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We analyze the generating mechanisms for heteroclinic cycles in Z3
2–equivariant

ODEs, not involving Hopf bifurcations. Such cycles have been observed in dif-
ferent areas of physics see [1, 8, 12], as well in modelling the geomagnetic field
of Earth [15], and as far as we know, there is no available theoretical data ex-
plaining these phenomena. We use singularity theory to study the equivalence in
the group-symmetric context, as well as the recognition problem for the simplest
bifurcation problems with this symmetry group. Singularity results highlight
different mechanisms for the appearance of heteroclinic cycles, based on the
transition between the bifurcating branches.
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1. INTRODUCTION

The interest on the behavior offered by Z2 × Z2 × Z2 := Z3
2–equivariant

ODEs increased considerably over the last decade, due to its applications in
physics [8, 1, 12], and modeling the geomagnetic field of Earth [15]. The
model proposed by Alexandre Rodrigues in 2013 [15], represents an important
advance in reproducing the fluctuations of the geomagnetic field. Its main
achievement is the capability of predicting the observed heteroclinic fluctua-
tions of the geomagnetic field. By considering the chaotic switching between
heteroclinic networks in ODE systems with Z3

2 symmetry, this model general-
izes and improves the popular models considered by Melbourne et al. in [11].
Another application consists of the quantization of the supersymmetric action
of the supermembrane, restricted by a topological condition, on a particular
G2 manifold. The development of Belhaj et al. in [1] represents a new kind of
supersymmetric quantum consistent models with potentially interesting prop-
erties from a phenomenological point of view.

Different mechanisms producing the heteroclinic cycles have been de-
scribed such as the interaction between Hopf modes [9] or the symmetry break-
ing [2, 13, 6].
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The present manuscript can be viewed as linking and extending the the-
oretical framework of Ian Melbourne in [9], with the oscillatory phenomena
modeled in [15]. More specifically, in our paper we do not appeal to the Hopf
bifurcation as in [9] or chaotic switching as in [15] or the symmetry breaking
as in [2, 13, 6], to explain the heteroclinic cycles observed in systems with Z3

2

symmetry. The mechanisms proved here are new.

We will show that the bifurcation analysis from the singularity and group
theoretical points of view as well as the weak–coupling case can offer valu-
able insight on the mechanisms leading to heteroclinic cycles in Z3

2–equivariant
systems, with no involvement of the Hopf bifurcation.

So far, the main reference on the heteroclinic cycles appearing in Z3
2–

equivariant systems is Melbourne’s work [9]. In this article the author analyzes
the interaction of three Hopf modes to show that locally a bifurcation gives rise
to heteroclinic cycles between three periodic solutions. More specifically, he
considers a vector f field with an equilibrium and assumes that the Jacobian
matrix of f about this equilibrium has three distinct complex conjugate pairs
of eigenvalues on the imaginary axis. He obtains three branches of periodic
solutions arising at the Hopf point from the steady–state equilibrium, as the
parameters are varied. He uses Birkhoff normal form, to approximate f close
to the bifurcation point by a vector field commuting with the symmetry group
of the three-torus.

In this paper we do not assume the existence of three Hopf modes to
study the heteroclinic cycles in Z3

2–equivariant systems. Instead, we perform
a detailed analysis of the bifurcation problem with Z3

2 symmetry, with results
from singularity theory. More specifically, after analyze the action of the group
Z3
2 on R3, we study the restrictions on bifurcation problems g commuting with

Z3
2 symmetry; we analyze the equivalence and the recognition problem for the

simplest bifurcation problems with Z3
2–symmetry. This allows us to identify

two new possible mechanisms for obtaining heteroclinic cycles in these systems.
They are based on the smooth transition and jumping between the bifurcating
solution branches, respectively. Moreover, we carry out the the linearization
of the normal form with Z3

2–symmetry. This allow us to obtain the explicit
form of all possible eigenvalues for this problem. Up to this point, we owe our
results to the application of the analysis methods developed in [4] and [5].

By providing two additional mechanisms capable of generating hetero-
clinic cycles in Z3

2–equivariant systems, we believe our paper affords significant
additional insight to the original knowledge of these phenomena due to Mel-
bourne [9].

In Section 2 we discuss the bifurcation problems with Z3
2 symmetry from

three angles: the group action on R3, the restrictions on bifurcation problems
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g commuting with this group, and define the solution types. In Section 3 we
use singularity theory: to study the equivalence in the Z3

2–symmetric context;
to analyze the recognition problem for the simplest bifurcation problems with
this symmetry group and to analyze the linearized stability of the normal form.
This section involves multiple but straightforward computations, especially in
the proof of Theorem 3. We gave all the computation details, but, because of
the dimensions of the involved matrices, we preferred to analyze the outcome
rather than filling many pages with unnecessary rows/columns. We conclude
this section by identifying two important mechanisms for generating hetero-
clinic cycles with no need of invoking Hopf bifurcation. Finally, we give the
linearization calculations with the consequent stability results of the bifurcat-
ing branches.

2. BIFURCATION PROBLEMS WITH Z3
2 SYMMETRY

In this section we discuss the following points:

(a) The action of the group Z3
2 on R3;

(b) Restrictions on bifurcation problems g commuting with Z3
2;

(c) Solution types of the equation g = 0.

