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The aim of this paper is to introduce and study some classes of m-subharmonic
functions (ET

p,m(Ω) and FT
m(Ω)) where the operator (ddc�)q ∧ T is well defined

for a given m-positive closed current T of bidimension (q, q) defined on an m-
hyperconvex domain Ω of Cn. We prove first the quasicontinuity, with respect
to a new capacity defined by the Monge-Ampere measure, of all m-subharmonic
function that belong either to ET

p,m(Ω) or FT
m(Ω). This will allow us to prove that

the well-known Xing comparison principle is valid on to the class ET
p,m(Ω).
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ator.

1. INTRODUCTION

Let Ω be anm-hyperconvex domain of Cn, that means it is open, bounded,
connected and there exists a negative m-subharmonic function h such that for
all c < 0, the set {z ∈ Ω, h(z) < c} is relatively compact in Ω and T be an
m-positive closed current of bidimension (q, q) (1 ≤ q ≤ m ≤ n). In 2013,
Lu [15] studied the m-Hessian operator in the set of m-subharmonic functions.
He introduced the classes E0,m(Ω), Fm(Ω) and Ep,m(Ω) ( where p ≥ 1) which
coincide, in the case m = n, with the well-known classes introduced by Cegrell
in [3, 4]. After proving that the Hessian operator is well defined on those
classes, Lu shows the continuity of this operator under decreasing sequence
and that all functions belong to those classes are quasicontinuous with respect
to the capacity Capm constructed by the Hessian measure.
In this paper, we study the Monge-Ampère operator with respect to an m-
positive closed current in the set of m-subharmonic functions. So it contains
three sections organized as follows:

In the first section, we recall the definition of the m-positivity of currents
and m-subharmonic functions defined on Ω as well as their basic properties.
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Then we associate to every m-positive closed current T the classes FT
m(Ω) and

ET
p,m(Ω). In the classical case T = (ddc|z|)n−m those classes coincide with Lu

classes [15] and with Cegrell [3, 4] classes when T = 1 and m = n. Following
Cegrell [3] technics and Lu [15] convergence theorem we prove first that the
Monge-Ampère operator is well defined on ET

p,m(Ω) (See Theorem 4). Then we
are interested to an approximation theorem cited in the case m = n by Hai
and Dung [11] but with incomplete proof. Here we give a complete proof in
the general case 1 ≤ m ≤ n.

In the second section, we introduce a new capacity Cm,T inspired from
the Monge-Ampère measure which allow us to study the quasicontinuity of
m-subharmonic functions with respect to this capacity. This problem has
been studied first by Bedford and Taylor [1] who proved that every bounded
plurisubharmonic function is continuous outside a subset of small capacity.
This result was extended by Dabbek and Elkhadra [8] with respect to the ca-
pacity CT and by Lu with respect to the capacity Capm. In our paper, we give
first an estimate of the sub-level {u < s} for all u ∈ ET

p,m(Ω) (resp. u ∈ FT
m(Ω))

and s < 0. As a consequence of this estimate, we prove that all functions
belong to the introduced classes are Cm,T -quasicontinuous. Namely we prove
the following statement:

Theorem 1. Let u ∈ FT
m(Ω) (resp. u ∈ ET

p,m(Ω)). Then for all ε >
0, there exists an open subset Oε such that Cm,T (Oε,Ω) < ε and u|Ω\Oε

is
continuous.

The last section is devoted to extend Xing inequality and domination
principle to the classes ET

m,p(Ω) and FT
m(Ω) using fundamental results proved

in Section 2. We essentially extend The Xing comparison principle to the classe
ET
m,p(Ω). More precisely we prove the following result

Theorem 2. Let 0 < p ≤ 1 and u, v ∈ ET
p (Ω) such that the measure

(ddcv)q ∧ T has no mass on (m,T )−pluripolar sets, then∫
{v<u}

(ddcu)q ∧ T ≤
∫
{v<u}

(ddcv)q ∧ T

2. ENERGY m-SUBHARMONIC CLASSES

In the first part of this section, we recall the notion of m-positivity forms
and m-subharmonicity defined by Blocki in [2].

Definition 1. A real form α of bidegree (1, 1) in a domain Ω of Cn is said
to be m-positive if at every point of Ω one has
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αj ∧ βn−j ≥ 0, ∀j = 1, · · · ,m
where β := ddc|z|2.

Let notice that, in the case m = n, the m-positivity notion defined below
coincide with the standard notion of positivity. This is not the case when
m < n as we can see in the following example.

Example 1. The (1, 1)−form α := 2idz1∧ idz1+3idz2∧ idz2−dz3∧ idz3
in C3 is 2-positive but not positive.

Definition 2. 1. A function u : Ω → R ∪ {−∞} is called m-subharmonic
if it is subharmonic and

ddcu ∧ βn−m ∧ α1 ∧ · · · ∧ αm−1 ≥ 0

for all m-positive forms α1, · · · , αm−1.

2. A current T of bidimension (p, p), with 1 ≤ p ≤ m, is called m-positive
if

α1 ∧ · · · ∧ αp ∧ T ≥ 0.

for every m-positive (1, 1)-forms α1, · · · , αp.

The class of m-subharmonic (resp. plurisubharmonic) functions in Ω will
be denoted by SHm(Ω) (resp. PSH(Ω)).

We list below some basic properties of m-subharmonicity. For the proof,
one can refers to [15].

Proposition 1. 1. Let 1 ≤ p ≤ m. If α1, · · · , αp are m-positive (1, 1)-
forms then α1 ∧ · · · ∧ αp ∧ βn−m ≥ 0.

2. If u ∈ C2(Ω) then: u ∈ SHm(Ω) if and only if the form ddcu is m-
positive on Ω.

3. If u ∈ SHm(Ω) then the current ddcu ∧ βn−m is m-positive.

4. If u, v ∈ SHm(Ω) then λu+ µv ∈ SHm(Ω),∀λ, µ > 0.

5. PSH(Ω) = SHn(Ω) ⊊ · · · ⊊ SHm(Ω) ⊊ · · · ⊊ SH1(Ω) = SH(Ω).

6. If u is m-subharmonic on Ω then the standard regularizations u ∗ χϵ

are also m-subharmonic on Ωϵ := {x ∈ Ω / d(x, ∂Ω) > ϵ}.

7. If (ui)j is a decreasing sequence of m-subharmonic functions then u :=
limuj is either m-subharmonic or identically equal to −∞.
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Remark 1. 1. The first notion of Definition 2 was introduced by Lu [15]
and one can prove, using the third assertion of Proposition 1, that: for all
1 ≤ s < r ≤ m, every s−positive current is r−positive.

2. Recently Dhouib and Elkhadra [6] gave a new notion of m-positivity
of current. This notion generalizes classic positivity defined by Lelong since
1967, but the first statement of this remark statement does not holds.

3. If T ism-positive in the sense of Dhouib and Elkhadra, then the current
T ∧ βn−m is m-positive in the sense of Lu.

In the hole of this paper, we will use the Definition 2 introduced by Lu.

