) = inf{width (0 :M In), n ≥ 1}+ s(I,M).

To simplify, we shall call the value inf{width (0 :M In), n ≥ 1} the Burch
number of I relative to M and we denote it by B(I,M). Note that, in [3,
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Corollary 3.7] Cheraghi and Mafi proved that the width of (0 :M In) have a
stable value (see also [1] for stability of depth). In this case, this asymptotic
value coincides with B(I,M) but this does not occur in general. In this paper
we shall compute for the ideals under some conditions their Burch number
and we compute the width of graded module dual to their associated graded
modules.

2. THE RESULT

We start this section by the following fundamental lemma which is proved
by Tang in [12, Theorem 3.2].

Lemma 2.1. Let x1, ..., xh ∈ I\I2. Then x∗1, ..., x
∗
h is a G(I,M)-cosequence

if and only if x1, ..., xh is an M -cosequence and

(0 :M In+1) + (0 :M (x1, ..., xh)) = (0 :M (x1, ..., xh)I
n)

for all n ≥ 0, where x∗ = x+ I2.

Lemma 2.2. If x1, ..., xh ∈ I is an M -cosequence, then

(0 :M (x1, ..., xi)) + (0 :M (xi+1)) = (0 :M (x1, ..., xi)(xi+1))

for i = 0, 1, ..., h− 1.

Proof. It is clear that

(0 :M (x1, ..., xi)) + (0 :M (xi+1)) ⊆ (0 :M (x1, ..., xi)(xi+1))

for i = 0, 1, ..., h− 1.
To prove the other side we assume m ∈ (0 :M (x1, ..., xi)(xi+1)) then we

have m(x1, ..., xi)(xi+1) = 0 and so m(xi+1) ⊆ (0 :M (x1, ..., xi)) = xi+1(0 :M
(x1, ..., xi)) for i = 0, 1, ..., h − 1. Thus there exists m′ ∈ (0 :M (x1, ..., xi))
such that mxi+1 = m′xi+1. Then m − m′ ∈ (0 :M (xi+1)) and so m ∈ (0 :M
(x1, ..., xi)) + (0 :M (xi+1)) for i = 0, 1, ..., h− 1, as desired.

The following result is a dual of [4, Lemma 3.1]

Lemma 2.3. Let x1, ..., xh be elements in I \ I2 such that x∗1, ..., x
∗
h is a

G(I,M)-cosequence.

(a) If width (0 :M I2) < width (0 :M I), then

width (0 :M (I2 + (x1, ..., xh))) = width (0 :M I2).

(b) If width (0 :M I) < width (0 :M I2), then

width (0 :M (I2 + (x1, ..., xh))) = width (0 :M I)− 1.
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(c) If width (0 :M I) = width (0 :M I2), then

width (0 :M (I2 + (x1, ..., xh))) ≥ width (0 :M I)− 1.

Proof. Since the family x∗1, ..., x
∗
h is aG(I,M)-cosequence, then by Lemma

2.1, x1, ..., xh forms anM -cosequence and we have that (0 :M (x1, ..., xi))+(0 :M
I2) = 0 :M (x1, ..., xi)I for all i = 1, ..., h. For all i = 1, ..., h − 1, we consider
the following exact sequence

0 → 0 :M (I2 + (x1, ..., xi+1)) → 0 :M (I2 + (x1, ..., xi))

→ 0 :M (I2 + (x1, ..., xi))

0 :M (I2 + (x1, ..., xi+1))
→ 0.

Since

0 :M (I2 + (x1, ..., xi))/0 :M (I2 + (x1, ..., xi+1))

= 0 :M (I2 + (x1, ..., xi))/0 :M (I2 + (x1, ..., xi)) ∩ 0 :M (x1, ..., xi+1)

∼= 0 :M (I2 + (x1, ..., xi)) + (0 :M (x1, ..., xi+1))/0 :M (x1, ..., xi+1)

= ((0 :M I2) + (0 :M (x1, ..., xi+1))) ∩ (0 :M (x1, ..., xi))/0 :M (x1, ..., xi+1)

= 0 :M (x1, ..., xi+1)I ∩ 0 :M (x1, ..., xi)/0 :M (x1, ..., xi+1)

= 0 :M (x1, ..., xi+1)I ∩ 0 :M (x1, ..., xi)/0 :M (x1, ..., xi+1)

∩ 0 :M (x1, ..., xi+1)I

= 0 :M (x1, ..., xi+1)I ∩ 0 :M (x1, ..., xi)/0 :M (x1, ..., xi)