2.1. Preliminary notations

The application of Singularity Theory to our bifurcation analysis requires
the use of many concepts developed in [4]. To facilitate the reading of this
paper, we give here a brief description of them adapted to our case; for more
details, the reader is invited to visit the mentioned reference which constitutes
the main guidance for this section of the paper. Let x = (x, y, z) ∈ R3. For
the clarity of the explanations, we will use the explicit expression of the above
equation only when it is required by the situation. By

Ex,λ

we denote the space of all functions in three state parameters and one bifur-
cation parameter (λ), that are defined and C∞ on some neighborhood of the
origin. A germ is an equivalence class in Ex,λ. We denote by

Ex,λ(Γ)

the ring of Γ–equivariant germs. That is, if f is a germ, then

f(γ · x) = γ · f(x), ∀x ∈ R3, ∀γ ∈ Γ.

The module
−→
E (Γ) over the ring E (Γ) is defined as in the following Theorem.
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Theorem 1 (Poénaru, 1976, [14]). Let Γ be a compact Lie group and

let g1, . . . , gr generate the module
−→
P(Γ) of Γ–equivariant polynomials over the

ring P(Γ). Then g1, . . . , gr generate the module
−→
E (Γ) over the ring E (Γ).

Moreover, as in [4], we have the following definition for
←→
E x,λ(Γ):

←→
E x,λ(Γ) = {3× 3 matrix germs S(x, λ) : S(γ · x, λ) = γ · S(x, λ)} .

We define −→
M x,λ(Γ) =

{
g ∈
−→
E x,λ(Γ) : g(0, 0) = 0

}
;

that is,
−→
M x,λ(Γ) consists of Γ–equivariant mappings that vanish at the origin.

Finally, we need to define the Γ–equivariant restricted tangent space RT (h,Γ)

of a Γ–equivariant bifurcation problem h ∈
−→
E (Γ). In order to do this, we have

to give first the following definition.

Definition 1. Let g, h : R3 ×R → R3, g, h ∈
−→
E x,λ(Γ) be a bifurcation

problem with three state variables. Then g and h are equivalent if there exists
an invertible change of coordinates (x, λ) 7→ (Z(x, λ),Λ(λ)) and S is a 3 × 3
invertible matrix depending smoothly on x, such that

(1) g(x, λ) = S(x, λ)h(Z(x, λ),Λ(λ))

where the mapping Φ(x, λ) = (Z(x, λ),Λ(λ)) is preserving the orientation in
λ; in particular,

(2)

Z(0) = 0,Λ(0) = 0,det(dZ)(0) ̸= 0,Λ′(0) > 0, (dZ)0,0 ∈ LΓ(V )0

Z(γ · x, λ) = γ · Z(x, λ), S(γ · x, λ) = γ · S(x, λ), S(0, 0).
We call g and h strongly Γ–equivalent if Λ(λ) ≡ λ.

We define the Γ–equivariant restricted tangent space of g to be

RT (g,Γ) = {S · g + (dg)Z, Z(0, 0) = 0} ,

while S(x, λ) and Z satisfy (2). In all of these cases, of course Γ = Z3
2.

Lemma 1 (Nakayama’s Lemma, [4]). Let I and J be ideals in En, and
assume that I = ⟨p1, . . . , pl⟩ is finitely generated. Then I ⊂ J if and only
if I ⊂J + M · ⊂ I .

2.2. The action of Z3
2 on R3

The group Z3
2 has eight elements (κ, ζ, ξ) where κ = ±1, ζ = ±1, ξ = ±1.

The group element (κ, ζ, ξ) acts on the point (x, y, z) ∈ R3 by

(κ, ζ, ξ) · (x, y, z) = (κx, ζy, ξz).
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We may think of the action of (κ, ζ, ξ) on R3 as a linear mapping; the matrix
associated to the action (κ, ζ, ξ) is the diagonal matrix

(3)

κ 0 0
0 ζ 0
0 0 ξ

 .

The behavior of the action of Z3
2 on R3 is different at different points in R3.

We describe these differences in two ways: through orbits and through isotropy
subgroups.

The orbit of a point (x, y, z) under the action of Z3
2 is the set of points{

(κ, ζ, ξ) · (x, y, z) : (κ, ζ, ξ) ∈ Z3
2

}
.

There are eight orbit types:

(4)

(a) The origin, (0, 0, 0),
(b) Points on the x− axis, (±x, 0, 0) with x ̸= 0,
(c) Points on the y − axis, (0,±y, 0) with y ̸= 0,
(d) Points on the z− axis, (0, 0,±z) with z ̸= 0,
(e) Points on the plane x = 0, (0,±y,±z) with y ̸= 0, z ̸= 0
(f) Points on the plane y = 0, (±x, 0,±z) with x ̸= 0, z ̸= 0
(g) Points on the plane z = 0, (±x,±y, 0) with x ̸= 0, y ̸= 0
(h) Points off the axes, (±x,±y,±z) with x ̸= 0, y ̸= 0, z ̸= 0.

We see that orbits have either 1, 2, 4 or 8 points, the origin being the
unique one-orbit point. The isotropy subgroup of a point (x, y, z) is the set
of symmetries preserving that point. In symbols, the isotropy subgroup of the
point (x, y, z) is {

(κ, ζ, ξ) ∈ Z3
2 : (κ, ζ, ξ) · (x, y, z) = (x, y, z)

}
.

