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This investigation is carried out to find the momentary behavior of magneto-
hydrodynamics heat and mass transfer in double-diffusive free convection flow
of an electrically conducting, incompressible viscous fluid over a vertical plate
with time-exponential heating, constant concentration and first order chemical
reaction. The influence of Lorentz force on the fluid motion is considered when
the external magnetic field is fixed or it moves together with the plate. Governing
partial differential equation of the mathematical model is solved by the Laplace
transform method. An interesting property regarding the behavior of the fluid
velocity is found when the magnetic field moves with the plate. In this case the
fluid velocity is not zero far away of the plate. Particular cases of the plate motion
(time-accelerating plate, oscillating plate) are studied. The influence of essential
parameters on the fluid motion due to a slowly accelerating plate and the required
time to reach the steady-state for oscillating motions are graphically underlined
and discussed. Moreover, mechanical, thermal and concentration effects on the
fluid motion are separately brought to light. The variation of thermal boundary
layer thickness is also presented.
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1. INTRODUCTION

In the last time, the study of magnetohydrodynamic (MHD) natural con-
vection flow of electrically conducting fluids with heat and mass transfer has
received a special attention due to their multiple applications in meteorology,
electrical power generation, solar physics, geophysics and chemical engineer-
ing. Exact solutions for such motions of incompressible viscous fluids over an
infinite vertical plate have been developed for different sets of boundary con-
ditions. Ghara et al. [9] have studied the radiation effects on the MHD free
convection flow past an impulsively moving plate with ramp wall temperature.
Nandkeolyar et al. [14] derived exact solutions for the same flow of a heat
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absorbing fluid with mass transfer. MHD natural convection flow with Newto-
nian heating and mass diffusion was analytically solved by Vieru et al. [26] and
Fetecau et al. [8] when the plate applies an arbitrary time-dependent shear
stress to the fluid or it moves in its plane with an arbitrary velocity. Fetecau et
al. [5] investigated the slip effects on the radiative MHD free convection flow
over a moving plate with mass diffusion and heat source. An exact solution
for MHD natural convection flow through a vertical annular micro-channel has
been obtained by Jha et al. [10] in the presence of velocity slip and temper-
ature jump on the boundary. Recently, a general study of such a flow with
radiative effects, heat source and shear stress on the boundary has been de-
veloped by Fetecau et al. [7]. However, in all these studies as well as in many
other which have been previously published, the magnetic lines of force of the
imposed magnetic field are fixed to the fluid. Recently, Narahari and Debnath
[15] developed an interesting study of unsteady MHD free convection flow with
constant heat flux and heat source when the magnetic lines of force are fixed to
the fluid or to the plate. Their exact solutions are obtained for fluid motions
due to an exponentially accelerated or constantly accelerating plate. Actually,
the first exact solutions of this kind seem to be those obtained by Tokis [25]. His
solutions correspond to motions induced by uniform, constantly accelerating
or decaying oscillatory translations of the plate. Some numerical results have
been recently obtained by Onyango et al. [18] for the hydro-magnetic Couette
flow between two parallel plates with magnetic field lines fixed relative to the
moving upper plate but none of these papers explore the fluid behaviour at in-
finity. On the other hand, the mass transfer that is essential in many biological
and geophysical applications has not been taken into consideration in the above
mentioned papers. However, free convection flows resulting from the coupled
heat and mass transfer have been extensively studied due to their applications
in chemical engineering and industrial activities. There are many papers [1-4],
[11] [12], [17], [19], [22], [24], [27] containing exact solutions for hydro-magnetic
free convection flows with heat and mass transfer, but they correspond to the
case when the magnetic field lines of forces are fixed to the fluid and the fluid
velocity at infinity tends to zero. Furthermore, the mass transfer due to the
concentration differences affects the rate and heat transfer and corresponding
buoyancy effect cannot be neglected. In this note we present a general study
of hydro-magnetic natural convection flow over a moving infinite vertical plate
with exponential heating, constant concentration and chemical reaction. How-
ever, our purpose is not only to extend Narahari and Debnath’s results by
including the mass transfer, but we also want to provide new results both for
general and oscillating motions. The thickness of the thermal boundary layer,
for instance, is also determined. It is worth pointing out the fact that “the
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fluid velocity does not remain zero at infinity if the magnetic field is fixed to
the plate”. Moreover, the fluid velocity is presented as a sum of mechanical,
thermal and concentration components whose contribution to the fluid motion
is graphically underlined and discussed for slowly accelerating motions of the
plate. Solutions corresponding to oscillating motions of the plate are presented
as a sum of steady-state (permanent) and transient solutions and the required
time to reach the steady-state is graphically determined.