2.1. The class ET
p,m(Ω)

Throughout this paper, we denote by T an m-positive closed current of
bidimension (q, q) defined on anm-hyperconvex domain Ω of Cn. We introduce
the class ET

0,m(Ω) associated to T as follows:

ET
0,m(Ω) :=

{
φ ∈ SH−

m(Ω) ∩ L∞(Ω); lim
z→∂Ω∩Supp T

φ(z) = 0,∫
Ω
(ddcφ)q ∧ T < +∞

}
.

Remark 2. 1. In the trivial case T = 1, the class ET
0,m(Ω) coincides with

E0,m(Ω) introduced by Lu [15].

2. The class ET
0,m(Ω) coincides with Cegrell [3] one when m = n and

T = 1.

3. If the current T is defined on a neighborhood of Ω, then ET
0,m(Ω) con-

tains all bounded functions of SH−
m(Ω).

4. A continuous function in ET
0,m(Ω) can be seen as a test function. More

precisely it is easy to prove that:

D′(Ω) = ET
0,m(Ω) ∩ C(Ω)− ET

0,m(Ω) ∩ C(Ω).

Assume in the hole of this paper that ET
0,m(Ω) ̸= {0}.

In this section, we introduce two new energy classes ET
p,m(Ω) and FT

m(Ω), simi-
lar to Cegrell’s ones and we will prove that the Monge-Ampère operator is well
defined on them.
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Definition 3. For every real p ≥ 1 we define ET
p,m(Ω) as the set:

ET
p,m(Ω) :=

{
φ ∈ SH−

m(Ω); ∃ ET
0,m(Ω) ∋ φj ↘ φ,

sup
j≥1

∫
Ω
(−φj)

p(ddcφj)
q ∧ T < +∞

}
.

When the sequence (φj)j associated to φ could be chosen such that

sup
j≥1

∫
Ω
(ddcφj)

q ∧ T < +∞,

we say that φ ∈ FT
p,m(Ω).

We cite belong useful properties of the different introduced classes. Those
properties generalize well known ones proved by Hai and Dung [11] ( in the
particular case m = n) and Cegrell in the case T = 1 and m = n. So it can be
proved using the same technics.

Propertiess. 1. If ψ ∈ SH−
m(Ω) and φ ∈ ET

0,m(Ω) then the function

max(φ,ψ) ∈ ET
0,m(Ω).

2. The class ET
0,m(Ω) is a convex cone.

3. ET
0,m(Ω) ⊂ FT

p,m(Ω) ⊂ ET
p,m(Ω).

4. FT
p1,m(Ω) ⊂ FT

p2,m(Ω) for all p2 ≤ p1.

The following result was proved in the classic case m = n by Dabbek and
ElKhadra [8] and will be useful to prove some properties of our classes.

Theorem 3 (See [8]). Suppose that u, v ∈ ET
0,m(Ω). If p ≥ 1 then for

every 0 ≤ s ≤ q one has∫
Ω
(−u)p(ddcu)s ∧ (ddcv)q−s ∧ T

≤ Ds,p

(∫
Ω
(−u)p(ddcu)q ∧ T

) p+s
p+q
(∫

Ω
(−v)p(ddcv)q ∧ T

) q−s
p+q

where Ds,1 = 1 and Ds,p = p
(p+s)(q−s)

p−1 , p > 1.

Proof. The inequality can be proved using same technics as in [8] where
authors have also proved that Ds,1 = e{(1+j)(p−j)}. Here we prove that Ds,1

can be equal to 1. We will proceed by induction on the dimension of T .
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1. Assume that T is of bidimension (1, 1). The result is obvious when
s = 1. For s = 0, using Cauchy-Schwartz inequality, we obtain∫

Ω
(−u)ddcv ∧ T =

∫
Ω
du ∧ dcv ∧ T

≤
(∫

Ω
du ∧ dcu ∧ T

) 1
2
(∫

Ω
dv ∧ dcv ∧ T

) 1
2

=

(∫
Ω
(−u)ddcu ∧ T

) 1
2
(∫

Ω
(−v)ddcv ∧ T

) 1
2

.

This prove the result.

2. Assume now by induction that the result is true for all current T of
bidimension (q, q) (q ≤ n − 1). Let T be an m-positive closed current of
bidimension (q + 1, q + 1). Assume also that s = q. Since ddcu ∧ T is an
m-positive closed current of bidimmension (q, q), so we obtain that∫

Ω
(−u)(ddcu)q ∧ ddcv ∧ T =

∫
Ω
(−u)(ddcu)q−1 ∧ ddcv ∧ (ddcu ∧ T )

≤
(∫

Ω
(−u)(ddcu)q ∧ (ddcu ∧ T )

) q
q+1
(∫

Ω
(−v)(ddcv)q ∧ (ddcu ∧ T )

) 1
q+1

×
(∫

Ω
(−u)(ddcu)q+1 ∧ T

) q
q+1

≤

[(∫
Ω
(−v)(ddcv)q+1 ∧ T

) q
q+1
(∫

Ω
(−u)(ddcu)q ∧ ddcv ∧ T

) 1
q+1

] 1
q+1

.

It follows that∫
Ω
(−u)(ddcu)q ∧ ddcv ∧ T ≤

(∫
Ω
(−u)(ddcu)q+1 ∧ T

) q+1
q+2

×
(∫

Ω
(−v)(ddcv)q+1 ∧ T

) 1
q+2

.

So we can deduce the case s = 0:∫
Ω
(−u)(ddcv)q+1 ∧ T =

∫
Ω
(−u)(ddcv)q ∧ (ddcv ∧ T )

≤
(∫

Ω
(−u)(ddcu)q ∧ (ddcv ∧ T )

) 1
q+1
(∫

Ω
(−v)(ddcv)q ∧ (ddcv ∧ T )

) q
q+1

≤
(∫

Ω
(−u)(ddcu)q+1 ∧ T

) q+1
q+2

× 1
q+1
(∫

Ω
(−v)(ddcv)q+1 ∧ T

) 1
(q+1)(q+2)

+ q
q+1

≤
(∫

Ω
(−u)(ddcu)q+1 ∧ T

) 1
q+2
(∫

Ω
(−v)(ddcv)q+1 ∧ T

) q+1
q+2

.
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If we assume now that 0 < s < q, so by using previous inequalities we
obtain∫

Ω
(−u)(ddcu)s ∧ (ddcv)q−s+1 ∧ T =

∫
Ω
(−u)(ddcu)s ∧ (ddcv)q−s ∧ (ddcv ∧ T )

≤
(∫

Ω
(−u)(ddcu)q ∧ (ddcv ∧ T )

) s+1
q+1
(∫

Ω
(−v)(ddcv)q ∧ (ddcv ∧ T )

) q−s
q+1

≤

[(∫
Ω
(−u)(ddcu)q+1 ∧ T

) q+1
q+2
(∫

Ω
(−v)(ddcv)q+1 ∧ T

) 1
q+2

] s+1
q+1

×
(∫

Ω
(−v)(ddcv)q ∧ (ddcv ∧ T )

) q−s
q+1

=

(∫
Ω
(−u)(ddcu)q+1 ∧ T

) s+1
q+2
(∫

Ω
(−v)(ddcv)q+1 ∧ T

) q+1−s
q+2

.

