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A Dedekind structure on a (commutative) field K is a pair (D,K), where D
is a Dedekind domain and K is its quotient field. Let L/K be an arbitrary
algebraic extension of K and let DL be the integral closure of D in L. We give
necessarily and sufficient conditions such that (DL, L) is a Dedekind structure on
L. As an application we also give necessarily and sufficient conditions such that
the intersection of an arbitrary set of valuation rings in a Galois infinite extension
L/K, which contain D, is a Dedekind domain. This is in a close relation with the
main theorem of [6].
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1. INTRODUCTION

Let K be a commutative field and let D be a Dedekind domain ([1], [4],
[5], [7]) such that K = Q(D) is its quotient field. We say that the pair (D,K)
is a Dedekind (arithmetical) structure, or a Dedekind pair on K. Let L/K be
an arbitrary algebraic extension of K and let DL be the integral closure of D
in L. For a fixed prime ideal p ∈ Spec(D) and a finite extension K ′/K, K ′ ⊂ L,
we denote by DK′ the integral closure of D in K ′ (it is a Dedekind domain [7])
and let

pDK′ = P
ep,1
1 · ... ·P

ep,sp,K′
sp,K′ ,

be the decomposition of the ideal pDK′ into powers of distinct prime ideals
P1, ..., Psp,K′ ∈ Spec(DK′). We also write

ep,K′ = max
{
ep,j : j = 1, 2, ..., sp,K′

}
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To any fixed prime ideal p ∈ Spec(D) we associate two invariants which
depend only on the Dedekind pair (D,K) and on the algebraic extension L/K :

(1.1) eLp = sup
K′

{
ep,K′ : K ⊂ K ′ ⊂ L, [K ′ : K] < ∞

}
∈ N∗ ∪ {∞}

and

(1.2) sLp = sup
K′

{
sp,K′ : K ⊂ K ′ ⊂ L, [K ′ : K] < ∞

}
∈ N∗ ∪ {∞}

The main result of this note is the following theorem.

Theorem 1. With the above notation, definitions and hypotheses, the
pair (DL, L) is a Dedekind pair on L if and only if for each prime ideal p ∈
Spec(D), eLp and sLp are finite natural numbers.

We shall prove this result in Section 2.
In the following we freely use some notation and results from the classical

valuation theory (see for instance [1], [2], [5]).
Let (D,K) be a Dedekind pair, let F be a nonempty family of distinct

valuation rings V in an infinite Galois extension L/K such that D ⊂ V, and
let A = ∩

V ∈F
V be the intersection ring of all the valuation ring of F . For a

valuation ring V we denote m(V ) its maximal ideal. The following result is a
slight generalization of the main result of [6].

Theorem 2. With the above notation, definitions and assumptions, the
ring A is a Dedekind domain in L (i.e. the pair (A,L) is a Dedekind pair) if
and only if each V ∈ F is a discrete valuation ring and, for each fixed prime
ideal p ∈ Spec(D), there are only a finite number of valuation rings V ∈ F
such that p ⊂ m(V ).

One can find a proof of this theorem in Section 3.
Our proof of Theorem 2 can be also considered as a simpler and alterna-

tive proof of the main result of [6], with the restriction that L/K is a Galois
extension.

In order to construct infinite algebraic extensions L such that (DL, L) is
a Dedekind structure on L, one can use a fundamental paper of Hasse [3] for
the particular case K = Q, the field of rational numbers, D = Z, the ring of
integer numbers and L a special infinite algebraic number fields. In Section 4
we also give a simple example of such a construction, without using the more
sophisticated results of Hasse [3].

2. SOME GENERAL AUXILIARY RESULTS

In this Section we put together some general results on commutative alge-
bra and elementary number theory, rather belonging to mathematical folklore.
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In the following all the rings are domains, i.e. commutative unitary rings
without zero divisors.

Lemma 1 ([4], Ch. VII). Let A ⊂ B be an integral extension of domains
and let b ̸= (0) be a nonzero ideal of B. Then the ideal A∩ b is a nonzero ideal
in A. Moreover, A is a field if and only if B is a field. In particular, if p is a
nonzero prime ideal of B and if q = p ∩ A, then p is a maximal ideal of B if
and only if q is a maximal ideal of A.

Definition 1. Let A ⊂ B be an arbitrary integral extension of domains.
A nonzero ideal b of B is said to be a relative prime (maximal) ideal over A if
for any finitely generated extension C of A, C ⊂ B, the ideal b ∩C is a prime
(maximal) ideal of C.

Lemma 2. Let A ⊂ B be an arbitrary integral extension of commutative
rings. Then a nonzero ideal b of B is a prime (maximal) ideal if and only if b
is a relative prime (maximal) ideal of B (over A).