2. WORDING OF THE PROBLEM

Let us consider the unsteady free convection flow of an electrically con-
ducting incompressible viscous fluid over a non-conducting infinite vertical
plate in the presence of a uniform magnetic field of strength B. The mag-
netic field is applied perpendicular to the plate and its magnetic lines of force
are fixed to the fluid or to the plate. Initially, the plate and the fluid are at
rest at the constant temperature T∞ and the species concentration C∞. After
the time t = 0+ , the plate begins to slide in its plane against the gravitational
field with the velocity V f (t) and its temperature is maintained at the value
T∞ + Tw

(
1− ae−bt

)
. Here, V is a constant velocity, f (·) is a piecewise con-

tinuous function with f (0) = 0 and a, b and Tw are also constants. The plate
is also maintained at a constant concentration Cw.
Following Narahari and Debnath [15], we also assume that all physical prop-
erties are constant except the density variation with temperature in the body
force and the induced magnetic field is negligible in comparison with the ap-
plied magnetic field B. Furthermore, radiative effects and the chemical reaction
between the fluid and the species concentration are taken into consideration
while the viscous dissipation and Joule heating are neglected. In these condi-
tions, choosing a suitable Cartesian coordinate system x, y, z and using the
usual Boussinesqs approximation, our problem reduces to the next set of partial
differential equations Narahari and Debnath [15], Shah et al. [23]
(2.1)
∂v

∂t
= υ

∂2v

∂y2
+ gβT (T − T∞) + gβC (C − C∞)− σB2

o

ρ
(v− ∈ V f (t)) ; y, t > 0,

(2.2) ρCp
∂T

∂t
= k

∂2T

∂y2
− ∂qr
∂y

,
∂C

∂t
= D

∂2C

∂y2
−R (C − C∞) ; y, t > 0,

(2.3) v (y, 0) = 0, T (y, 0) = T∞, C (y, 0) = C∞; y > 0,

(2.4) v (0, t) = V f (t) , T (0, t) = T∞+Tw

(
1− ae−bt

)
, C (0, t) = Cw; t > 0,
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(2.5) v (y, t) <∞, T (y, t) → T∞, C (y, t) → C∞ as y → ∞.

In the above equations, the unknown functions v (y, t), T (y, t) and C (y, t) are
the velocity, the temperature and the species concentration respectively, while
ν, g, βT , βC , σ, ρ, Cp, k, D, R and qr are kinematic viscosity, acceleration due
to gravity, thermal expansion coefficient, concentration expansion coefficient,
electrical conductivity, density of the fluid, specific heat at constant pressure,
thermal conductivity, mass diffusivity, chemical reaction parameter and the
radiative heat flux. The parameter ∈ is 0 when the magnetic field is fixed rela-
tive to the fluid (MFFRF) and 1 (one) when the magnetic field is fixed relative
to the plate (MFFRP). By adopting the Rosseland diffusion approximation for
an optically thick fluid (see Seth et al. [21] or Narahari and Dutta [15])

(2.6) qr = −4

3

ρ

kR

∂T 4

∂y

where σ is the Stefan-Boltzman constant and kR is the Rosseland mean atten-
uation coefficient and assuming the temperature difference between the fluid
temperature T and the free stream temperature T∞ is small enough, the energy
equation (2.2)1 can be written in the form Fetecau et al. [6]

(2.7) Pr
eff

∂T (y, t)

∂t
=
∂2T(y, t)

∂y2
; y, t > 0

where Preff = Pr
1+Nr is the effective Prandtl number Magyari and Pantokra-

toras [13] and Pr =
µCp

k , Nr = 16
3

σ
kkR

T 3
∞ are Prandtl number, respectively the

radiation-conduction parameter. Introducing the next dimensionless variables,
functions and parameters

(2.8) y∗ = V
v y, t

∗ = V 2

v t, v
∗ = v

V , T
∗ = T−T∞

Tw
, C∗ = C−C∞

Cw−C∞
,

b∗ = v
V 2 b, R

∗ = v
V 2R, f

∗ (t∗) = f
(
v
V 2 t

∗)
dropping out the star notation and choosing the characteristic velocity V to
be equal with 3

√
vgβTTw, our problem reduce to the following dimensionless

partial differential equations
(2.9)
∂v (y, t)

∂t
=
∂2v (y, t)

∂y2
+ T (y, t) +NC (y, t)−M (v (y, t)− ∈ f (t)) ; y, t > 0,

(2.10)

Pr
eff

∂T (y, t)

∂t
=
∂2T(y, t)

∂y2
,
∂C (y, t)

∂t
=

1

Sc

∂2C(y, t)

∂y2
−RC (y, t) ; y, t > 0

with the initial and boundary conditions
(2.11) v (y, 0) = 0, T (y, 0) = 0, C (y, 0) = 0; y ≥ 0,
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(2.12) v (0, t) = f (t) , T (0, t) = 1− ae−bt, C (0, t) = 1; t > 0,

(2.13) v (y, t) <∞, T (y, t) , C (y, t) → 0 as y → ∞.