We extend now some properties of ET
0 (Ω) to our classes.

Proposition 2. 1. The classes ET
p,m(Ω) and FT

p,m(Ω) are convex cones.

2. For all u ∈ ET
p,m(Ω) (resp. FT

p,m(Ω)) and v ∈ SH−
m(Ω), the function

w := max(u, v) is in ET
p,m(Ω) (resp. in FT

p,m(Ω)).

Proof. 1. It is easy to check that for all λ > 0 and u ∈ ET
p,m(Ω) one

has λu ∈ ET
p,m(Ω). So it suffices to prove that u + v ∈ ET

p,m(Ω) for every

u, v ∈ ET
p,m(Ω).

Let (uj)j and (vj)j be two sequences that decrease to u and v respectively
as in Definition 3. To estimate∫

Ω
(−uj − vj)

p(ddc(uj + vj))
q ∧ T

it is enough, by Minkowsky Inequality, to estimate the following terms:∫
Ω
(−uj)p(ddcuj)s ∧ (ddcvj)

q−s ∧ T

and ∫
Ω
(−vj)p(ddcuj)s ∧ (ddcvj)

q−s ∧ T

for all 0 < s < q. Now by Theorem 3, we can estimate last terms by∫
Ω
(−uj)p(ddcuj)q ∧ T and

∫
Ω
(−vj)p(ddcvj)q ∧ T.
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As these sequences are uniformly bounded by the definition of ET
p,m(Ω),

the first assertion follows.
2. Let (uj)j be a sequence that decreases to u as in Definition 3 and take

wj := max(uj , v). It is clear that the sequence (wj) decreases to w. So it’s
enough to prove that

sup
j

∫
Ω
(−wj)

p(ddcwj)
q ∧ T < +∞.

Thanks to Theorem 3, one has∫
Ω
(−wj)

p(ddcwj)
q ∧ T ≤

∫
Ω
(−uj)p(ddcwj)

q ∧ T

≤ D0,p

(∫
Ω
(−uj)p(ddcuj)q ∧ T

) p
p+q
(∫

Ω
(−wj)

p(ddcwj)
q ∧ T

) q
p+q

.

Therefore∫
Ω
(−wj)

p(ddcwj)
q ∧ T ≤ D

p+q
p

0,p

∫
Ω
(−uj)p(ddcuj)q ∧ T.

The right-hand side is uniformly bounded because u ∈ ET
p,m(Ω). So the result

follows.

To deal well with the Monge-Ampère operator (ddc�)q ∧ T on our classes,
we will prove first that this operator is well defined.

Theorem 4. Let u ∈ ET
p,m(Ω) and (uj)j be a sequence of m-subharmonic

functions that decreases to u as in Definition 3. Then the sequence ((ddcuj)
q ∧

T ))j converges weakly to a positive measure µ and this limit is independent of
the choice of the sequence (uj)j. We set (ddcu)q ∧ T := µ.

Proof. Let 0 ≤ χ ∈ D(Ω), δ = sup{u1(z); z ∈ Suppχ}, ε > 0 and

ur(z) :=

∫
B
u1(z + r1ξ)dV (ξ) where dV is the normalized Lebesgue measure

on the unit ball B.
Then there exists r1 > 0 such that r1 < dist({u1 < δ

2},Ω
c) and for all

r ≤ r1 one has ∣∣∣∣∫
Ω
χ(ddcur)

q ∧ T − χ(ddcu1)
q ∧ T

∣∣∣∣ < ε

There exists also r2 < r1 such that r2 < dist({u2 < δ
2},Ω

c) and ∀r ≤ r2∣∣∣∣∫
Ω
χ(ddcur)

q ∧ T − χ(ddcu2)
q ∧ T

∣∣∣∣ < ε.

Thus we construct a sequence (rj)j such that 0 < rj < rj−1,

rj < dist({uj <
δ

2
},Ωc)
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and ∣∣∣∣∫
Ω
χ(ddcurj )

q ∧ T − χ(ddcuj)
q ∧ T

∣∣∣∣ < ε

where

urj (z) :=

∫
B
uj(z + rjξ)dV (ξ).

The function urj is continuous and m-subharmonic on {uj < δ
2} satisfying

uj ≤ urj on Ω. If we take ũj = max(urj + δ, 2uj), then the sequence (ũj)j
decreases to an m-subharmonic function ũ and ũj ∈ ET

0 (Ω) by Proposition 2.
Furthermore, the sequence (ũj)j satisfies

sup
j≥1

∫
Ω
(−ũj)p(ddcũj)q ∧ T < +∞.

So it remains to prove that

lim
j→+∞

∫
Ω
χ(ddcũj)

q ∧ T

exists.
Let h be an exhaustion function in ET

0,m(Ω). Then∫
Ω
(−ũ)p(ddch)q ∧ T = lim

j→+∞

∫
Ω
(−ũj)p(ddch)q ∧ T

≤ D0,p sup
j≥1

(∫
Ω
(−ũj)p(ddcũj)q ∧ T

) p
p+q
(∫

Ω
(−h)p(ddch)q ∧ T

) q
p+q

< +∞.

Thanks to Lu [14], the sequence of measures (ddcmax(ũj ,−k))q ∧ T converges
weakly for every k. So it is enough to control∣∣∣∣∫ χ(ddcurj )

q ∧ T − χ(ddcmax(ũj ,−k))q ∧ T
∣∣∣∣ .

Since ũj = urj + δ on {uj ≤ δ
2} and Suppχ ⊂ {uj ≤ δ

2}, then ũj is continuous
on a neighborhood of Suppχ. It follows that∣∣∣∣∫ χ(ddcurj )

q ∧ T − χ(ddcmax(ũj ,−k))q ∧ T
∣∣∣∣

=

∣∣∣∣∫ χ(ddcũj)
q ∧ T − χ(ddcmax(ũj ,−k))q ∧ T

∣∣∣∣
=

∣∣∣∣∣
∫
{ũ≤−k}

χ(ddcũj)
q ∧ T +

∫
{ũ>−k}

χ(ddcũj)
q ∧ T

−
∫
{ũ≤−k}

χ(ddcmax(ũj ,−k))q ∧ T −
∫
{ũ>−k}

χ(ddcmax(ũj ,−k))q ∧ T

∣∣∣∣∣
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≤
∫
{ũ≤−k}

χ(ddcũj)
q ∧ T +

∫
{ũ≤−k}

χ(ddcmax(ũj ,−k))q ∧ T

≤ supχ

kp

∫
{−ũ≥k}

kp [(ddcũj)
q ∧ T + (ddcmax(ũj ,−k))q ∧ T ]

≤ supχ

kp

∫
Ω
(−ũ)p(ddcũj)q ∧ T + (−max(ũj ,−k))pddcmax(ũj ,−k))q ∧ T

≤ C
supχ

kp
sup
m≥1

∫
Ω
(−ũm)p((ddcũm)q ∧ T.