It is easy to see that there are eight isotropy subgroups:

(a) Z3
2 corresponding to the origin,

(b) Z2 × Z2 = {1, ζ, ξ} corresponding to (x, 0, 0) with x ̸= 0,

(c) Z2 × Z2 = {κ, 1, ξ} corresponding to (0, y, 0) with y ̸= 0,

(d) Z2 × Z2 = {κ, ζ, 1} corresponding to (0, 0, z) with x ̸= 0,

(e) Z2 = {κ, 1, 1} corresponding to (0, y, z) with y ̸= 0, z ̸= 0,

(f) Z2 = {1, ζ, 1} corresponding to (x, 0, z) with x ̸= 0, z ̸= 0,

(g) Z2 = {1, 1, ξ} corresponding to (x, y, 0) with x ̸= 0, y ̸= 0,

(h) 1 = {1, 1, 1} corresponding to (x, y, z) with x ̸= 0, y ̸= 0, z ̸= 0.
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2.3. The form of Z3
2–symmetric bifurcation problems

Let g : R3×R→ R3 be a bifurcation problem with three state variables;
that is, let g be C∞ and satisfy

g(0, 0, 0, 0) = 0, (dg)(0,0,0,0) = 0.

We say that the bifurcation problem g commutes with Z3
2 if

(5) g((κ, ζ, ξ) · (x, y, z), λ) = (κ, ζ, ξ) · g(x, y, z, λ).

We will need the following result for the next lemma.

Lemma 2. If f ∈ Ex,λ is even in x, then f may be expressed as a smooth
function of x2 and λ; in symbols,

f(x, λ) = a(x2, λ).

Proof. See Lema VI, 2.1 page 248 in [4].

We can now state

Lemma 3. Let us consider the g : R3 × R → R bifurcation problem in
three state variables commuting with the action of Z3

2. Then there exist smooth
functions p(u, v, w, λ), q(u, v, w, λ), r(u, v, w, λ) such that

(6)
g(x, y, z, λ) = (p(x2, y2, z2, λ)x, q(x2, y2, z2, λ)y, r(x2, y2, z2, λ)z),

p(0, 0, 0, 0) = 0, q(0, 0, 0, 0) = 0, r(0, 0, 0, 0) = 0.

Proof. We write g in coordinates

(7) g(x, y, z, λ) = (a(x, y, z, λ), b(x, y, z, λ), c(x, y, z, λ)).

Commutativity with equation (5) implies

(8)
a(κx, ζy, ξz, λ) = κa(x, y, z, λ), b(κx, ζy, ξz, λ) =

= ζb(x, y, z, λ), c(κx, ζy, ξz, λ) = ξc(x, y, z, λ).

The action of ξ is defined by (x, y, z) → (x, y,−z). Now κ transforms z into
z̄, i.e. (x, y, z) → (x,−y, z) and the action of ζ is +1. When κ = −1, ζ =
+1, ξ = +1, equation (8) shows that a is odd in x while b and c are even in x,
respectively and c is even in z. When κ = +1, ζ = −1, ξ = +1, equation (8)
shows that a is even in y, b is odd in y, while c is even in y and z.

Conversely, if κ = −1, ζ = +1, ξ = −1, we get that a is odd in x while
b is even in x and c is odd in x and z while when κ = 1, ζ = +1, ξ = −1 we
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get that a is even in y, b is odd in y, while c is odd in y and z. It follows from
the Taylor’s theorem that we may factor these functions

(9)
a(x, y, z, λ) = ā(x, y, z, λ)x, b(x, y, z, λ) =

= b̄(x, y, z, λ)y, c(x, y, z, λ) = c̄(x, y, z, λ)z

where ā, b̄ and c̄ are even in x, y and z. Applying Lemma 2 first to x, then
to y and finally to z we conclude that g has the desired form (6). The linear
terms in g vanish. The only linear terms compatible with the symmetry are

(p(0, 0, 0, 0)x, q(0, 0, 0, 0)y, r(0, 0, 0, 0)z);

thus, p(0, 0, 0, 0) = q(0, 0, 0, 0) = r(0, 0, 0, 0) = 0.

2.4. Solution types for g

Consider solving the equation g = 0 when g has the form (6). There
are eight solution types which occur according as the first, the second or the
third factor in p(x2, y2, z2, λ)x vanishes, the first, the second or the third fac-
tor in q(x2, y2, z2, λ)y vanishes or the first, the second or the third factor in
r(x2, y2, z2, λ)r vanishes. Specifically, we have the solution types

(a) x=y=z=0,

(b) p(x2, 0, 0, λ) = 0, y = z = 0, x ̸= 0,

(c) q(0, y2, 0, λ) = 0, x = z = 0, y ̸= 0,

(d) r(0, 0, z2, λ) = 0, x = y = 0, z ̸= 0,

(e) p(x2, y2, 0, λ) = 0, q(x2, y2, 0, λ) = 0, z = 0, x ̸= 0 y ̸= 0,

(f) p(x2, 0, z2, λ) = 0, r(x2, 0, z2, λ) = 0, y = 0, x ̸= 0 z ̸= 0,

(g) q(0, y2, z2, λ) = 0, r(0, y2, z2, λ) = 0, x = 0, y ̸= 0 z ̸= 0,

(h) p(x2, y2, z2, λ) = 0, q(x2, y2, z2, λ) = 0, r(x2, y2, z2, λ) = 0,
x ̸= 0, y ̸= 0, z ̸= 0.

These solution types correspond exactly to the orbit types listed in (4)
of the action of Z3

2 on R3. As in [4] we use the following terminology for these
five types of solutions:

(a) trivial solutions,
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(b) x–mode solutions,

(c) y–mode solutions,

(d) z–mode solutions,

(e) xy–mixed mode solutions,

(f) xz–mixed mode solutions,

(g) yz–mixed mode solutions,

(h) xyz–mixed mode solutions.