In the above relations, R is the dimensionless chemical reaction parameter while
N the ratio of the buoyancy forces, M the magnetic parameter and Schmidt
number Sc are defined by

(2.14) N =
βC (Cw − C∞)

βTTw
,M =

σB2

ρ

v

V 2
, Sc =

v

D
.

It is worth pointing out that Preff and Sc are transport parameters regarding
the thermal and mass diffusivity, while N represents the relative contribution
of the mass transport rate on the free convection flow Narahari and Dutta [16].
As βC can be positive (or negative) and βT > 0, N can be also positive or
negative. If N = 0 the buoyancy force effect from mass diffusion is absent.

3. SOLUTION OF THE PROBLEM

As the temperature and concentration fields corresponding to this prob-
lem can be easily obtained from previous works, therefore here we are only
here interested in the fluid velocity only and the boundary layer thickness for
temperature. The corresponding boundary layer thickness for concentration is
given in [8, Eq. (56)]. However, in order to determine the fluid velocity using
the Laplace transform technique, we need the Laplace transforms of T (y, t)
and c (y, t), namely (see Rubbab et al. [20], Eq. (15), respectively Shah et al.
[23], Eq. (20)).

(3.1) T̄ (y, q) =

(
1

q
− q

q + b

)
e−y

√
Preff q, C̄ (y, q) =

1

q
e−y

√
Sc(q+R)

corresponding to our problem. Here, q is the transform parameter. In order to
determine the differential equation of the thermal boundary layer thickness, we
integrate Eq. (2.10)2 with respect to y from 0 to ∞ and introduce a measure
of the thermal layer

(3.2) δT (t) =

δ1T∫
0

T (y, t) dy

where δ1T is the thermal boundary layer thickness. It results that

(3.3) Pr
eff

dδT (t)

dt
= − ∂T (y, t)

∂y

∣∣∣∣
y=0

.
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To determine Eq. (17), we also used the fact that

(3.4) lim
y→∞

T (y, t) = lim
y→∞

∂T (y, t)

∂y
= 0

Applying the Laplace transform to Eq. (3.3) and using Eq. (3.1)1 and the fact
that δT (0) = 0, we find that

(3.5) Pr
eff
qδ̄T (q) =

√
Preffq

(
1

q
− a

q + b

)
or equivalently

(3.6) δ̄T (q) =
1√

Preffq

(
1

q
− a

q + b

)
=

1√
Preff

 1

q
3/2

− a

(q + b)
√
q


Now, applying the inverse Laplace transform to Eq. (3.6) and using the con-
volution theorem for the last term, it results that

δT (t) =
1√

Preffπ

2√t− a

t∫
0

1√
s
e−b(t−s)ds


=

2√
Preffπ

√t− ae−bt√
b

√
bt∫

0

es
2
ds

 .
(3.7)

For velocity, we apply the Laplace transform to Eq. (2.9) and bear in mind
the corresponding initial and boundary conditions. We find the ordinary dif-
ferential equation

(3.8) qv̄ (y, q) =
∂2v̄ (y, q)

∂y2
+ T̄ (y, q) +NC̄ (y, q)−M (v̄ (y, q)− ∈ F (q)) ,

with the boundary conditions

(3.9) v̄ (0, q) = F (q) , v̄ (y, q) → 0 as y → ∞.

Of course, v̄ (y, q) and F (q) denote the Laplace transforms of v (y, t), respec-
tively f(t). Introducing Eqs. (3.1) into (3.8), it results that

∂2v̄ (y, q)

∂y2
− (q +M) v̄ (y, q)

= − ∈MF (q)−
(
1

q
− a

q + b

)
e−y

√
Preff q −N

1

q
e−y

√
Sc(q+R).

(3.10)
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The solution of the ordinary differential equation (3.10) with the boundary
conditions (3.9), is
(3.11)
v̄ (y, q) = F (q) e−y

√
q+M+ ∈M F (q)

q+M

(
1− e−y

√
q+M

)
+

+ (1−a)q+b
q(q+b)((1−Preff)q+M)

(
e−y

√
Preff q − e−y

√
q+M

)
+

N
(
e−y

√
Sc(q+R)−e−y

√
q+M

)
q((1−Sc)q−(ScR−M))

Now, introducing the relations
(1−a)q+b

q(q+b)((1−Preff)q+M)
= 1

1−Preff

(
1
C

1
q −

a
C−b

1
q+b +

(1−a)C−b
C(b−C)