The first inequality is due to the fact that −k < ũ ≤ ũj . For the last inequality
one has∫
Ω
(max(ũj ,−k))p(ddcmax(ũj ,−k))q ∧T ≤ D

p+q
p

0,p

∫
Ω
(−ũj)p(ddcũj)q ∧T < +∞

and for all j ≥ 0∫
Ω
(−ũ)p(ddcũj)q ∧ T = lim

m→+∞

∫
Ω
(−ũm)p(ddcũj)

q ∧ T

≤ D0,p sup
m≥1

(∫
Ω
(−ũm)p(ddcũm)q ∧ T

) p
p+q
(∫

Ω
(−ũj)p(ddcũj)q ∧ T

) q
p+q

< +∞.

No by tending k to +∞, we obtain that the sequence ((ddcurj )
q∧T )j converges

which implies the convergence of the sequence ((ddcuj)
q ∧ T )j . The result

follows.

Let prove now that the convergence is independent of the chosen sequence.
For this let (uj)j and (vj)j be a sequence of m-subharmonic functions that
decreases to u as in Definition 3 and take h ∈ ET

0,m(Ω). We have∫
Ω
h(ddcuj)

q ∧ T =

∫
Ω
uj(dd

cuj)
q−1 ∧ ddch ∧ T

≥
∫
Ω
u(ddcuj)

q−1 ∧ ddch ∧ T

= lim
k1−→+∞

∫
Ω
vk1(dd

cuj)
q−1 ∧ ddch ∧ T.

= lim
k1−→+∞

∫
Ω
uj(dd

cvk1) ∧ (ddcuj)
q−2 ∧ ddch ∧ T.

= lim
k1−→+∞

∫
Ω
u(ddcvk1) ∧ (ddcuj)

q−2 ∧ ddch ∧ T.

= lim
k1−→+∞

lim
k2−→+∞

∫
Ω
vk2(dd

cvk1) ∧ (ddcuj)
q−2 ∧ ddch ∧ T.

≥ lim
k1,k2,...,kq−→+∞

∫
Ω
hddcvk1 ∧ ...ddcvkq ∧ T.
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≥ lim
k−→+∞

∫
Ω
h(ddcvk)

q ∧ T.

The result follows since (uj)j and (vj)j have a symmetrical role.

In the case p = 1 one has the following convergence theorem which has
been established by Cegrell [3] in the case T = 1 and m = n.

Proposition 3. Let u ∈ ET
1,m(Ω) and (uj)j is a decreasing sequence

to u as in Definition 3, then the sequence (
∫
Ω uj(dd

cuj)
q ∧ T )j decreases to∫

Ω u(dd
cu)q ∧ T.

Proof. Since uj ∈ ET
0,m(Ω) so one has∫

Ω
uj+1(dd

cuj+1)
q ∧ T ≤

∫
Ω
uj(dd

cuj+1)
q ∧ T ≤

∫
Ω
uj(dd

cuj)
q ∧ T

This prove that

(∫
Ω
uj(dd

cuj)
q ∧ T

)
j

is a decreasing sequence.

Let us prove that

lim
j→+∞

∫
Ω
uj(dd

cuj)
q ∧ T =

∫
Ω
u(ddcu)q ∧ T.

For every k ≥ j and ε > 0, one has∫
Ω
−uj(ddcuj)q ∧ T

≤
∫
Ω
−uj(ddcuk)q ∧ T

=

∫
{uj≥−ε}

−uj(ddcuk)q ∧ T +

∫
{uj<−ε}

−uj(ddcuk)q ∧ T

and∫
{uj≥−ε}

−uj(ddcuk)q ∧ T

=

∫
{uj≥−ε}

−max(uj ,−ε)(ddcuk)q ∧ T

≤
(∫

Ω
−max(uj ,−ε)(ddcmax(uj ,−ε))q ∧ T

) 1
q+1
(∫

Ω
−uk(ddcuk)q ∧ T

) q
q+1

≤
(
ε

∫
Ω
(ddcuj)

q ∧ T
) 1

q+1

α
q

q+1

This goes to 0 when ε→ 0. By Theorem 4 we obtain

lim sup
k→+∞

∫
{uj<−ε}

−uj(ddcuk)q ∧ T ≤
∫
Ω
−uj(ddcu)q ∧ T.
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Now since −uj is lower semi-continuous then

lim inf
k→+∞

∫
Ω
−uj(ddcuk)q ∧ T ≥

∫
Ω
−uj(ddcu)q ∧ T.

Hence for all j,

lim
k→+∞

∫
Ω
uj(dd

cuk)
q ∧ T =

∫
Ω
uj(dd

cu)q ∧ T.

It follows that

lim
j→+∞

∫
Ω
uj(dd

cuj)
q ∧ T

≥ lim
j→+∞

lim
k→+∞

∫
Ω
uj(dd

cuk)
q ∧ T =

∫
Ω
u(ddcu)q ∧ T

≥ lim sup
k→+∞

∫
Ω
u(ddcuk)

q ∧ T = lim sup
k→+∞

lim
j→+∞

∫
Ω
uj(dd

cuk)
q ∧ T

≥ lim
j→+∞

∫
Ω
uj(dd

cuj)
q ∧ T.

Thus

(2.1) lim
j→+∞

∫
Ω
uj(dd

cuj)
q ∧ T =

∫
Ω
u(ddcu)q ∧ T.

As (vk)k decreases to u then vk ∈ ET
1 (Ω). It follows that

(2.2)

∫
Ω
max(uj , vk)(dd

cmax(uj , vk))
q ∧ T ≥

∫
Ω
uj(dd

cuj)
q ∧ T ≥ −α.

Moreover, (max(uj , vk))j∈N ⊂ ET
0,m(Ω) and decreases to vk so thanks to Equal-

ity (2.1),

(2.3) lim
j→+∞

∫
Ω
max(uj , vk)(dd

cmax(uj , vk))
q ∧ T =

∫
Ω
vk(dd

cvk)
q ∧ T.

By tending j → +∞, Inequality (2.2), Equalities (2.1) and (2.3) give∫
Ω
vk(dd

cvk)
q ∧ T ≥

∫
Ω
u(ddcu)q ∧ T.

Thus

(2.4) lim inf
k→+∞

∫
Ω
vk(dd

cvk)
q ∧ T ≥

∫
Ω
u(ddcu)q ∧ T.

With the same reason, as (max(uj , vk))k∈N decreases to uj then∫
Ω
uj(dd

cuj)
q ∧ T ≥ lim sup

k→+∞

∫
Ω
vk(dd

cvk)
q ∧ T.

Hence

(2.5) lim sup
k→+∞

∫
Ω
vk(dd

cvk)
q ∧ T ≤

∫
Ω
u(ddcu)q ∧ T.

The result follows from Inequalities (2.4) and (2.5).
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2.2. The class FT
m(Ω)

Let us recall the following well-known theorem.