Each solution type has its own characteristic multiplicity. The x–mode,
y–mode and z–mode solutions always come in pairs (±x, 0, 0), (0,±y, 0),
(0, 0,±z) and mixed mode solutions on the one hand four at the time, and they
are (±x,±y, 0), (±x, 0,±z) and (0,±y,±z), while (±x,±y,±z) come eight at
a time.

3. SINGULARITY RESULTS

We divide this section into three subsections:

(1) Equivalence in the Z3
2– symmetric context;

(2) The recognition problem for the simplest bifurcation problems with
Z3
2– symmetry;

(3) Linearized stability and Z3
2 symmetry.

3.1. Z3
2–equivalence

The singularities we describe here have codimension eight and modality
six. We have the following remarks regarding Definition 1.

Remark 1. Since S in (1) is invertible, we see that

(10) Φ({(z, λ) : g(x, λ) = 0}) = {(x, λ) : h(x, λ) = 0} .

Thus equivalences preserve bifurcation diagrams. They also preserve the ori-
entation of the parameter λ.
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Let g, h : R3×R→ R3 be a bifurcation problem with three state variables
commuting with the action of Z3

2. We say that g and h are Z3
2–equivalent if

g and h are equivalent in the sense of the Definition 1, and in addition the
equivalence preserves the symmetry. Recall that g and h are equivalent if
there exists a 3× 3 invertible matrix S(x, y, z, λ) depending smoothly on x, y,
z and λ and a diffeomorphism Φ(x, y, z, λ) = (Z(x, y, z, λ),Λ(λ)) satisfying

(11) g(x, y, z, λ) = S(x, y, z, λ)h(Z(x, y, z, λ),Λ(λ))

such that

(12) Φ(0, 0, 0, 0) = (0, 0, 0, 0) and Λ′(0) > 0.

We say that the equivalence S, Φ preserves the symmetry if

(13)

(a) Z(κx, ζy, ξz, λ) = (κ, ζ, ξ) · Z(x, y, z, λ),

(b) S(κx, ζy, ξz, λ)

κ 0 0
0 ζ 0
0 0 ξ

 =

κ 0 0
0 ζ 0
0 0 ξ

S(x, y, z, λ).

Condition (13) restricts the form of Z and S in the following ways. By applying
Lemma 3 one shows that

(14) Z(x, y, z, λ) = (a(x2, y2, z2, λ)x, b(x2, y2, z2, λ)y, c(x2, y2, z2, λ)z).

Therefore

(15) (dZ)(0,0,0,0) =

a(0, 0, 0, 0) 0 0
0 b(0, 0, 0, 0) 0
0 0 c(0, 0, 0, 0)

 ;

i.e (dZ)(0,0,0,0) is diagonal. Dealing now with S, we write out entries of S as

(16)

S1(x, y, z, λ) S2(x, y, z, λ) S3(x, y, z, λ)
S4(x, y, z, λ) S5(x, y, z, λ) S6(x, y, z, λ)
S7(x, y, z, λ) S8(x, y, z, λ) S9(x, y, z, λ)

 .

A calculation using (13) (b) shows that S1, S5 and S9 are even in x, y and z,
while S2, S3, S4, S6, S7 and S8 are odd in x, y and z. Therefore, Lemma 2
together with Taylor’s theorem implies that
(17)

S(x, y, z, λ) =

 d1(x
2, y2, z2, λ) d2(x

2, y2, z2, λ)xyz d3(x
2, y2, z2, λ)xyz

d4(x
2, y2, z2, λ)xyz d5(x

2, y2, z2, λ) d6(x
2, y2, z2, λ)xyz

d7(x
2, y2, z2, λ)xyz d8(x

2, y2, z2, λ)xyz d9(x
2, y2, z2, λ)

 .

In particular S(0, 0, 0, 0) is diagonal and has the form

(18) S(x, y, z, λ) =

d1(0, 0, 0, 0) 0 0
0 d5(0, 0, 0, 0) 0
0 0 d9(0, 0, 0, 0)

 .
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In order to have Z3
2–equivalences preserved linear stability (which will be

discussed in detail in the next section), we shall require that Z3
2–equivalences

satisfy

(19)
a(0, 0, 0, 0) > 0, b(0, 0, 0, 0) > 0, c(0, 0, 0, 0) > 0,

d1(0, 0, 0, 0) > 0, d5(0, 0, 0, 0) > 0, d9(0, 0, 0, 0) > 0.

So far we have proved

Proposition 1. Two bifurcation problems g and h, both commuting with
the group Z3

2, are Z3
2–equivalent if there exists S and Φ = (Z,Λ) as above

satisfying (11), (12), (13) (16), (17) and (18).

3.2. The recognition problem for the simplest examples

Let g be a bifurcation problem with three state variables commuting with
the group Z3

2. Thus g has the form (6). We split off the lowest terms in (6), i.e.

(20) g(x, y, z, λ) = k(x, y, z, λ) + hot

where

(21)
k(x, y, z, λ) =

(
Ax3 +Bxy2 + Cxz2 + αλx,Dyx2+

+Ey3 + Fyz2 + βλy,Gzx2 +Hzy2 + Iz3 + γλz
)
.

The higher-order terms in (20) include monomials xrysλt, xrzsλt and yrzsλt

satisfying at least one of the following conditions:

(a) r + s ⩾ 5,

(b) t = 1, r + s ⩾ 3,

(c) t ⩾ 2.

Before proceeding with our analysis, we shall introduce the notion of
nondegenerate bifurcation problem in three state variables. The bifurcation is
nondegenerate if it satisfies several inequalities which are invariants of equiva-
lence. Our first nondegeneracy condition is

(22) gλ(0, 0, 0) ̸= 0.

