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A morphism f : M → N of left R-modules is said to be a twist morphism if
the induced morphism Ext1R(F, f) : Ext

1
R(F,M) → Ext1R(F,N) is 0 for every flat

left R-module F . We prove that f : M → N is a twist morphism if and only if
Ext1R(L, f) : Ext

1
R(L,M) → Ext1R(L,N) takes values in the subgroup consisting of

flat-pure exact sequences for any left R-module L if and only if f factors through
a cotorsion left R-module. Some applications are given.
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1. INTRODUCTION

Ideal approximation theory has been recently introduced and developed
by Fu, Guil Asensio, Herzog and Torrecillas in [7]. This theory is a general-
ization of the classical theory of covers and envelopes (approximation theory)
initiated by Enochs, Auslander and Smalø [1, 2] since it need to be set forth in
terms of morphisms instead of objects. An important instance of morphisms
in ideal approximation theory is phantom morphisms. Herzog called a mor-
phism f : M → N of left R-modules a phantom morphism [10] if the induced
morphism TorR1 (A, f) : Tor

R
1 (A,M) → TorR1 (A,N) is 0 for every (finitely pre-

sented) right R-module A. In particular, he considered the trivial phantom
morphisms, i.e., morphisms that factor through a flat module. Similarly, Her-
zog called a morphism g : M → N of left R-modules an Ext-phantom mor-
phism [11] if the induced morphism Ext1R(B, g) : Ext

1
R(B,M) → Ext1R(B,N) is

0 for every finitely presented left R-module B. He also investigated the trivial
Ext-phantom morphisms, i.e., morphisms that factor through an FP -injective
module or an injective module.

On the other hand, the right orthogonal class of the class of flat modules
is called the class of cotorsion modules [3]. Wakamatsu’s Lemma [16, Lemma
2.1.1] implies that the kernel of a flat cover is cotorsion. It seems to be a
natural question to study those morphisms that factor through a cotorsion
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module. In this paper, we first introduce the concept of twist morphisms.
We call a morphism f : M → N of left R-modules a twist morphism if the
induced morphism Ext1R(F, f) : Ext

1
R(F,M) → Ext1R(F,N) is 0 for every flat

left R-module F . It is proven that f : M → N is a twist morphism if and
only if Ext1R(L, f) : Ext1R(L,M) → Ext1R(L,N) takes values in the subgroup
consisting of flat-pure exact sequences for any left R-module L if and only if f
factors through a cotorsion left R-module. As a consequence, we characterize
left perfect rings and von Neumann regular rings in terms of twist morphisms.
In addition, we study preenvelopes and precovers by twist morphisms under
change of rings.

Throughout this paper, all rings are associative with identity and all
modules are unitary. For a ring R, we write R-Mod (resp. Mod-R) for the
category of left (resp. right) R-modules. RM (resp. MR) denotes a left (resp.
right) R-module. E(M) stands for the injective envelope of M . The character
module HomZ(M,Q/Z) of M is denoted by M+.

2. FLAT-PURE EXACT SEQUENCES AND TWIST
MORPHISMS

According to Zhu and Ding [17], an exact sequence 0 → A
ι→ B

π→
C → 0 in R-Mod is called flat-pure if the sequence 0 → HomR(F,A)

ι∗→
HomR(F,B)

π∗→ HomR(F,C) → 0 is exact for any flat left R-module F . In
this case, ι is called a flat-pure monomorphism and π is called a flat-pure
epimorphism.

Let D be a class of R-modules and M an R-module. Recall that a ho-
momorphism ϕ : M → D with D ∈ D is a D-preenvelope of M [2, 4] if for
any homomorphism f : M → D

′
with D

′ ∈ D, there is a homomorphism
g : D → D

′
such that gϕ = f . Moreover, if the only such g are automorphisms

of D when D
′
= D and f = ϕ, then the D-preenvelope ϕ is called a D-envelope

of M . Dually we have the notions of a D-precover and a D-cover. Obviously,
α : M → N is a flat precover of N in R-Mod if and only if M is a flat left
R-module and α :M → N is a flat-pure epimorphism.

Recall that a left R-module C is cotorsion [3] if Ext1R(F,C) = 0 for any
flat left R-module F . It is well known that every module has a cotorsion enve-
lope (see [8, Theorem 4.1.1]). In what follows, we always denote the cotorsion

envelope of M by M
λ→ C(M).