Theorem 5 (See [11]). Suppose that Ω is an n−hyperconvex domain,
u is a negative plurisubarmonic function and T a positive closed current of
bidimension (q, q) such that lim

z−→∂Ω
u(z) = 0 and

∫
Ω(dd

cu)q ∧ T < +∞. Then

there exists a sequence uj ∈ ET
0,n(Ω) that decreases to u.

The previous theorem was proved in the casem = n by Hai and Dung [11,
Th.5.1] but their proof was incomplete since they applied a comparison type
theorem, which is valid only in the case of bounded plurisubarmonic functions,
to the class FT

n (Ω) that contains unbounded functions. So the last part of this
section will be devoted to give another proof of this theorem in more general
case (See Theorem 6 below).

Definition 4. We say that u ∈ FT
m(Ω) if there exists a sequence (uj)j ⊂

ET
0,m(Ω) which decreases to u such that

sup
j

∫
Ω
(ddcuj)

q ∧ T < +∞.

We say that u ∈ ET
m(Ω) if for all z ∈ Ω there exist a neighborhood ω of z

and a function v ∈ FT
m(Ω) such that u = v on ω.

As a consequence, for every p ≥ 1 one has FT
p,m(Ω) ⊂ FT

m(Ω) ⊂ ET
m(Ω) and

FT
p,m(Ω) ⊂ ET

p,m(Ω) but there is no relationship between ET
p,m(Ω) and ET

m(Ω).
Using same technics as in [6], one can prove that the Monge-Ampère operator is
well defined on the class ET

m(Ω). Moreover by repeating the proof of Proposition
5.16 in [7] with T instead of (ddc|z|2)p one can show the following statement

Proposition 4. Let u1, ..., uq ∈ FT
m(Ω) and h ∈ ET

0,m(Ω). For all 1 ≤
s ≤ q we denote by (usj)j the corresponding sequence that decrease to us as in
Definition 4, then

lim
j−→+∞

∫
Ω
hddcu1j ∧ ddcu2j · · · ∧ddcu

q
j ∧ T =

∫
Ω
hddcu1 ∧ ddcu2 · · · ∧ddcuq ∧ T.

To establish a proof of Theorem 5, we will prove first some intermediate
lemmas.

Lemma 1. Let u, v ∈ FT
m(Ω). Assume that there exists an open subset U

of Ω such that u = v near ∂U . Then∫
U
(ddcu)q ∧ T =

∫
U
(ddcv)q ∧ T.



526 J. Hbil 14

Proof. Let uε and vε be the usual regularization of u and v respectively.
Choose U ′ ⊂⊂ U such that u = v near ∂U ′. If ε > 0 is small enough, one has
uε = vε near ∂U ′ and if we take χ ∈ D(U ′) with χ = 1 near {uε ̸= vε} then
ddcχ = 0 on {uε ̸= uε}. So we obtain∫

Ω
χ(ddcuε)

q ∧ T =

∫
Ω
uεdd

cχ ∧ (ddcuε)
q−1 ∧ T

=

∫
Ω
vεdd

cχ ∧ (ddcuε)
q−1 ∧ T

=

∫
Ω
χ(ddcvε)

q ∧ T.

By a proof similar to that of Proposition 5 in [6], one can prove that (ddcuε)
q∧T

and (ddcvε)
q ∧ T converge respectively to (ddcu)q ∧ T and (ddcv)q ∧ T . Hence∫

Ω
χ(ddcu)q ∧ T =

∫
Ω
χ(ddcv)q ∧ T.

Proposition 5. For u, v ∈ FT
m(Ω) such that u ≤ v on Ω one has∫

Ω
(ddcv)q ∧ T ≤

∫
Ω
(ddcu)q ∧ T.

Proof. Let (uj)j and (vj)j be the corresponding decreasing sequences to
u and v respectively as in Definition 4. Replace vj by max(uj , vj), we can
assume that uj ≤ vj for all j ∈ N. For h ∈ ET

0,m(Ω) and ε > 0 we have∫
Ω
−h(ddcvj)q ∧ T ≤

∫
Ω
−h(ddcuj)q ∧ T

≤
∫
Ω
−h(ddcu)q ∧ T + lim sup

j→+∞

∫
{h>−ε}

−h(ddcuj)q ∧ T

≤
∫
Ω
−h(ddcu)q ∧ T + ε lim sup

j→+∞

∫
Ω
(ddcuj)

q ∧ T.

Now if we let ε go to 0 we get∫
Ω
−h(ddcv)q ∧ T ≤

∫
Ω
−h(ddcu)q ∧ T

The result follows by choosing h decreasing to −1.

Theorem 6. For all φ ∈ FT
m(Ω), there exists a sequence (φj)j ⊂ ET

0 (Ω)∩
C(Ω) that decreases to φ.
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Proof. We refer to Lu [15, Th.3.1] for the construction of the sequence
(φj)j . It remains to show that∫

Ω
(ddcφj)

q ∧ T < +∞.

As φj ≥ φ then by Proposition 5 one has∫
Ω
(ddcφj)

q ∧ T ≤
∫
Ω
(ddcφ)q ∧ T < +∞.

3. QUASICONTINUITY OF m-SUBHARMONIC FUNCTIONS

This aim of this section is to prove the quasicontinuity of m-subharmonic
functions that belong to the classes FT

m(Ω) and ET
p,m(Ω) with respect to a

suitable capacity.

Definition 5. The m-capacity associated to T denoted by Cm,T is defined
as:

Cm,T (K,Ω) = Cm,T (K) = sup

{∫
K
(ddcv)q ∧ T, v ∈ SHm(Ω, [−1, 0])

}
for all compact subset K of Ω. If E is a subset of Ω, we define

Cm,T (E,Ω) = sup{Cm,T (K), K compact subset of E}.
This capacity coincides with the standard m-capacity defined by Lu [15]

in the case q = m and T = (ddc|z|2)n−m, with the capacity CT introduced by
Dabbek and Elkhadra in the case m = n and with the standard Bedford and
Taylor capacity in the classic case m = n and T = 1. We cite below some
basics properties of the introduced capacity which can be proved as in [8].

Proposition 6. 1. If E1 ⊂ E2 then Cm,T (E1,Ω) ≤ Cm,T (E2,Ω).

2. If (Ej)j is a sequence of subsets that belong to Ω then

Cm,T

⋃
j

Ej ,Ω

 ≤
∑
j

Cm,T (Ej ,Ω).

Definition 6. A subset E of Ω is said to be (m,T )-pluripolar if

Cm,T (E,Ω) = 0.

A m-subharmonic function u is said to be quasi-continuous with respect
to the capacity Cm,T , if for every ε > 0, there exists an open subset Oε such
that Cm,T (Oε,Ω) < ε and u|Ω\Oε

is continuous.
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In the trivial case T = (ddc|z|2)n−m, Lu [15] proved that every m-
subharmonic function is quasicontinuous with respect to the capacity Capm.
In the general case Dhouib and Elkhadra proved the quasicontinuity of every
bounded m-subharmonic function (see Theorem 1 in [6]). Such result is not
true in the general case as we can see in the following example.