Let

k̄(x, y, z) = (Ax2 +By2 + Cz2, Dx2 + Ey2 + Fz2, Gx2 +Hy2 + Iz2).
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Then our second nondegeneracy condition is

(23) minors(det(J(k̄))) ̸= 0,

where J(k̄) is the Jacobian matrix of k̄. This condition is to constrain the three
roots of the determinant of the Jacobian matrix to be different. Taking into
account the generic nondegeneracy conditions (23) and (as it will be seen in
Theorem 4), the specific conditions dictated by the choice of the parameters
in (38), we have the following definition.

Definition 2. The bifurcation problem g in (20)–(21) is nondegenerate if
all the following conditions are satisfied:

(24)

A ̸= 0, E ̸= 0, I ̸= 0, α ̸= 0, β ̸= 0, γ ̸= 0, B|β| ≠ |Eα|,

D|α| ≠ |Aβ|, G|α| ≠ |Aγ,C|γ| ≠ |Iα|, F |γ| ≠ |Iβ|,

H|β| ≠ |Eγ|, AE ̸= BD, BF ̸= CE, AF ̸= CD.

Our main goal in this subsection is to state and prove the Theorem 4, in
which we solve the recognition problem for nondegenerate bifurcation problems
commuting with the Z3

2. However, before even stating it, we need a sequence of
three preliminary results. The first couple of results recall the Theorem XIV
1.3 and the Proposition XIV 1.4, both from [4], whose proofs can be found
in the same reference. The third result is one of our particular developments;
while it stands as a result on its own, it also constitutes the second part of the
proof of Theorem 4. We have:

Theorem 2 (Theorem XIV 1.3, [4]). Let Γ be a compact Lie group acting

on V. Let h ∈
−→
E x,λ(Γ) be a Γ–equivariant bifurcation problem and let p be any

germ in
−→
E x,λ(Γ). Suppose that

RT (h+ tp,Γ) = RT (h,Γ)

for all t ∈ [0, 1]. Then h+ tp is strongly Γ–equivalent to h for all t ∈ [0, 1].

Proposition 2 (Proposition XIV 1.4, [4]). Let Γ be a compact Lie group

acting on V and let h ∈
−→
E x,λ(Γ). Then RT (h,Γ) is a finitely generated sub-

module of
−→
E x,λ(Γ) over the ring Ex,λ(Γ). Moreover, RT (h,Γ) is generated by

S1h, . . . , Sth; (dh)(X1), . . . , (dh)(Xs)

where S1, . . . , St generate
←→
E x,λ(Γ) and X1, . . . , Xs generate

−→
M x,λ(Γ).

Theorem 3. Suppose that g is a nondegenerate Z3
2–equivariant bifurca-

tion problem. Then g is strongly Z3
2–equivalent to h.
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Proof. To perform the proof, we choose to work with Z3
2–invariant coor-

dinates. For this purpose, we need to find the generators for RT (h,Z3
2). In

Lemma 3 we have taken care of the generators for E (Z3
2) and

−→
E (Z3

2). Once the
generators for RT (h,Z3

2) are computed, then by working in invariant coordi-
nates, the action of Z3

2 is effectively annihilated. Our purpose is to show that
under the assumption of nondegeneracy,

(25) RT (h+ tφ,Z3
2) = RT (h,Z3

2), ∀t ∈ R.

Then we will apply Theorem 2 to complete the proof. We start by identifying

(working with invariant coordinates), an isomorphism between
−→
E x,y,z,λ(Z3

2)

and
−→
E u,v,w,λ(Z3

2), where u = x2, v = y2 and w = z2. That is,

g(x, y, z, λ) = (p(x2, y2, z2, λ)x, q(x2, y2, z2, λ)y, r(x2, y2, z2, λ)z).

We write g in the form [p(u, v, w, λ), q(u, v, w, λ), r(u, v, w, λ)] and work in
−→
E u,v,w,λ(Z3

2) which is a module over Eu,v,w,λ(Z3
2). A short calculation shows

that the nine generators of
←→
E (Z3

2) are the 3×3 matrices Sk, k = 1, . . . , 9, each
with eight zero entries while the ninth entry is sij = 1 if i = j, sij = sji if i ̸= j
and s12 = xy, s13 = xz, s23 = yz. Moreover, one observes that RT (g,Z3

2)

can be viewed as a submodule of
−→
E u,v,w,λ(Z3

2), which has the following twelve
generators:

(26)
[p, 0, 0], [0, q, 0], [0, 0, r], [qv, 0, 0], [rw, 0, 0], [0, pu, 0], [0, rw, 0],

[0, 0, pu], [0, 0, qv], [upu, uqu, uru], [vpv, vqv, vrv], [wpw, wqw, wrw].

We need to show that

(27) M 2
u,v,w,λ

−→
E u,v,w,λ ⊂ RT (h+ tφ,Z3

2).

In order to do this, let I ⊂ RT (g,Z3
2) be the submodule with the twenty–seven

generators

(28)

ν[p, 0, 0], ν[0, q, 0], ν[0, 0, r], ν[qv, 0, 0], ν[rw, 0, 0],

ν[0, pu, 0], ν[0, rw, 0], ν[0, 0, pu], ν[0, 0, qv], ν[upu, uqu, uru],

ν[vpv, vqv, vrv], ν[wpw, wqw, wrw].

where ν = u, v, w or λ and g = h+ tφ. We claim that

(29) M 2
u,v,w,λ

−→
E u,v,w,λ = I .