∩ 0 :M (xi+1) ∩ 0 :M (x1, ..., xi+1)I

= (0 :M (x1, ..., xi+1)I ∩ 0 :M (x1, ..., xi)) + 0 :M (xi+1)/0 :M (xi+1)

= (0 :M (xi+1)I ∩ 0 :M (x1, ..., xi)) + 0 :M (xi+1)/0 :M (xi+1)

= (0 :M (xi+1)I) ∩ (0 :M (x1, ..., xi) + 0 :M (xi+1))/0 :M (xi+1)

= 0 :M (xi+1)I/0 :M (xi+1) ∼= (0 :M I),

for i = 0, ..., h− 1, we have the following exact sequence

0 −→ 0 :M I2 + (x1, ..., xi+1) −→ 0 :M I2 + (x1, ..., xi) −→ (0 :M I) −→ 0. (†)

Assume that width (0 :M I2) < width (0 :M I). Then, by applying the
width-Lemma (see [9, Proposition 3.16]) to the exact sequence (†), for i =
0, ..., h − 1, we obtain that width (0 :M I2 + (x1, ..., xi)) = width (0 :M I2) for
all i = 1, ..., h, and (a) is proved. Let width (0 :M I) < width (0 :M I2). Then,
by [9, Proposition 3.16] and (†) for i = 0, we obtain that width (0 :M I) =
width (0 :M I2+(x1))+1. In particular, width (0 :M I2+(x1)) < width (0 :M I)
and by (a) we have now that width (0 :M I2 + (x1, ..., xi)) = width (0 :M
I2 + (x1)) = width (0 :M I)− 1 for all i = 1, ..., h. This proves (b).
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Assume that width (0 :M I) = width (0 :M I2). In this case, by taking
i = 0 in (†) and using [9, Proposition 3.16] we have

width (0 :M I) = width (0 :M I2) ≤ width (0 :M I2 + (x1)) + 1,

then we have the following three cases:

(i) width (0 :M I) = width (0 :M I2) = width (0 :M I2 + (x1)) + 1

(ii) width (0 :M I) = width (0 :M I2) < width (0 :M I2 + (x1))

(iii) width (0 :M I) = width (0 :M I2) = width (0 :M I2 + (x1))

If width (0 :M I2 + (x1)) = width (0 :M I)− 1 or width (0 :M I) < width (0 :M
I2 + (x1)), from (b) it follows that width (0 :M I2 + (x1, ..., xi)) = width (0 :M
I2 + (x1)) = width (0 :M I)− 1 for all i = 1, ..., h and in this case we have (c).
If width (0 :M I) = width (0 :M I2+(x1)) then, by [9, Proposition 3.16] and (†)
for i = 1, we have width (0 :M I) ≤ width (0 :M I2 + (x1, x2)) + 1. Repeating
the above argument if necessary for i = 2, ..., h − 1, we may conclude that
width (0 :M I2 + (x1, ..., xi)) ≥ width (0 :M I) − 1 for all i = 2, ..., h. In any
case we have width (0 :M I2+(x1, ..., xi)) ≥ width (0 :M I)−1 for all i = 1, ..., h
and (c) is proved.

Remark 2.4. Sharp and Taherizadeh in [11] proved that the function
fM : Z −→ Z defined by

fM (n) = ℓA(0 :M mIn/0 :M In)

is a polynomial function. If d denotes the degree of this polynomial function,
then s(I,M) = d+ 1. By the proof of [11, Theorem(4.1) and Corollary (4.2)]
and [5], if x is a part of minimal reduction of I relative to M and M = (0 :M x)
then s(I,M) = s(I,M)− 1.

Let M be a co-Cohen-Macaulay Artinian A-module, we say that an ideal
I is equimultiple ideal if cograde I(M) = s(I,M). For equimultiple ideals with
reduction number 1, we may compute the Burch number in the following way:

Proposition 2.5. Let M be a co-Cohen-Macaulay Artinian A-module
and let I ⊆ A an equimultiple ideal with r(I,M) ≤ 1. Then, B(I,M) =
width (0 :M I).