Example 2. If Ω is the polydisc of C3, T := [z1 = 0] ∧ ddc|z|2 and
u(z1, z2) = log |z1|. The current T is 2-positive, Cm,T (SuppT ) > 0 but the
function u is not continuous on the support of T .

The previous example proves that a condition on the m-subharmonic
function is needed to be quasicontinuous with respect to Capacity Cm,T . In
the following we prove that: belonging to one of the introduced classes is
sufficient for any m-subharmonic function to be quasicontinuous. To prove
this we establish first the following estimate.

Proposition 7. For all u ∈ FT
m(Ω) and s > 0 one has

sqCm,T ({u ≤ −s},Ω) ≤
∫
Ω
(ddcu)q ∧ T.

In particular, the set {u = −∞} is (m,T )-pluripolar.

Proof. Let (uj)j ⊂ ET
0,m(Ω) be a decreasing sequence to u on Ω as in

Definition 4. Take s > 0, v ∈ SH(Ω, [−1, 0]) and K a compact subset in
{uj ≤ −s}. Thanks to the comparison principle (for bounded m-subharmonic
functions [6]), we have∫

K
(ddcv)q ∧ T ≤

∫
{s−1uj<v}

(ddcv)q ∧ T ≤ 1

sq

∫
{s−1uj<v}

(ddcuj)
q ∧ T

≤ 1

sq

∫
Ω
(ddcuj)

q ∧ T

By proposition 5, It follows that

Cm,T ({uj ≤ −s},Ω) ≤ 1

sq

∫
Ω
(ddcuj)

q ∧ T ≤ 1

sq

∫
Ω
(ddcu)q ∧ T.

Now if we let j goes to infinity, we obtain

Cm,T ({u ≤ −s},Ω) ≤ 1

sq

∫
Ω
(ddcu)q ∧ T.

In the case of functions in ET
p,m(Ω), we get another estimate. More pre-

cisely we have the following result
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Proposition 8. Let u ∈ ET
p,m(Ω) and (uj)j ⊂ ET

0,m(Ω) decreases to u on
Ω as in Definition 3. Then for every s > 0 one has

sp+qCm,T ({u ≤ −2s},Ω) ≤ sup
j≥1

∫
Ω
(−uj)p(ddcuj)q ∧ T.

In particular, the set {u = −∞} is (m,T )-pluripolar.

Proof. Let s > 0, v ∈ PSH(Ω, [−1, 0]). Thanks to comparison principle
(for bounded m-subharmonic functions), we have∫

{uj≤−2s}
(ddcv)q ∧ T ≤

∫
{uj<−s+sv}

(ddcv)q ∧ T

≤ 1

sq

∫
{s−1uj<−1+v}

(ddcuj)
q ∧ T ≤ 1

sp+q

∫
Ω
(−uj)p(ddcuj)q ∧ T

It follows that

Cm,T ({uj ≤ −2s},Ω) ≤ 1

sp+q
sup
m≥1

∫
Ω
(−um)p(ddcum)q ∧ T.

By tending j to infinity, we obtain

Cm,T ({u ≤ −2s},Ω) ≤ 1

sp+q
sup
m≥1

∫
Ω
(−um)p(ddcum)q ∧ T.

Corollary 1. Every u ∈ FT
m(Ω) ( resp. ET

p,m(Ω)) is
Cm,T -quasi-continuous.

Proof. Let u ∈ FT
m(Ω) (resp. ET

p,m(Ω)) and ε > 0. Denote by Bu(t) :=
{z ∈ Ω; u(z) < t}, t ≤ 0. By Proposition 7 (resp. Proposition 8), there exists
sε ≥ 1 such that Cm,T (Bu(−sε),Ω) < ε

2 . The function uε := max(u,−sε) is
bounded on Ω so thanks to Dhouib and Elkhadra theorem [6], there exists an
open subset O in Ω such that Cm,T (O,Ω) < ε

2 and uε is continuous on Ω∖O.
The result follows by taking Oε = O ∪Bu(−sε).

4. XING INEQUALITY IN THE CLASS FT
M(Ω)

It is well known that Xing inequality have a crucial role in them-potential
theory so we end this paper by extending some well-known inequalities (see
[16, 17] for more details), to FT

m(Ω). We start by citing the following lemma
which generalize a result proven by Hai and Dung [11] so it can be shown using
same technics.



530 J. Hbil 18

Lemma 2 (See [11]). Let S be an m-positive closed current of bidimension
(1, 1) on Ω and u, v ∈ SHm(Ω) ∩ L∞(Ω). Assume that u ≤ v on Ω and

lim
z→∂Ω

[u(z)− v(z)] = 0.

Then one has∫
Ω
(v − u)kddcw ∧ S ≤ k

∫
Ω
(1− w)(v − u)k−1ddcu ∧ S

for all k ≥ 1 and w ∈ SHm(Ω, [0, 1]).

Lemma 3. Let u, v ∈ SHm(Ω) ∩ L∞(Ω) such that u ≤ v on Ω and

lim
z→∂Ω

[u(z)− v(z)] = 0.

Then one has

1

q!

∫
Ω
(v − u)qddcw1 ∧ ... ∧ ddcwq ∧ T +

∫
Ω
(r − w1)(dd

cv)q ∧ T

≤
∫
Ω
(r − w1)(dd

cu)q ∧ T

for every r ≥ 1 and w1, ..., wq ∈ SHm(Ω, [0, 1]).

Proof. Let K ⊂⊂ Ω. We prove the statement firstly when u = v on
Ω∖K. In this case it suffices to use Lemma 2 to obtain that∫

Ω
(v − u)qddcw1 ∧ ... ∧ ddcwq ∧ T

≤ q

∫
Ω
(v − u)q−1ddcw1 ∧ ... ∧ ddcwq−1 ∧ ddcu ∧ T

...

≤ q!

∫
Ω
(v − u)ddcw1 ∧ (ddcu)q−1 ∧ T

≤ q!

∫
Ω
(w1 − r)ddc(v − u) ∧

(
q−1∑
i=0

(ddcu)i ∧ (ddcv)q−i−1

)
∧ T

= q!

∫
Ω
(r − w1)dd

c(u− v) ∧

(
q−1∑
i=0

(ddcu)i ∧ (ddcv)q−i−1

)
∧ T

= q!

∫
Ω
(r − w1)((dd

cu)q − (ddcv)q) ∧ T.

In the general case, for every ε > 0 we set vϵ = max(u, v − ε). Then
vϵ ↗ v on Ω and satisfies vϵ = u on Ω∖K for some K ⊂⊂ Ω. Hence

1

q!

∫
Ω
(vε − u)qddcw1 ∧ ... ∧ ddcwq ∧ T +

∫
Ω
(r − w1)(dd

cvε)
q ∧ T
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≤
∫
Ω
(r − w1)(dd

cu)q ∧ T.