1
q+C

)
,

1
q((1−Sc)q−(ScR−M)) =

1
M−ScR

(
1
q −

1
q+D

)
; C = M

1−Preff
, D = ScR−M

Sc−1

,

into Eq. (3.11), applying the inverse Laplace transform and using the convo-
lution theorem and Eqs. (A1) and (A2) from Appendix, we can present the
velocity field under the form

(3.12) v (y, t) = vm (y, t) + vT (y, t) + vC (y, t)

where

vm (y, t) =
y

2
√
π

t∫
0

f (t− s)

s
√
s

exp

(
−y

2

4s
−Ms

)
ds

+ ∈M

t∫
0

f (t− s) e−Mserf

(
y

2
√
s

)
ds,

(3.13)

(3.14)

vT (y, t) =

(
[ψ(y

√
Preff ,t;0,0)−ψ(y,t;M,0)]

C + a
[ψ(y

√
Preff ,t;0,−b)−ψ(y,t;M,−b)]

b−C +

+ (1−a)C−b
C(b−C)

[
ψ
(
y
√
Preff , t; 0,−C

)
− ψ (y, t;M,−C)

])
1

1−Preff

,

vC (y, t) =
N

M − ScR

(
ψ
(
y
√
Sc, t;R, 0

)
− ψ (y, t;M, 0)

−ψ
(
y
√
Sc, t;R,−D

)
+ ψ (y, t;M,−D)

)(3.15)

are its mechanical, thermal and concentration components and the function
ψ (y, t; a, b) is defined in Appendix. It is not difficult to show that v (y, t) , given
by Eqs. (3.12)-(3.15), satisfies the imposed initial and boundary conditions. In
order to verify the boundary condition (2.12)1, for instance, we rewrite vm (y, t)
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in the equivalent form

vm (y, t) =
y√
π

∞∫
y

2
√
t

f

(
t− y2

4s

)
exp

(
−s2 − My2

4s2

)
ds

+ ∈M

t∫
0

f (t− s) e−Mserf

(
y

2
√
s

)
ds.

(3.16)

As regards the limit of velocity at infinity, it results that

(3.17) lim
y→∞

v (y, t) =


0 if ∈= 0

M
t∫
0

f (t− s) e−Msds if ∈= 1

Consequently, in the case when the magnetic field is fixed relative to the plate,
the fluid does not remain at rest far away of the plate.
From physical point of view, it is also important to determine the skin friction
or shear on the plate. Introducing Eq. (3.11) into

(3.18) τ = − ∂v (y, t)

∂y

∣∣∣∣
y=0

= −L−1

{
∂v̄ (y, q)

∂y

∣∣∣∣
y=0

}
,

we find that (see also Eqs. (A3)-(A5) from Appendix)
(3.19) τ = τm + τT + τC ,

where

τm =

t∫
0

f ′ (t− s)

[√
M erf

(√
Ms

)
+
e−Ms

√
πs

]
ds

− ∈
√
M

t∫
0

f ′ (t− s)erf
(√

Ms
)
ds,

(3.20)

(3.21)
τT = 1

1−Preff

{√
Preff

[
1

C
√
πt

+ a
b−Cϕ (t; 0, b) +

(1−a)C−b
C(b−C) ϕ (t; 0, C)

]
−

− a
b−Cϕ (t;M, b)− (1−a)C−b

C(b−C) ϕ (t;M,C)
}
,

(3.22)
τC =

N

ScR−M

{
ϕ (t;M,D)− ϕ (t;M, 0) +

√
Sc [ϕ (t;R, 0)− ϕ (t;R,D)]

}
,

are the mechanical, thermal and concentration components of the skin friction
and the function ϕ (t; a, b) is defined in the Appendix.
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Finally, for validation, let us take f(t) = H(t) (the Heaviside unit step func-
tion) in our relations (3.13) and (3.20) and use Eqs. (A6) and (A7) from
Appendix. As it was to be expected, the corresponding results are identical
to those obtained by Narahari and Debnath [15], Eqs. (11a), (13) with a0 and
Tokis [26], Eqs. (12) and (13) in the absence of thermal and concentration
effects. Consequently, the general solutions (3.12) and (3.19) are correct and
the present problem is completely solved. Indeed, assigning to f (·) suitable
forms, we can determine exact solutions for any motion with technical rele-
vance of this type. In the following in order to get some physical insight of
present results and to avoid repetition, we shall here consider the flows due to
slowly accelerating or oscillating plate.