Proof. a) We prove that b is a nonzero prime ideal of B ⇔ b is relative
prime of B over A. The nontrivial implication is “⇐ .” Let b be a relative prime
nonzero ideal of B. Let x, y ∈ B such that xy ∈ b and let C = A[x, y] ⊂ B be
the A-subalgebra of B generated by x and y. Since b ∩ C is a prime nonzero
(see Lemma 1) ideal of C, and since xy ∈ b ∩ C, we see that x ∈ b or y ∈ b.

b) We prove that b is a maximal ideal of B ⇔ b is relative maximal of B
over A.

“⇒”: Assume that b is a (nonzero) maximal ideal in B and let C ⊂ B be
a finitely generated A-subalgebra of B. Since C/(b ∩ C) ⊂ B/b is an integral
extension of commutative rings, and since B/b is a field, one sees that C/(b∩C)
is also a field (Lemma 1), i.e. b ∩ C is a maximal ideal of C.

“⇐”: We suppose now that b is a relative maximal nonzero ideal of B
such that b is not a maximal ideal of B. Since b ̸= B (1 /∈ b ∩ A), let us take
z ∈ B, z /∈ b and b + Bz ̸= B. Let us take C = A[z] ⊂ B. Since c = b ∩ C
is a maximal ideal of C, and since z /∈ b, one sees that c ⊊ c +Cz ⊆ C, i.e.
c + Cz = C. Hence 1 = β + γz, β ∈ c ⊂ b, γ ∈ C ⊂ B. Thus b + Bz = B, a
contradiction. Therefore b must be a maximal ideal of B.

Proposition 1. Let (D,K) be a Dedekind structure on a field K and let
L/K be an infinite algebraic extension of K. Then any nonzero prime ideal of
DL (the integral closure of D in L) is a maximal ideal.

Remark 1. Proposition 1 can be generalized as follows. We say that a
domain D has property [M] if any nonzero prime ideal of D is a maximal ideal.
Let E be a nonempty union of a totally ordered by inclusion family {Eλ}λ∈Λ
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of domains Eλ which are integral extensions of a given domain D. Then E has
property [M] if and only if any Eλ, λ ∈ Λ, has property [M]. Moreover, if D
has property [M], if any Eλ, λ ∈ Λ is an integral extension of D and if {Eλ}λ∈Λ
is totally ordered by inclusion, then E = ∪

λ∈Λ
Eλ also has property [M].

The following result is very known in the mathematical folklore (see for
instance, Cohen I. S., Commutative rings with restricted minimum conditions,
Duke Math. J. 17, no.1 (1950), 27–42).

Lemma 3. Let A be a unitary commutative ring such that any prime ideal
of A is finitely generated. Then A is a Noetherian ring.

In Section 4 we need the following two elementary results.

Lemma 4. Let F be a finite field of characteristic p ̸= 2. Then F contains
at least one element γ which is not a square in F (the index of F ∗2 in F ∗

is 2).

As a consequence of this result we obtain a useful lemma.

Lemma 5. Let A be a unitary commutative ring and let m1,m2, ...,mk be k
distinct nonzero maximal ideals of A such that all the fields A/mj , j = 1, 2, ..., k
are finite fields with characteristic p ̸= 2. Then there exists at least one element
a ∈ A, which is not a square modulo mj for each j = 1, 2, ..., k.

Proof. We apply Lemma 4 and the Chinese Reminder Theorem [1].

3. THE PROOF OF THEOREM 1

“=⇒”. Let us assume that (DL, L) is an arithmetical Dedekind structure,
i.e. that DL, the integral closure of D in L, is a Dedekind domain. Let
p ∈ Spec(D) be a fixed prime ideal of D and let

(3.1) pDL = Qe1
1 · ... ·Qeh

h ,

be the decomposition of the ideal pDL into a product of powers of distinct
prime ideals Q1,Q2, ...,Qh of DL. We prove that

eLp ≤ e = max{e1, e2, ..., eh}, and sLp ≤ h,

where the invariants eLp and sLp were defined by formulas (1.1) and (1.2) in
Introduction.

Let K ′/K be an arbitrary finite extension of K, K ′ ⊂ L. Let DK′ be the
integral closure of D in K ′ and let

(3.2) pDK′ = St1
1 · ... ·Stl

l ,
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be the decomposition of the ideal pDK′ into a product of powers of distinct
prime ideals S1,S2, ...,Sl of DK′ (here DK′ is a Dedekind domain since [K ′ :
K] < ∞ [7]). Let t = max{t1, t2, ..., tl} and let

(3.3) SjDL = P
mj,1

j,1 ·Pmj,2

j,2 · ... ·P
mj,uj

j,uj
, j = 1, 2, ..., l

be the decomposition of the ideal SjDL into a product of powers of distinct

prime ideals P
mj,1

j,1 ,P
mj,2

j,2 , ...,P
mj,uj

j,uj
of DL. Hence (see (3.1), (3.2), (3.3))

(3.4) pDL = Qe1
1 · ... ·Qeh

h =
l∏

j=1

uj∏
i=1

P
mj,itj
j,i .