If (29) is true then (27) is also true. In addition, if (29) is true then

(30) (a) RT(h + tφ,Z3
2) = M 2

u,v,w,λ

−→
E u,v,w,λ +W,
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where

(31)
(b) W = R {[p, 0, 0], [0, q, 0], [0, 0, r],

u[pu, qu, ru], v[pv, qv, rv], w[pw, qw, rw]} .

We compute now the elements composing the basis of W modulo terms in

I = M 2
u,v,w,λ

−→
E u,v,w,λ, that is, the terms that are quadratic in u, v, w, λ.

(32)

(a) [p, 0, 0] ≡ [Au + Bv + Cw+ αλ, 0, 0] (modI )

(b) [0, q, 0] ≡ [0,Cu + Dv + Fw + βλ, 0] (modI )

(c) [0, 0, r] ≡ [0, 0, Gu+Hv + Iw + γλ] (modI )

(d) u[pu, qu, ru] ≡ [Au,Cu,Gu] (modI )

(e) v[pv, qv, rv] ≡ [Bv,Dv,Hv] (modI )

(f) w[pw, qw, rw] ≡ [Cw,Fw, Iw] (modI ).

From (31) and (32) it follows that

(33)

RT (h+ tφ,Z3
2) =

M 2
u,v,w,λ

−→
E u,v,w,λ ⊕R {[Au+Bv + Cw + αλ, 0, 0],

[0, Cu+Dv + Fw + βλ, 0], [0, 0, Gu+Hv + Iw + γλ],

[Au,Cu,Gu], [Bv,Dv,Hv], [Cw,Fw, Iw]} .

From (33) we conclude that R(h + tφ,Z3
2) is independent of tφ, determining

(25). But the proof of (25) is not complete yet. To achieve it, we have to
determine (29). For this purpose, we will make use of the nondegeneracy of
h. We know that all the generators of I in (28) are composed of quadratic or
higher order terms in u, v, w or λ. Therefore, the following inclusion happens:

I ⊂M 2
u,v,w,λ

−→
E u,v,w,λ.

To prove (29) we must show that the inverse inclusion is also true, i.e.

M 2
u,v,w,λ

−→
E u,v,w,λ ⊂ I .

From Nakayama’s Lemma 1, the above inclusion is true provided

(34) M 2
u,v,w,λ

−→
E u,v,w,λ ⊂ I + M 3

u,v,w,λ

−→
E u,v,w,λ.
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By inspection we see that tφ consists of terms of quadratic or higher order in
u, v, w or λ. Hence, tφ enters the generators of I in (28) only through cubic
or higher order terms in u, v, w or λ. Therefore, when checking (34) we can
assume tφ ≡ 0. For the rest of the proof we consider the thirty generators of

the module M 2
u,v,w,λ

−→
E u,v,w,λ; they are of the form

(35)
[i, 0, 0], [0, i, 0], [0, 0, i],

where i = {u2, v2, w2, λ2, uv, uw, uλ, vw, vλ, wλ}.

Moreover, we want to express these thirty generators of M 2
u,v,w,λ

−→
E u,v,w,λ in

terms of the twenty–seven generators of I in (28). Since tφ ≡ 0, we can write

(36)

(a) p = Au + Bv + Cw+ αλ,

(b) q = Du + Ev + Fw + βλ,

(c) r = Gu + Hv + Iw + γλ.

This yields a 30 × 27 matrix, which we call M . The idea is that if we show
that the rank of this matrix is 27, then using basic algebra we can affirm
that each generator of I in (28) can be written in terms of the genera-
tors in (35), hence (34) will follow. Now the size of the matrix M makes
its explicit form impossible to be written in this paper. However, based
on the nondegeneracy conditions (24), we will show that certain number of
columns/rows can be removed, so in the end we will have showed that the
rank of this matrix is 27, proving (34). We begin by taking into account
the nondegeneracy conditions α ̸= 0, β ̸= 0, γ ̸= 0, AE ̸= BD, BF ̸=
CE, AF ̸= CD. This way we can remove from the matrix M the 12 columns
λ[p, 0, 0], λ[0, q, 0], λ[0, 0, r], i[pu, qu, ru], i[pv, qv, rv], i[pw, qw, rw] where i =
uv, uw, vw, and 12 rows [λ2, 0, 0], [0, λ2, 0], [0, 0, λ2], [i, 0, 0], [0, i, 0], [0, 0, i]
where i = uv, uw, vw. This way we obtain a 18 × 15 matrix whose rank is
precisely 15.

Next we use nondegeneracy assumptions B|β| ̸= |Eα|, D|α| ̸= |Aβ|,
G|α| ≠ |Aγ|, C|γ| ≠ |Iα|, F |γ| ≠ |Iβ|, H|β| ≠ |Eγ|, to remove the 6 rows
[w2, 0, 0], [0, v2, 0], [0, 0, u2], [λw, 0, 0], [0, λv, 0], [0, 0, λu] and the 6 columns
w[p, 0, 0], v[0, q, 0], u[0, 0, r], [wr, 0, 0], [0, vq, 0], [0, 0, up]. This yields a 9 × 6
matrix; we finally use the remaining nondegeneracy conditions A ̸= 0, E ̸=
0, I ̸= 0 (see (24)) to show that this matrix does have rank 6. Therefore, the
original matrix M has rank 27, and we have proved (34).