3.1. Case I, f(t) = H(t)tα. Variably accelerating plate

The thermal and concentration components of velocity do not depend
on the plate motion. However, the heat and mass transfer can influence the
fluid motion and we have to know if their influence is significant or it can
be neglected in some motions with possible engineering applications. Taking
f(t) = H(t)tα with α > 0, the equations (3.13) and (3.20) take the forms

vm (y, t) =
y

2
√
π

t∫
0

(t− s)α

s
√
s

exp

(
−y

2

4s
−Ms

)
ds

+ ∈M

t∫
0

(t− s)αe−Mserf

(
y

2
√
s

)
ds,

(3.23)

τm = α

t∫
0

(t− s)α−1

[√
M erf

(√
Ms

)
+
e−Ms

√
πs

]
ds

− ∈ α
√
M

t∫
0

(t− s)α−1erf
(√

Ms
)
ds; α > 0,

(3.24)

which corresponds to motions induced by a slowly, constantly or highly accel-
erating plate. The solutions corresponding to α = 0 namely
(3.25)

v0m (y, t) = ψ (y, t;M, 0)H(t)+ ∈ H(t)

[
1− ψ (y, t;M, 0)− e−Mterf

(
y

2
√
t

)]
,

(3.26) τ0m =

[√
M erf

(√
Ms

)
+
e−Ms

√
πs

]
H(t)− ∈

√
MH(t)erf

(√
Mt

)
,
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can have a very important role. More exactly, the solutions corresponding to
α = n (a natural number) can be written as simple or multiple integrals of
these solutions, namely

(3.27)
vnm (y, t) =

t∫
0

s1∫
0

s2∫
0

...
sn−1∫
0

v0m (y, sn) ds1ds2ds3...dsn,

τnm (y, t) =
t∫
0

s1∫
0

s2∫
0

...
sn−1∫
0

τ0m (y, sn) ds1ds2ds3...dsn.

However, in the following we shall be interested of the solutions corresponding
to motions due to a slowly accelerating plate (when α < 1).

3.2. CaseII, f(t) = H(t) cos (ωt) or H(t) sin (ωt)

Introducing f(t) = H(t) cos(ωt) or H(t) sin(ωt) into Eqs. (3.13) and
(3.20) and using the fact that H ′ (t) = δ (t) and

t∫
0

δ (t− s) f(s)ds =

t∫
0

δ (s) f(t− s)ds =f(t)

where δ (·) is the Dirac delta function, we find that

vcm (y, t) =
y

2
√
π

t∫
0

cos [ω (t− s)]

s
√
s

exp

(
−y

2

4s
−Ms

)
ds

+ ∈M

t∫
0

cos [ω (t− s)] e−Mserf

(
y

2
√
s

)
ds,

(3.28)

vsm (y, t) =
y

2
√
π

t∫
0

sin [ω (t− s)]

s
√
s

exp

(
−y

2

4s
−Ms

)
ds

+ ∈M

t∫
0

sin [ω (t− s)] e−Mserf

(
y

2
√
s

)
ds,

(3.29)

τcm = H(t)

{√
M erf

(√
Mt

)
+
e−Mt

√
πt

− ∈
√
Merf

(√
Mt

)}
(3.30)

− ω

t∫
0

sin [ω (t− s)]

[√
M erf

(√
Ms

)
+
e−Ms

√
πs

]
ds



11 Effects of exponential heating on free convection flows 491

+ ∈ ω
√
M

t∫
0

sin [ω (t− s)]erf
(√

Ms
)
ds,

τsm = ω

t∫
0

cos [ω (t− s)]

[√
M erf

(√
Ms

)
+
e−Ms

√
πs

]
ds

+ ∈ ω
√
M

t∫
0

cos [ω (t− s)]erf
(√

Ms
)
ds,

(3.31)

As expected, for ω = 0 the solutions (3.28) and (3.29) reduce to those given
by Eqs. (3.25) and (3.26) corresponding to the motion with uniform velocity
on the boundary.

The dimensionless velocities vcm (y, t) and vsm (y, t) describe the fluid
motion some time after its initiation. After that time, when the transients
disappear, they reduce to the steady-state (permanent) solutions

vcmp (y, t) =
y

2
√
π

t∫
0

cos [ω (t− s)]

s
√
s

exp

(
−y

2

4s
−Ms

)
ds

+ ∈M

t∫
0

cos [ω (t− s)] e−Mserf

(
y

2
√
s

)
ds,

(3.32)

vsmp (y, t) =
y

2
√
π

t∫
0

sin [ω (t− s)]

s
√
s

exp

(
−y

2

4s
−Ms

)
ds

+ ∈M

t∫
0

sin [ω (t− s)] e−Mserf

(
y

2
√
s

)
ds

(3.33)

which are periodic in time and independent of the initial conditions. However,
they satisfy the governing equations and the boundary conditions.