Proof. We use induction on h := cograde I(M). Let J = (x1, ..., xh)
be a minimal reduction of I relative to M with (0 :M I2) = (0 :M JI).
Since r(I,M) ≤ 1, by Lemma 2.1, the sequence x∗1, ..., x

∗
h is a cosequence

with respect to G(I,M). If h = 0, for all n ≥ 2 one has 0 :M In = M and
so width (0 :M In) = widthM = KdimM ≥ width (0 :M I) then we have
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B(I,M) = width (0 :M I). Suppose that h > 0, and let M = 0 :M (x1). Then,
M is co-Cohen-Macaulay, cograde I(M) = s(I,M) = h − 1 and r(I,M) ≤ 1.
On the other hand, for all n ≥ 2 we consider the following exact sequence

0 −→ 0 :M In + (x1) −→ 0 :M In −→ 0 :M In/0 :M In + (x1) −→ 0

where 0 :M In/0 :M In + (x1) ∼= 0 :M In−1, and hence by [9, Proposition 3.16],

width (0 :M In) ≥ min{width (0 :M In−1),width (0 :M In + (x1))}

= min{width (0 :M In−1),width (0 :M In)}. By induction on n and h we have
width (0 :M In) ≥ width (0 :M I) and B(I,M) = width (0 :M I).

In the sequel we compute the width of the associated graded modules of
equmultiple ideals with reduction number 1.

Proposition 2.6. Let M be a co-Cohen-Macaulay Artinian A-module
and let I ⊆ A an equimultiple ideal with r(I,M) ≤ 1. Then widthG(I,M) =
width (0 :M I) + cograde I(M).

Proof. The proof is by reduction to the case cograde I(M) = 0. Put h :=
cograde I(M). Assume that h = 0. Then the minimal reduction of I relative to
M is 0 and so (0 :M I2) = 0 :M 0 = M and soG(I,M) = (0 :M I)⊕M/(0 :M I).
Thus, widthG(I,M) = min{width (0 :M I),M/(0 :M I)} = width (0 :M I).

Assume now that h > 0, M = 0 :M (x1, ..., xh) and let J = (x1, ..., xh) ⊆ I
be a minimal reduction of I relative to M such that (0 :M I2) = (0 :M JI).
Then, x∗1, ..., x

∗
h is a G(I,M)-cosequence and by [12, Lemma 3.1] we have

(0 :G(I,M) (x∗1, ..., x
∗
h))

∼= G(I, 0 :M (x1, ..., xh)). Hence, widthG(I,M) =

widthG(I, 0 :M (x1, ..., xh)) + h. Since cograde I(M) = s(I,M) = 0 and
r(I,M) ≤ 1, we have that widthG(I, 0 :M (x1, ..., xh)) = width (0 :M I) =
width (0 :M I) and consequently widthG(I,M) = width (0 :M I)+cograde IM .

Corrolary 2.7. Let M be a co-Cohen-Macaulay Artinian A-module and
let I ⊆ A be an equimultiple ideal with r(I,M) ≤ 1. Then, widthG(I,M) =
B(I,M) + s(I,M).

Proof. By Proposition 2.5 we have B(I,M) = width (0 :M I). Now by
using Proposition 2.6 we have widthG(I,M) = B(I,M)+s(I,M), as required.

Proposition 2.8. Let M be a co-Cohen-Macaulay Artinian A-module
and let I ⊆ A an equimultiple ideal with r(I,M) ≤ 2 and (0 :M I2)+(0 :M J) =
(0 :M JI) for any minimal reduction J of I. Then B(I,M) ≥ min{width (0 :M
I2),width (0 :M I)− 1}.



7 On the dual of Burch’s inequality 449

Proof. We prove the proposition by induction on cograde I(M) = h. Let
J = (x1, x2, ..., xh) be a minimal reduction of I relative to M with (0 :M In) =
(0 :M JIn−1) for n ≥ 3. Since r(I,M) ≤ 2 and (0 :M I2)+(0 :M J) = (0 :M JI)
by Lemma 2.1, the sequence x∗1, ..., x

∗
h is a cosequence with respect to G(I,M).

If h = 0, for all n ≥ 3 one has 0 :M In = M and so B(I,M) ≥ min{width (0 :M
I2),width (0 : I)−1}. Suppose that h > 0, and let M = 0 :M (x1). Then, M is
a co-Cohen-Macaulay ring, cograde I(M) = s(I,M) = h− 1 and r(I,M) ≤ 2.
On the other hand, for all n ≥ 3 we have the following exact sequence

0 −→ 0 :M In + (x1) −→ 0 :M In −→ 0 :M In/0 :M In + (x1) −→ 0,

where 0 :M In/0 :M In + (x1) ∼= 0 :M In−1, and hence by [9, Proposition 3.16],

width (0 :M In) ≥ min{width (0 :M In−1),width (0 :M In + (x1))}
= min{width (0 :M In−1),width (0 :M In)}
≥ min{width (0 :M I2),width (0 :M I)− 1,width (0 :M I2),

width (0 :M I)− 1}
≥ min{width (0 :M I2),width (0 :M I)− 1}

such that the second inequality follows by induction on n and h and the third
inequality follows by Lemma 2.3.