Theorem 4. Let g : R3 × R → R3 be a bifurcation problem in three
state variables commuting with the group Z3

2 and satisfying the nondegeneracy
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conditions (24). Then g is Z3
2–equivalent to

(37)
h(x, y, z, λ) = (ε1x

3 +m1xy
2 + n1xz

2 + ε2λx, ε3y
3 +m2yx

2+

+n2yz
2 + ε4λy, ε5z

3 +m3zx
2 + n3zy

2 + ε6λz)

where

(38)

ε1 = sgn(A), ε3 = sgn(E), ε5 = sgn(I), ε2 = sgn(α),

ε4 = sgn(β), ε6 = sgn(γ),
B|β|
|Eα|

, m2 =
D|α|
|Aβ|

,

m1 = m3 =
G|α|
|Aγ|

, n1 =
C|γ|
|Iα|

, n2 =
F |γ|
|Iβ|

, n3 =
H|β|
|Eγ|

.

Moreover,

(39)
m1 ̸= ε2ε3ε4, m2 ̸= ε1ε2ε4, m3 ̸= ε1ε2ε6, n1 ̸= ε2ε5ε6,
n2 ̸= ε4ε5ε6, n3 ̸= ε3ε4ε5, m1m2 ̸= ε1ε3, m1n2 ̸= ε3n1.

Remark 2.
1. The normal form h in (37) depends on the six parameters mi, ni, i =

1, 2, 3 satisfying the nondegeneracy conditions (39). These are the six modal
parameters promised at the very beginning of the Subsection 3.1.

2. The proof of Theorem 4 divides into two parts. In the first part, we use
the linear Z3

2–equivalences to transform k to the normal form h. In the second
part, we show that the higher–order terms can be annihilated by a nonlinear
Z3
2–equivalence. This second part actually consists entirely on the proof of

Theorem 3.

Proof. The most general linear Z3
2–equivalence is given by

Z(x, y, z, λ) = (ax, by, cz), Λ(λ) = σλ, S(x, y, z, λ) =

d 0 0
0 e 0
0 0 f

 ,

where a, b, c, d, e and f are positive constants. Letting this equivalence act
on k(x, y, z, λ), which is given by (21), we find

(40)

d 0 0
0 e 0
0 0 f

 k(ax, by, cz, σλ) =

=

Ada3x3 +Bdab2xy2 + Cdac2xz2 + dαλσax
Dea2byx2 + Eeb3y3 + Febc2yz2 + eβλσby
Gfa2czx2 +Hfb2czy2 + Ifc3z3 + fγλσcz

 .
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To obtain the normal form (37) we need

(41)
|A|da3 = 1, daσ|α| = 1, |E|eb3 = 1,

ebσ|β| = 1, |I|fc3 = 1, fcσ|γ| = 1.

We solve equations (41) to obtain

(42)

d =
1

a3|A|
, e =

1

b3|E|
, f =

1

c3|I|
, σ =

a2|A|
|α|

,

a

b
=

√∣∣∣∣Eα

Aβ

∣∣∣∣, a

c
=

√∣∣∣∣ IαCγ

∣∣∣∣, b

c
=

√∣∣∣∣ IβEγ

∣∣∣∣.
Substitution of (42) into the right–hand side of (40) yields the normal form
(37) with m1, m2, m3, n1, n2 and n3 given in (38). Then we use Theorem 3
to complete the proof.

The preceding analysis of the Z3
2–equivariant bifurcation problem yields

an example, namely, following form of equation (38)

(43) G(x, y, z, λ) =


ε1x

3 +m1xy
2 + n1xz

2 − λx

ε3y
3 +m2yx

2 + n2yz
2 − λy

ε5z
3 +m3zx

2 + n3zy
2 − λz

 .

We will state the next theorem whose proof is identical to the proof of Theorem
6.8 of [3].

Theorem 5. Let H(x, y, z, λ) be a bifurcation problem with symmetry
group Γ = Z3

2. Suppose that H is a small perturbation of a non-degenerate
problem (43) with modal parameters m10 ,m20 ,m30 , n10 , n20 , n30 . Then H is
Γ–equivalent to

(44) F (x, y, z, λ) =


ε1x

3 +m1xy
2 + n1xz

2 − λx

ε3y
3 +m2yx

2 + n2yz
2 − (ε2 + λ)y

ε5z
3 +m3zx

2 + n3zy
2 − (ε2 + ε6 + λ)z

 ,

where (m1,m2,m3, n1, n2, n3, λ) is near (m10 ,m20 ,m30 , n10 , n20 , n30 , 0).
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The qualitative bifurcation diagrams illustrating four mode jumping pos-
sibilities are shown in Figure 1. To explain the derivation of the Figure 1,
remark that setting (44) equal to zero yields the equations

(45)

(a) x = 0; y = 0; z = 0,

(b) x2 =
λ

ε1
; y = 0; z = 0,

(c) x = 0; y2 =
ε2 + λ

ε3
; z = 0,

(d) x = 0; y = 0; z2 =
ε2 + ε6 + λ

ε5
,

(e) ε1x
2 +m1y

2 = λ; ε3y
2 +m2x

2 = ε2 + λ; z = 0,

(f) ε1x
2 + n1z

2 = λ; y = 0; ε5z
2 +m3x

2 = ε2 + ε6 + λ,

(g) x = 0; ε3y
2 + n2z

2 = ε2 + λ; ε5z
2 + n3y

2 = ε2 + ε6 + λ,

(h)


ε1x

2 +m1y
2 + n1z

2 = λ; ε3y
2 +m2x

2 + n2z
2 = ε2 + λ;

ε5z
2 +m3x

2 + n3y
2 = ε2 + ε6 + λ.