Lengthy but straightforward computations show that the steady-state
solutions (3.32) and (3.33) can be written in the simple but elegant forms (see
Eqs. (A8) and (A9))

vcmp (y, t) = e−my cos (ωt− ny) +
∈M√
M2 + ω2

{
cos (ωt− φ)

−e−my cos (ωt− ny − φ)
}
,

(3.34)
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vsmp (y, t) = e−my sin (ωt− ny) +
∈M√
M2 + ω2

{
sin (ωt− φ)

−e−my sin (ωt− ny − φ)
}
,

(3.35)

where m =

√√
M2+ω2+M

2 , n =

√√
M2+ω2−M

2 and φ = arctg
(
ω
M

)
. A simple

analysis clearly shows that these solutions satisfy the boundary conditions and
governing equations (2.9) in the absence of thermal effects and concentration.
Consequently, in the absence of these effects, our fluid flows according to the
steady-state solutions (3.34) and (3.35) after a characteristic time. This time
will be graphically determined in the next section both for cosine and sine
oscillations of the plate. It is also worth to mention that our steady-state
solution (3.34) is a little bit different from of the similar result of Toki [25],
Eq. (36). This is due to the last but one term of his equation (20) that was
wrongly rewritten into Eq. (36). Taking the limit of Eqs. (3.34) and (3.35) ,
when y → ∞ , we find that

(3.36) vcmp (∞, t) =

{
0 if ∈= 0

M√
M2+ω2

cos (ωt− φ) if ∈= 1

respectively

(3.37) vsmp (∞, t) =

{
0 if ∈= 0

M√
M2+ω2

sin (ωt− φ) if ∈= 1

Now, for comparison, let us put take f(t) = H(t)cos(ωt) or H(t)sin(ωt)
into Eq. (3.17). The obtained results, namely

(3.38) vc (∞, t) =

{
0 if ∈= 0

− M
M2+ω2 e

−Mt + M√
M2+ω2

cos (ωt− φ) if ∈= 1

and

(3.39) vs (∞, t) =

{
0 if ∈= 0
Mω

M2+ω2 e
−Mt + M√

M2+ω2
sin (ωt− φ) if ∈= 1

are in accordance with those from Eqs. (3.36) and (3.37). The second relations
of Eqs. (3.38) and (3.39) are also contain the transient components of velocity
at infinity when the transverse magnetic field is fixed to the plate. Finally for
later use, as well as for a simple correction of Eq. (38) from Toki [25], we also
provide here the shear stresses

τcmp (y, t) =
√
m2 + n2e−my sin (ωt− ny − γ)

− ∈Me−my sin (ωt− ny − ϕ− γ)
(3.40)
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and

τsmp (y, t) =
√
m2 + n2e−my cos (ωt− ny − γ)

− ∈Me−my cos (ωt− ny − ϕ− γ)
(3.41)

corresponding to the steady-state. Here γ = arctg
(
m
n

)
. By now letting into

Eqs. (3.40) and (3.41), we find

(3.42) τcmp (0, t) =
√
m2 + n2 sin (ωt− γ)− ∈M sin (ωt− ϕ− γ)

and

(3.43) τsmp (0, t) =
√
m2 + n2 cos (ωt− γ)− ∈M cos (ωt− ϕ− γ)

which represent the skin frictions corresponding to the steady-state in the
absence of thermal and concentration effects.

4. NUMERICAL RESULTS AND DISCUSSION

In this section, exact general solutions are determined for dimensionless
velocity and skin friction corresponding to the hydro-magnetic natural con-
vection flow over a moving vertical plate with exponential heating, constant
concentration and chemical reaction. Radiative effects are taken into consid-
eration and the magnetic field is fixed to the fluid or to the plate. In order
to get some physical insight of obtained results and to avoid repetition, two
special cases are considered and the influence of essential parameters N , Sc,
R and t on the fluid motion is graphically underlined and discussed. Magnetic
effects have been previously discussed by Narahari and Debnath [15], while,
according to Magyari and Pantokratoras [13], the investigation of heat transfer
characteristics with or without thermal radiation is the same problem and we
just wanted to remember it.

Figsures 1 and 2, for comparison, present the diagrams of the dimension-
less velocity v(y, t) respectively of its mechanical component vm(y, t) against y
at different times for a slowly accelerating motion of the plate. As expected,
both velocities are increasing functions of time and the combined contribution
of thermal and concentration components is substantial and cannot be ne-
glected. Furthermore, the velocities corresponding to MFFRP are appreciably
increased as compared with MFFRF. In all cases, the corresponding veloci-
ties smoothly decrease from maximum values on the boundary to asymptotical
values for increasing y . However, as it is clearly seen from these figures, the
asymptotic values of both velocities are not zero at infinity if the magnetic field
is fixed to the plate.
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Effects of the ratio of buoyancy forces N on the dimensionless fluid ve-
locity are shown in Fig. 3 at time t = 1.5 for aiding (N > 0) and opposing
(N < 0) flows. In the first case, the buoyancy force due to the species diffusion
assists the thermal buoyancy force and the fluid velocity increases for increas-
ing values of N . More precisely, the two forces acts in the same direction and
the fluid velocity increases due to the increase in density of the solution. In
the second case, the negative buoyancy force causes the occurrence of a reverse
flow just away of the plate.