SinceDL is a Dedekind domain, one sees that the prime idealsPj,i j = 1, 2, ..., l,
i = 1, 2, ..., uj , are exactly the prime ideals Q1,Q2, ...,Qh. It is clear now that
mj,itj ≤ e, in particular tj ≤ e for any j = 1, 2, ..., l. Thus ep,K′ = t ≤ e for any
K ′ ⊂ L, K ⊂ K ′, [K ′ : K] < ∞. Hence

eLp = sup
K′

{
ep,K′ : K ⊂ K ′ ⊂ L, [K ′ : K] < ∞

}
≤ e.

Moreover, sp,K′ = l ≤ h for any K ′ ⊂ L, K ⊂ K ′, [K ′ : K] < ∞. Hence

sLp = sup
K′

{sp,K′ : K ⊂ K ′ ⊂ L, [K ′ : K] < ∞} ≤ h.

Since e and h depend only on p and L, we see that eLp < ∞ and sLp < ∞ for
any p ∈ Spec(D).

“⇐=”. Assume now that eLp < ∞ and sLp < ∞ for any p ∈ Spec(D).
Proposition 1 says that any nonzero prime ideal of DL is a maximal ideal.

It remains to prove that DL is a Noetherian ring. For this it is sufficient
to prove that any nonzero prime ideal P ∈ Spec(DL) is finitely generated (see
Lemma 3). Then p = P ∩D ̸= (0) is a nonzero maximal ideal in D.

Since eLp < ∞ and sLp < ∞, there exists a finite extension K ′′ ⊃ K,

[K ′′ : K] < ∞, K ′′ ⊂ L, such that eLp = ep,K′′ and sLp = sp,K′′ . Let P′′ =
P ∩ DK′′ ∈ Spec(DK′′), where DK′′ is the integral closure of D in K ′′. Since
P′′ does not ramify and does nor split in any finite extension of K ′′ contained
in L, we see that P′′DL = P. Since DK′′ is a Dedekind domain, P′′ is a finitely
generated ideal of DK′′ . Hence P is also a finitely generated ideal of DL, i.e.
the pair (DL, L) is a Dedekind structure on L, and the proof of Theorem 1 is
completed.

Corollary 1. Let (D,K) be a Dedekind pair, L/K be an infinite alge-
braic extension of K and let DL be the integral closure of D in L. Then the
following statements are equivalent:

a) (DL, L) is a Dedekind structure on L.
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b) eLp < ∞ and sLp < ∞ for any p ∈ Spec(DL).
c) DL is a Noetherian ring.
d) Any ideal Q ∈ Spec(DL) is finitely generated.

4. THE PROOF OF THEOREM 2

Let us recall (see Introduction) that A = ∩V ∈FV is the intersection of
all the distinct valuation rings V in an infinite Galois extension L/K, of an
arbitrary nonempty family F such that D ⊂ V for any V ∈ F , for a fixed
Dedekind domain D in K = Q(D). For any V ∈ F , we denote m(V ) the
maximal ideal of V and let pV = m(V ) ∩ D, which is a nonzero prime ideal
of D (the proof follows the same ideas as in the proof of Lemma 1). Since
1 /∈ pV , we see that pV ∈ Spec(D) and the localization DpV of D relative to pV
is contained in V. Since D is a Dedekind domain, DpV is a discrete valuation
ring and so V ∩ K = DpV (see [2] and [7]). But we do not know that any
V of F is an extension of a discrete valuation ring Dq with q ∈ Spec(D).
Let M = {q ∈ Spec(D) : ∃V ∈ F , with V ∩ K = Dq}. Now we substitute
the Dedekind pair (D,K) with the Dedekind pair (DM,K), where DM is
the quotient ring of D w.r.t. the multiplicative system S = D⧹ ∪q∈M q.
Since D = ∩p∈Spec(D)Dp (see [1] or [7]), we see that DM = ∩q∈MDq is also a
Dedekind domain with fewer prime ideals. Now, not all the valuation rings W
of L, which extend a fixed Dq, q ∈ M, belong to F . Let F∗ be the set of all
valuation rings W of L, which extend at least one Dq, q ∈ M. It is clear that
F∗ ⊇ F and A = ∩V ∈FV ⊇ A∗ = ∩W∈F∗W. But A∗ is the integral closure of
DM in L (see [2]). We apply Theorem 1 with a valuation language and find
that A∗ is a Dedekind ring if and only if any W ∈ F∗ is a discrete valuation
ring and the set S∗

q = {W ∈ F∗ : W ∩ K = Dq} is finite for any q ∈ M. It
remains to prove:

a) A and A∗are simultaneously Dedekind domains,
b) F and F∗ simultaneously contain only discrete valuation rings, and
c) the sets Sq = {V ∈ F : V ∩ K = Dq} and S∗

q (defined above) are
simultaneously finite sets for each q ∈ M, whenever F contains only discrete
valuation rings.