The first seven equations in (45) have real solutions; the last one can have
periodic solutions. To avoid too complicated bifurcation diagrams we resume
the possibility of jumping to the cases (a)−(f). Computation of the conditions
imposed in the parameter space in the caption of Figure 1 are easily obtained
from the seven equation (45) and their explicit derivation is left as an exercise
to the reader. It is important to remark that when

n2, ε2, ε6 < 0, n3, ε1, ε3, ε4, ε5 > 0, n3 < ε3, ε3 + ε6 > n3 m2,m3 < 1,

a quasi-static variation of λ produces a smooth transition between the bifur-
cating branches in Figure 1, right, and a necessity for jumping between the
branches in Figure 1, left.

3.3. Linearized stability and Z3
2 symmetry

Let g : R3×R→ R3 be a bifurcation problem commuting with the group
Z3
2. We call a solution (x, y, z, λ) of the equation g(x, y, z, λ) = 0 linearly stable

if all three eigenvalues of dg at (x, y, z, λ) have positive linear part; unstable
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Figure 1 – Schematic representation of a structurally stable/unstable
heteroclinic cycles derived from singularity results of the bifurcation problem
with Z3

2 symmetry. Arrows are used to better show the jumps; they have no
direction meanings. Solid lines represent stable the branches while dotted lines,

the unstable ones. Parameters: n2, ε2, ε6 < 0, n3, ε1, ε3, ε4, ε5 > 0, n3 < ε3,
ε3 + ε6 > n3 and m2,m3 < 1.

Left figure: ε3ε5 + n2n3 < 0,m1m2 < ε1ε3, n1m3 < ε1ε5.
Right figure: ε3ε5 + n2n3 > 0,m1m2 > ε1ε3, n1m3 > ε1ε5.

if at least one of them has negative real part. We begin by calculating the
eigenvalues of dg.

Since g has the form of equation (6) which we recall here

(46)

g(x, y, z, λ) = (p(u, v, w, λ)x, q(u, v, w, λ)y, r(u, u, w, λ)z),

u = x2, v = y2, w = z2, p(0, 0, 0, 0) = 0,

q(0, 0, 0, 0) = 0, r(0, 0, 0, 0) = 0.

The Jacobian matrix is then

(47) dg =

p+ 2upu 2pvxy 2pwxz
2quxy q + 2vqv 2qwyz
2ruxz 2rvyz r + 2wrw

 .

Let (x, y, z, λ) be a solution to g = 0. We find the following mode solutions:

(a) Trivial solution: when x = y = z = 0;

(b) x–mode solution: p(x2, 0, 0, λ) = 0, y = z = 0, x ̸= 0;

(c) y–mode solution: q(0, y2, 0, λ) = 0, x = z = 0, y ̸= 0;

(d) z–mode solution: r(0, 0, z2, λ) = 0, x = y = 0, z ̸= 0;
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(e) xy–mode solution: p(x2, y2, 0, λ) = q(x2, y2, 0, λ) = 0, z = 0, x ̸= 0,
y ̸= 0;

(f) xz–mode solution: p(x2, 0, z2, λ) = r(x2, 0, z2, λ) = 0, y = 0, x ̸= 0,
z ̸= 0;

(g) yz–mode solution: q(0, y2, z2, λ) = r(0, y2, z2, λ) = 0, x = 0, y ̸= 0,
z ̸= 0;

(h) xyz–mode solution: p(x2, y2, z2, λ) = q(x2, y2, z2, λ) = r(x2, y2, z2, λ) =
0, x ̸= 0, y ̸= 0, z ̸= 0;

To analyze the stability of these solutions we need the explicit form of
the eigenvalues of the Jacobian matrix (47). We have

(a) Trivial solution: when x = y = z = 0 with eigenvalues: p, q, r.
(b) x–mode solution: p(x2, 0, 0, λ) = 0, y = z = 0, x ̸= 0 with eigenvalues:

2upu, q, r.
(c) y–mode solution: q(0, y2, 0, λ) = 0, x = z = 0, y ̸= 0 with eigenvalues:

p, 2vqv, r.
(d) z–mode solution: r(0, 0, z2, λ) = 0, x = y = 0, z ̸= 0 with eigenvalues:

p, q, 2wrw.
(e) xy–mode solution: p(x2, y2, 0, λ) = q(x2, y2, 0, λ) = 0, z = 0, x ̸= 0,

y ̸= 0 with eigenvalues: r and

vqv + upu ±
√
u2p2u − 2upuvqv + v2q2v + 4pvx2y2qu.

(f) xz–mode solution: p(x2, 0, z2, λ) = r(x2, 0, z2, λ) = 0, y = 0, x ̸= 0,
z ̸= 0 with eigenvalues: q and

vqv + upu ±
√

w2r2w − 2upuwrw + u2p2u + 4rux2z2pw.

(g) yz–mode solution: q(0, y2, z2, λ) = r(0, y2, z2, λ) = 0, x = 0, y ̸= 0,
z ̸= 0 with eigenvalues: p and

vqv + wrw ±
√

v2q2v − 2vqvwrw + w2r2w + 4qwy2z2rv.

(h) xyz–mode solution: p(x2, y2, z2, λ) = q(x2, y2, z2, λ) = r(x2, y2, z2, λ) =
0, x ̸= 0, y ̸= 0, z ̸= 0. A short calculation with Matlab, for example, allows
finding the explicit form of the eigenvalues µ1, µ2 and µ3, which are too large
to be exposed here.

In all these cases (a) − (h) the stability of the solutions is given by the
sign of the linear part, as indicated above.
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