The variation of velocity with respect to Schmidt number Sc and the
chemical reaction parameter R is given in Figs. 4 and 5. These figures clearly
show that the velocity is a decreasing function with respect to both parame-
ters. Moreover, as expected, it is again observed that the velocity profiles are
higher in the case when the magnetic field is fixed to the plate. These profiles,
as before, are everywhere higher/lower for different values of Sc or R. The
contributions of the three components of dimensionless velocity on the fluid
motion are presented in Figs. 6 both for (MFFRF) and (MFFRP). It can be
clearly seen from these figures that each component has a significant influence
on the fluid velocity and cannot be neglected.

Figures 7 and 8 correspond to motions due to an oscillating plate. They
present the diagrams of the starting solutions (3.28) and (3.29) and of their
steady-state components (3.34) respectively (3.35). At small values of time,
the differences between these solutions are appreciable but they disappear in
time and the required time to reach the steady-state is lower for motions due
to cosine oscillations of the plate as compared to that corresponding to sine
oscillations of the plate. This is due to the fact that, at time t = 0 the velocity
of the wall is zero in the case of sine oscillations of the plate. However, this
time is almost the same for the two cases (MFFRF) and (MFFRP).

Finally, for completeness, the variations of the skin frictions ταm, ταm +
τT and ταm + τT + τC (α = 0, 5) with dimensionless time t are depicted in
Figs. 9a and 9b both for MFFRF and MFFRP and of the thickness of the
boundary layer in Fig. 10. The skin frictions corresponding to MFFRP are
slower as compared to those of MFFRF. This should be expected because the
corresponding velocities are higher in the case of MFFRP and thermal and
concentration effects on the skin friction are negligible for small values of time.
Moreover, the skin friction corresponding to the combined mechanical and
thermal effects has the lowest values. Consequently, as it results from Figures
6 and 9, the thermal effects imply an increase of the fluid velocity on the
whole flow domain and a diminution of the skin friction in time. As regards
the concentration effects, they also imply an increase of fluid velocity in all
flow domain and a deminiuation of the skin friction for values of t less than a
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critical value tc between 0.6 and 0.7. The thermal boundary layer thickness,
as it results from Fig. 10, is a decreasing function with respect to Preff and
tends to an asymptotic value for large value of t.

5. CONCLUSIONS

Hydro-magnetic natural convection flow of an electrically conducting, in-
compressible viscous fluid over a moving infinite vertical plate with exponen-
tially heating, constant concentration and chemical reaction is analytically and
graphically studied. Viscous dissipation and Joule heating are neglected but
the radiative effects are taken into consideration. The plate is moving with
arbitrary time-dependent velocity in its plane while the transverse magnetic
field is fixed to the fluid or to the moving plate and our interest is focused on
the fluid motion. Consequently, exact general expressions for the dimension-
less velocity and the corresponding skin friction are established in simple forms
in terms of error and complementary error functions of Gauss and the prob-
lem under consideration is completely solved. Both the velocity and the skin
friction are presented as sum of their mechanical, thermal and concentration
components. An exact expression is also determined for the thermal boundary
layer thickness.

However, in order to obtain some physical insight of results that have
been obtained as well as to avoid repetition, two special cases are considered
and some graphical representations are depicted for different values of time
and of physical parameters The solutions corresponding to oscillating motions
of the plate are written as sum of steady-state and transient solutions and
the required time to reach the steady-state is graphically determined. Finally,
the contributions of mechanical, thermal and concentration components of ve-
locity and skin friction on the fluid motion are brought to light for a slowly
accelerating motion of the plate. The main conclusions are:
• Contrary to our expectations, the fluid velocity does not remain zero at

infinity if the magnetic lines of force of the magnetic field are fixed relative
to the plate. More exactly, the fluid does not remains at rest far away from
the plate (cf. Eq. (3.11)).

• The dimensionless velocity of the fluid significantly increases in the case
MFFRP in comparison to the case MFFRF.

• For aiding flows (when N > 0), the fluid velocity increases for increasing
values of N . A reverse flow appears for opposing flows (when N < 0).