Let us denote G = Gal(L/K) the Galois group of L over K. Since G
acts transitively on the set of valuation rings S∗

q for each q ∈ M (see [2]) and
since the image of a discrete valuation ring through a σ ∈ G is also a discrete
valuation ring, the statement b) is clear. Let us assume that A∗is a Dedekind
domain. Since A is a quotient ring of A∗, we see that also A is a Dedekind
domain. Suppose now that A is a Dedekind domain. Since any prime ideal
p ∈ Spec(A∗) is of the form p = σ(q ∩ A∗), where q ∈ Spec(A) and σ ∈ G,
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we see that A∗ is a Noetherian ring (see Lemma 3) and that any prime ideal
p ∈ Spec(A∗) is a maximal ideal of A∗. Since A∗is an intersection of valuation
rings, it is integrally closed in L. So A∗ is also a Dedekind domain and the
statement a) is proved.

Let us prove c). Since Sq ⊆ S∗
q , the finiteness of S∗

q obviously implies the
finiteness of Sq. We assume that Sq is a finite set for any q ∈ M. Theorem 1
says that A is a Dedekind domain. Thus, the statement a) implies that A∗ is
a Dedekind domain and, applying again Theorem 1, we find that S∗

q is a finite
set for any q ∈ M, i.e. we finished to prove c) and Theorem 2 itself.

5. AN “EXOTIC” EXAMPLE

Let p1 = 3, p2 = 5, p3 = 7, ..., pn, ... be the increasing sequence of all
prime numbers p > 2, let K0 = Q be the field of rational numbers and let D ={

a
2s : a ∈ Z, s ∈ N

}
be the Dedekind domain obtained as a ring of quotients

of Z with respect to the multiplicative system S =
{
1, 12 ,

1
22
, ...

}
. We choose

a root α1 of the irreducible polynomial f1(X) = X2 + 1 over the finite field
D/Dp1 ≃ Z/p1Z and let K1 = K0[α1]. Since f1(X) is irreducible over D/Dp1,
p1D does not ramify and does not split in K1 (see [5]) Suppose that we just
constructed a tower of fields in C, the field of complex numbers:

K0 ⊂ K1 ⊂ K2 ⊂ ... ⊂ Kn,

such that [Ki : Ki−1] = 2, i = 1, 2, ..., n and the ideals p1Dj , p2Dj , ..., pjDj

(Dj is the integral closure of D in Kj) do not ramify and do not split in Dj ,
j = 1, 2, ..., n. Let Mn be the set of all maximal ideals P1,P2, ...,Ph which
may appear in the decompositions of the ideals p1Dn, p2Dn, ..., pn+1Dn in Dn

(in fact only pn+1Dn might split or ramify in Dn). Let us choose now bn in
Dn such that bn is not a square modulo all Pj , j = 1, 2, ..., h (see Lemma 5).
Let αn =

√
bn ∈ C and let Kn+1 = Kn[αn] be the corresponding quadratic

extension of Kn. Since the polynomial X2 − bn is irreducible modulo Pj , j =
1, 2, ..., h, the ideals P1,P2, ...,Ph do not ramify and do not split in Dn+1, the
integral closure of D in Kn+1 (see [5], the fundamental equality and the general
rule of decomposition of a prime ideal in algebraic number field extensions).
Let L = ∪∞

n=0Kn ⊂ C and let DL be the integral closure of D in L. It is clear
that [L : Q] = 2∞ and eLpi < ∞, sLpi < ∞ for any i = 1, 2, ... because piDi does
not ramify or decompose in any ring Dj with j ≥ i. We apply Theorem 1 and
find that the pair (DL, L) is an infinite Dedekind structure on L.

This means that the infinite extension L/Q gives rise to an infinite exten-
sion of Dedekind structures (D,Q) ⊂ (DL, L). This fact is not true in general.
For instance, if A is the ring of all the algebraic integers, i.e. the integral
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closure of Z in the algebraic closure Q of Q in C, then the pair (A,Q) is not a
Dedekind structure because A is not Noetherian. The importance of Theorem
1 consists in the possibility to construct a large class of infinite extensions of
Dedekind structure (D,K) ⊂ (DL, L) not only with algebraic numbers as in
the classical use of the main result of Hasse [3].
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