Theorem 2.9. Let M be a co-Cohen-Macaulay Artinian A-module and
let I ⊆ A be an equimultiple ideal with r(I,M) ≤ 2 and (0 :M I2)+ (0 :M J) =
(0 :M JI) for any minimal reduction J of I. Then

min{width (0 :M I2),width (0 :M I)− 1}+ cograde I(M)

≤ width (G(I,M))

≤ min{width (0 :M I2),width (0 :M I)}+ cograde I(M)

Proof. We proceed by induction on cograde I(M) = h. If h = 0, one has
(0 :M In) = M for all n ≥ 3 and so

G(I,M) = (0 :M I)⊕ (0 :M I2/0 :M I)⊕ (M/0 :M I2).

Therefore we have

width (G(I,M)) = min{width (0 :M I),width (0 :M I2/0 :M I),

width (M/0 :M I2)}.

Consider the following exact sequences

(2.1) 0 −→ 0 :M I −→ M −→ M/0 :M I −→ 0
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(2.2) 0 −→ 0 :M I2 −→ M −→ M/0 :M I2 −→ 0

(2.3) 0 −→ 0 :M I −→ 0 :M I2 −→ 0 :M I2/0 :M I −→ 0

(2.4) 0 −→ 0 :M I2/0 :M I −→ M/0 :M I −→ M/0 :M I2 −→ 0.

We show that

min{width (0 :M I),width (0 :M I2/0 :M I),width (M/0 :M I2)}
= min{width (0 :M I2),width (0 :M I)}.

For this, we have the following three cases:
(i) If

min{width (0 :M I),width (0 :M I2/0 :M I),width (M/0 :M I2)}
= width (0 :M I),

then by the exact sequence 2.3 and width-Lemma we have

width (0 :M I2) ≥ min{width (0 :M I),width (0 :M I2/0 :M I)}
= width (0 :M I)

and the assertion holds.
(ii) If

min{width (0 :M I),width (0 :M I2/0 :M I),width (M/0 :M I2)}
= width (0 :M I2/0 :M I),

then width (0 :M I2/0 :M I) ≤ width (0 :M I). In fact we can assume that
width (0 :M I2/0 :M I) < width (0 :M I). If this is not hold, then width (0 :M
I2/0 :M I) = width (0 :M I) and by the previous case the assertion holds.
Therefore by the exact sequence 2.3 and width-Lemma we have

width (0 :M I2) ≥ min{width (0 :M I),width (0 :M I2/0 :M I)}
= width (0 :M I2/0 :M I)

= width (0 :M I2).

(iii) If

min{width (0 :M I),width (0 :M I2/0 :M I),width (M/0 :M I2)}
= width (M/0 :M I2),

then we can assume that

width (M/0 :M I2) < min{width (0 :M I),width (0 :M I2/0 :M I)}.

On the other hand, by the previous case the assertion holds.
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Therefore width (M/0 :M I2) < width (M) and by width-Lemma
width (0 :M I2) = width (M/0 :M I2)− 1 and this is contradiction by applying
width-Lemma on the exact sequence 2.3. Thus we have

width (G(I,M)) = min{width (0 :M I2),width (0 :M I)}.

Suppose that h > 0, and let J = (x1, x2, ..., xh) be a minimal reduction
of I relative to M with (0 :M In) = (0 :M JIn−1) for n ≥ 3. Since r(I,M) ≤ 2
and (0 :M I2)+ (0 :M J) = (0 :M JI), by Lemma 2.1, the sequence x∗1, ..., x

∗
h is

a cosequence with respect to G(I,M). Then by [12, lemma 3.1]

0 :G(I,M) (x
∗
1, x

∗
2, ...x

∗
h)

∼= G(I, (0 :M (x1, x2, ..., xh))

and
width (G(I,M)) = width (G(I, (0 :M (x1, x2, ..., xh))) + h.

Let M = 0 :M (x1, x2, ..., xh), then M is co-Cohen-Macaulay, cograde I(M) =
s(I,M) = 0 and r(I,M) ≤ 2. Then by induction hypothesis we have

width (G(I,M)) = min{width (0 :M I2),width (0 :M I)}+ h.

By Lemma 2.3, if width (0 :M I) > width (0 :M I2), then

width (G(I,M)) = min{width (0 :M I2),width (0 :M I)}+ h

and if width (0 :M I) ≤ width (0 :M I2), then

width (G(I,M)) ≥ min{width (0 :M I2),width (0 :M I)− 1}+ h.
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