Since vε−u↗ v−u, the family of measures (ddcvε)
q∧T converges weakly

to (ddcv)q ∧ T as ε↘ 0 and the function r −w1 is lower semicontinuous then,
by letting ε↘ 0, we obtain the desired inequality.

Proposition 9. Let r ≥ 1, u, v ∈ FT
m(Ω) and w ∈ r + ET

0,m(Ω). Assume
that u ≤ v on Ω, then

1

q!

∫
Ω
(v − u)q(ddcw)q ∧ T +

∫
Ω
(r − w)(ddcv)q ∧ T ≤

∫
Ω
(r − w)(ddcu)q ∧ T.

Proof. Let u, v ∈ FT
m(Ω) and um, vj ∈ ET

0 (Ω) which decrease to u and v
respectively as in Definition 4. Replace vj by max(uj , vj) we may assume that
uj ≤ vj for j ≥ 1. By lemma 3 we have for m ≥ j ≥ 1

1

q!

∫
Ω
(vj −um)q(ddcw)q ∧T +

∫
Ω
(r−w)(ddcvj)

q ∧T ≤
∫
Ω
(r−w)(ddcum)q ∧T.

Now since w ∈ r + ET
0,m(Ω), so by taking j goes to +∞ we get:

1

q!

∫
Ω
(v − um)q(ddcw)q ∧ T +

∫
Ω
(r − w)(ddcv)q ∧ T ≤

∫
Ω
(r − w)(ddcum)q ∧ T.

Hence by tending m→ +∞, we obtain the result.

Theorem 7. Let u,w1, ..., wq−1 ∈ ET
p,m(Ω) and v ∈ SH−

m(Ω). If we set
S = ddcw1 ∧ ... ∧ ddcwq−1 then

ddcmax(u, v) ∧ T ∧ S|{u>v} = ddcu ∧ T ∧ S|{u>v}.

Proof. First step: v ≡ a < 0.

Let uj , wk,j ∈ ET
0 (Ω) ∩ C(Ω) such that (uj)j decreases to u and (wk,j)j

decreases to wk for each 1 ≤ k ≤ q − 1. Since {uj > a} is open, one has

ddcmax(uj , a) ∧ T ∧ Sj
|{uj>a} = ddcuj ∧ T ∧ Sj

|{uj>a}

where Sj = ddcw1,j ∧ ... ∧ ddcwq−1,j . As {u > a} ⊂ {uj > a} we obtain

ddcmax(uj , a) ∧ T ∧ Sj
|{u>a} = ddcuj ∧ T ∧ Sj

|{u>a}.

It follows from [11] that

max(u− a, 0)ddcmax(uj , a)∧ T ∧ Sj −→
j→+∞

max(u− a, 0)ddcmax(u, a)∧ T ∧ S

max(u− a, 0)ddcuj ∧ T ∧ Sj −→
j→+∞

max(u− a, 0)ddcu ∧ T ∧ S.



532 J. Hbil 20

By Lemma 4.2 in [12]

max(u− a, 0)[ddcmax(u, a) ∧ T ∧ S − ddcu ∧ T ∧ S] = 0.

So
ddcmax(u, a) ∧ T ∧ S = ddcu ∧ T ∧ S on {u > a}.

Second step: v ∈ PSH−(Ω).
Since {u > v} = ∪a∈Q−{u > a > v}, it suffices to show that

ddcmax(u, v) ∧ T ∧ S = ddcu ∧ T ∧ S on {u > a > v}
for all a ∈ Q−. As max(u, v) ∈ FT (Ω) then by the first step, we have

ddcmax(u, v) ∧ T ∧ S|{max(u,v)>a} = ddcmax(max(u, v), a) ∧ T ∧ S|{max(u,v)>a}

= ddcmax(u, v, a) ∧ T ∧ S|{max(u,v)>a}

ddcu ∧ T ∧ S|{u>a} = ddcmax(u, a) ∧ T ∧ S|{v>a}.

The fact that max(u, v, a) = max(u, a) on the open set {a > v} gives

ddcmax(u, v, a) ∧ T ∧ S|{a>v} = ddcmax(u, a) ∧ T ∧ S|{a>v}.

As {u > a > v} is contained in {u > a}, in {max(u, v) > a} and in {a > v},
then by combining the last equalities we obtain

ddcmax(u, v) ∧ T ∧ S|{u>a>v} = ddcmax(u, a) ∧ T ∧ S|{u>a>v}.

By repeating line by line the same proof as in [15], on can deduce from
the previous theorem that integration by part is allowed in ET

p,m(Ω) and that
proposition 10 can be extended to this class. Namely we have the following
result.

Corollary 2. Let u,w1, ..., wq−1 ∈ ET
p,m(Ω) and S = ddcw1 ∧ ... ∧

ddcwq−1 ∧ T . Then ∫
Ω
vddcu ∧ T =

∫
Ω
uddcv ∧ T.

Moreover if we assume that u ≤ v on Ω, then for all p > 0 and h ∈ ET
0,m(Ω) ∩

C(Ω) ∫
Ω
(−h)(ddcv)q ∧ T ≤

∫
Ω
(−h)(ddcu)q ∧ T.

Now we prove a similar Xing pinciple in the class ET
p,m(Ω):

Theorem 8. Let 0 < p ≤ 1 and u, v ∈ ET
p (Ω) such that the measure

(ddcv)q ∧ T has no mass on (m,T )−pluripolar sets then∫
{v<u}

(ddcu)q ∧ T ≤
∫
{v<u}

(ddcv)q ∧ T
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Proof. Let h ∈ ET
0,m(Ω) ∩ C(Ω) and µ := (ddcv)q ∧ T . The measure µ has

no mass on (m,T )−pluripolar sets. Since µ is a Borel measure then the set
Eµ := {t > 0, µ(u = tv) = 0} is at most countable. Thus for almost every
t > 0, one has ∫

{u=tv}
(−h)(ddcv)q ∧ T = 0.

So without loss of generality, one can only treat the case
∫
{u=v}(−h)(dd

cv)q ∧
T = 0. Using Theorem 7, we get

1l{v<u}(dd
cu)q ∧ T = 1l{v<u}(dd

cmax(u, v))q ∧ T.

Now by corollary 2 one has∫
Ω
(−h)(ddcmax(u, v))q ∧ T ≤

∫
Ω
(−h)(ddcu)q ∧ T.

It follows that∫
{v<u}

(−h)(ddcu)q ∧ T =

∫
{v<u}

(−h)(ddcmax(u, v))q ∧ T

≤
∫
Ω
(−h)(ddcmax(u, v))q ∧ T +

∫
{u<v}

(−h)(ddcmax(u, v))q ∧ T

≤
∫
Ω
(−h)(ddcv)q ∧ T +

∫
{u<v}

(−h)(ddcv)q ∧ T =

∫
{u<v}

(−h)(ddcv)q ∧ T.

As 0 < p ≤ 1, the above terms are finite. Hence the result follows by
letting h goes to −1.