• Contributions of mechanical, thermal and concentration components of ve-
locity and the skin friction on the fluid motion are significant and they
cannot be neglected.
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Fig. 1 – Profiles of the mechanical component Vαm(y, t) of the dimensionless
velocity against y for M = 0.5 and different values of t

Fig. 2 – Profiles of the dimensionless velocity v(y, t) against y for a = 0.75,
b = 0.15, M = 0.5, N = 2, Preff = 5, Sc = 0.5, R = 0.7 and different values of t.

• The required time to reach the steady-state is lower for motions due to
cosine as compared with sine oscillations of the plate. This is obvious, since
at time t = 0 the velocity of the wall is zero for sine oscillations of the plate.

• The thickness of thermal boundary layer smoothly increases from zero value
up to the asymptotic value for large values of t. It is a decreasing function
with respect to Preff .
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Fig. 3 – Profiles of the dimensionless velocity v(y, t) against y at t = 1.5 for
a = 0.75, b = 0.15, M = 0.5, Preff = 5, Sc = 0.5, R = 0.7 and different values of N .

Fig. 4 – Profiles of the dimensionless velocity v(y, t) against y at t = 1.5 for a=0.75,
b = 0.15, M = 0.5, N = 0.5, Preff = 0.5, R = 0.7 and different values of Sc.

Fig. 5 – Profiles of the dimensionless velocity v(y, t) against y at t = 2.5 for
a = 0.75, b = 0.15,M = 0.5,Preff = 0.5,N= 0.5,Sc = 0.2 and different values of R.
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Fig. 6 – Profiles of the dimensionless velocities vαm(y, t)vαm(y, t) + vc(y, t)
and vαm(y, t) + vT (y, t) + vc(y, t) against y at t = 1.5 for a = 0.75, b = 0.15,

M = 0.5, Preff = 0.5, N = 0.5, Sc = 0.5 and R = 0.7.

 

Fig. 7 – Required time to reach the steady-state for the motion due to cosine
oscillation of the plate for M = 0.1 and ω = π/4.
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Fig. 8 – Required time to reach the steady-state for the motion due to sine
oscillation of the plate for M = 0.1 and ω = π/4.

Fig. 9 – Profiles of the dimensionless skin frictions ταm, ταm + τT and
ταm + τT + τC against y for a = 0.75, b = 0.15, M = 0.5, Preff = 0.5, N = 0.5,

Sc = 0.5 and R = 0.7. and R = 0.7.

Fig. 10 – Time variation of thermal boundary layer thickness for different values of
effective Prandtl number.
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Appendix

(A1) L−1
{
e−y

√
q
}
= y

2t
√
π
exp

(
−y2

4t

)
, L−1

{
e−y

√
q

q

}
= erfc

(
y

2
√
t

)
,

L−1
{
e−y

√
q+a

q−b

}
= ψ (y, t; a, b) .

(A2) ψ (y, t; a, b) =
ebt

2

[
e−y

√
a+berfc

(
y

2
√
t
−
√
(a+ b) t

)
+ey

√
a+berfc

(
y

2
√
t
+
√

(a+ b) t

)]
.

(A3) L−1 {qF (q)} = f ′(t) + δ(t)f(0) if L−1 {F (q)} = f(t) (δ(·) is the Dirac
delta function).

(A4) L−1
{

1
(q+b)

√
q+a

}
= e−bt

√
a−berf

(√
(a− b) t

)
, L−1

{
1√
q

}
= 1√

πt
.

(A5) L−1
{√

q+a
q+b

}
= e−at

√
πt

+ e−bt
√
a−berf

(√
(a− b) t

)
= ϕ (t; a, b) .

(A6)

t∫
0

1√
s
exp

(
−y

2

4s
− as

)
ds =

√
π

2
√
a

{
e−y

√
aerfc

(
y

2
√
t
−
√
at

)

−ey
√
aerfc

(
y

2
√
t
+

√
at

)}
.

(A7)

t∫
0

1

s
√
s
exp

(
−y

2

4s
− as

)
ds =

√
π

y

{
e−y

√
aerfc

(
y

2
√
t
−
√
at

)

−ey
√
aerfc

(
y

2
√
t
+

√
at

)}
.

(A8)

∞∫
0

e−p
2s2− q2

s2 cos

(
a2s2 +

b2

s2

)
ds =

√
π

24
√
p4 + a4

e−2c cos(α+β)

× cos [α+ 2c sin (α+ β)] .

(A9)

∞∫
0

e−p
2s2− q2

s2 sin

(
a2s2 +

b2

s2

)
ds =

√
π

24
√
p4 + a4

e−2c cos(α+β)
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× sin [α+ 2c sin (α+ β)] .

where α = 1
2arctg

(
a2

p2

)
, β = 1

2arctg
(
b2

q2

)
, and c = 4

√
(p4 + a4) (q4 + b4).
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