Proposition 10. Let u, v ∈ FT
m(Ω), h ∈ ET

0,m(Ω), q and s two natural
integer satisfying q + s = p. Then∫

Ω
−h(ddcu)q ∧ (ddcv)s ∧ T ≤

(∫
Ω
−h(ddcu)p ∧ T

) q
p
(∫

Ω
−h(ddcv)p ∧ T

) s
p

.

Proof. Thanks to Proposition 4 it suffices to prove the result in the case
u, v ∈ ET

0,m(Ω). Let u, v ∈ ET
0,m(Ω) and R := (ddcu)r ∧ (ddcv)t ∧ T where r and

t are two natural integer such that r + t = p− 2. Using integration by part in
the case q = s = 1, we obtain∫

Ω
−hddcu ∧ ddcv ∧R =

∫
Ω
−uddch ∧ ddcv ∧R =

∫
Ω
du ∧ dcv ∧ ddch ∧R.

Since (u, v) 7−→
∫
Ω du ∧ dcv ∧ ddch ∧ R is a positive bilinear symmetric form

on C∞(Ω)× C∞(Ω), then by Cauchy Schwartz inequality on has∫
Ω
−hddcu ∧ ddcv ∧R ≤

(∫
Ω
−h(ddcu)2 ∧R

) 1
2
(∫

Ω
−h(ddcv)2 ∧R

) 1
2

.
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The last inequality is still true for u, v ∈ SH−
m(Ω) ∩ L∞(Ω) by regularization.

Assume now that the inequality of the proposition hold for q + s = m < p,
m ≥ 2, that means∫
Ω
−h(ddcu)q∧(ddcv)s∧R ≤

(∫
Ω
−h(ddcu)q+s∧R

) q
q+s
(∫

Ω
−h(ddcv)q+s∧R

) s
q+s

.

Let prove it for q + s = m+ 1. Consider q′ + s′ = m and S = ddcu ∧R, so∫
Ω
−h(ddcu)q′+s′ ∧ ddcv ∧R

=

∫
Ω
−h(ddcu)q′+s′−1 ∧ ddcv ∧ S

≤
(∫

Ω
−h(ddcu)q′+s′ ∧ S

) q′+s′−1
q′+s′

(∫
Ω
−h(ddcv)q′+s′ ∧ S

) 1
q′+s′

=

(∫
Ω
−h(ddcu)q′+s′+1 ∧R

) q′+s′−1
q′+s′

(∫
Ω
−h(ddcv)q′+s′ ∧ ddcu ∧R

) 1
q′+s′

≤
(∫

Ω
−h(ddcu)q′+s′+1 ∧R

) q′+s′−1
q′+s′

×

(∫
Ω
−h(ddcv)q′+s′+1∧R

) q′+s′−1
q′+s′

(∫
Ω
−h(ddcu)q′+s′+1∧R

) 1
q′+s′

 1
q′+s′

.

Hence we obtain that∫
Ω
−h(ddcu)q′+s′ ∧ ddcv ∧R

≤
(∫

Ω
−h(ddcu)q′+s′+1 ∧R

) q′+s′
q′+s′+1

(∫
Ω
−h(ddcv)q′+s′+1 ∧R

) 1
q′+s′+1

.

It follows that:∫
Ω
−h(ddcv)q′+1 ∧ (ddcu)s

′ ∧R =

∫
Ω
−h(ddcv)q′ ∧ (ddcu)s

′ ∧ ddcv ∧R

≤
(∫

Ω
−h(ddcv)q′+s′ ∧ ddcv ∧R

) q′
q′+s′

(∫
Ω
−h(ddcu)q′+s′ ∧ ddcv ∧R

) s′
q′+s′

≤
(∫

Ω
−h(ddcu)q′+s′+1 ∧R

) s′
q′+s′+1

(∫
Ω
−h(ddcv)q′+s′+1 ∧R

) q′+1
q′+s′+1

.

The previous proposition was proved by Hai and Dung [11] in the classic
case m = n. As a consequence, we will prove the following theorem



23 Quasicontinuity and Xing principle for m-positive closed current 535

Theorem 9. Let u1, u2, · · · , up ∈ Fm,T (Ω) and h ∈ Em,T
0 (Ω) then one

has:∫
Ω
−hddcu1∧· · ·∧ddcup∧T ≤

(∫
Ω
−h(ddcu1)p∧T

) 1
p

· · ·
(∫

Ω
−h(ddcup)p∧T

) 1
p

.

Proof. It suffices to prove the result in the case u1, · · · , up ∈ ET
0,m(Ω).

Using Proposition 10 we have:∫
Ω
−hddcu1∧(ddcu2)p−1∧T ≤

(∫
Ω
−h(ddcu1)p∧T

) 1
p
(∫

Ω
−h(ddcu2)p∧T

) p−1
p

.

Let us prove first the theorem for u2 = · · · = up = u. Assume that the
theorem hold for us+1 = · · · = up = u, that means:∫

Ω
−hddcu1 ∧ · · · ∧ ddcus ∧ (ddcu)p−s ∧ T

≤
(∫

Ω
−h(ddcu1)p∧T

) 1
p

· · ·
(∫

Ω
−h(ddcus)p∧T

) p−s
p
(∫

Ω
−h(ddcu)p∧T

) p−s
p

.

Let us prove it for us+2 = · · · = up = u. Take R = ddcu1 · · · ∧ ddcus ∧ T , then∫
Ω
−hddcu1 ∧· · ·∧ ddcus+1 ∧ (ddcu)p−s−1∧T =

∫
Ω
−hddcus+1 ∧ (ddcu)p−s−1∧R

≤
(∫

Ω
−h(ddcus+1)

p−s ∧R
) 1

p−s
(∫

Ω
−h(ddcu)p−s ∧R

) p−s−1
p−s

≤

[(∫
Ω
−h(ddcu1)p ∧ T

) 1
p

· · ·
(∫

Ω
−h(ddcus)p ∧ T

) 1
p

×
(∫

Ω
−h(ddcus+1)

p ∧ T
) p−s

p

] 1
p−s
[(∫

Ω
−h(ddcu1)p ∧ T

) 1
p

· · ·

×
(∫

Ω
−h(ddcus)p ∧ T

) 1
p
(∫

Ω
−h(ddcu)p ∧ T

) p−s
p

] p−s−1
p−s

≤
(∫

Ω
−h(ddcu1)p ∧ T

) 1
p

· · ·
(∫

Ω
−h(ddcus+1)

p ∧ T
) 1

p

×
(∫

Ω
−h(ddcu)p ∧ T

) p−s−1
p

.
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Sabatier), 2012.

[16] Y. Xing, Continuity of the complex Monge-Ampère operator. Proc. Amer. Math. Soc.
124 (1996), 457–467.

[17] Y. Xing, Complex Monge-Ampère measures of pluriharmonic functions with bounded
values near the boundary. Cand. J. Math. 52 (2000), 1085–1100.

Received July 30, 2018 Jouf University
Mathematics Departments, College of Science

P.O. Box: 2014, Sakaka, Saudia Arabia
jmhbil@ju.edu.sa