Proposition 2.1. The following are equivalent for a left R-module M :

1. M is a cotorsion left R-module.

2. Every exact sequence 0 →M → N → L→ 0 in R-Mod is flat-pure.
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3. The exact sequence 0 →M
ι→ E(M) → H → 0 in R-Mod is flat-pure.

4. The exact sequence 0 →M
λ→ C(M) → G→ 0 in R-Mod is flat-pure.

Proof. (1) ⇒ (2) For any flat left R-module F , the exact sequence 0 →
M → N → L→ 0 induces the exact sequence

0 → HomR(F,M) → HomR(F,N) → HomR(F,L) → Ext1R(F,M) = 0.

So the exact sequence 0 →M → N → L→ 0 is flat-pure.

(2) ⇒ (3) and (2) ⇒ (4) are trivial.

(3) ⇒ (1) For any flat left R-module F , the exact sequence 0 → M
ι→

E(M) → H → 0 gives rise to the exactness of the sequence

HomR(F,E(M)) → HomR(F,H) → Ext1R(F,M) → Ext1R(F,E(M)) = 0.

Since HomR(F,E(M)) → HomR(F,H) is an epimorphism, Ext1R(F,M) = 0,
i.e., M is a cotorsion left R-module.

(4) ⇒ (1) Note that G is flat by Wakamatsu’s Lemma (see [16, Section

2.1]). So 0 →M
λ→ C(M) → G→ 0 is split by (4). Thus M is a cotorsion left

R-module.

Definition 2.2. Let R be a ring. A morphism f : M → N of left R-
modules is said to be a twist morphism if the induced morphism Ext1R(F, f) :
Ext1R(F,M) → Ext1R(F,N) is 0 for every flat left R-module F .

Recall that R is a left phantomless ring [7] if every phantom morphism in
R-Mod factors through a flat left R-module. The following result shows that
any twist morphism in R-Mod factors through a cotorsion left R-module.

Theorem 2.3. The following are equivalent for a morphism f :M → N
in R-Mod:

1. f is a twist morphism.

2. For any left R-module L, Ext1R(L, f) : Ext1R(L,M) → Ext1R(L,N)
takes values in the subgroup consisting of flat-pure exact sequences.

3. f factors through a cotorsion left R-module.

4. There exists a flat-pure monomorphism g such that gf is a twist mor-
phism.

5. ExtnR(F, f) : Ext
n
R(F,M) → ExtnR(F,N) is 0 for any flat left R-module

F and any n ≥ 1.
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Proof. (1) ⇒ (2) Let η : 0 →M → X → L→ 0 be any exact sequence in
R-Mod. Then we get the pushout η′ of η along f :

η : 0 //M

f

��

// X

��

// L // 0

η′ : 0 // N // Q
h // L // 0.

For any flat left R-module F , we obtain the commutative diagram with
exact rows:

HomR(F,X)

��

// HomR(F,L)
φ // Ext1R(F,M)

Ext1R(F,f)
��

HomR(F,Q)
h∗ // HomR(F,L)

θ // Ext1R(F,N).

Since Ext1R(F, f) = 0, we have θ = Ext1R(F, f)φ = 0. So h∗ is an epimorphism.
Thus η′ is a flat-pure exact sequence.

(2) ⇒ (3) There exists an exact sequence in R-Mod:

ζ : 0 →M
λ→ C(M) →W → 0.

Then we get the pushout ζ ′ of ζ along f :

ζ : 0 //M

f

��

λ // C(M)

g

��

//W // 0

ζ ′ : 0 // N
ι // T //W // 0.

Note that W is flat by Wakamatsu’s Lemma and ζ ′ : 0 → N
ι→ T →W → 0 is

a flat-pure exact sequence by (2). So ζ ′ is a split exact sequence. Thus there
exists ρ : T → N such that ρι = 1. Hence we have

f = (ρι)f = (ρg)λ,

i.e., f factors through the cotorsion left R-module C(M).
(3) ⇒ (1) There exist a cotorsion left R-module U , α : M → U and

β : U → N such that f = βα. For any flat left R-module F , we have

Ext1R(F, f) = Ext1R(F, β)Ext
1
R(F, α) = 0.

So f is a twist morphism.
(1) ⇒ (4) is clear by choosing g = 1N .
(4) ⇒ (1) Let g : N → H be a flat-pure monomorphism such that gf is

a twist morphism. For any flat left R-module F , we have

Ext1R(F, g)Ext
1
R(F, f) = Ext1R(F, gf) = 0.
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There exists an exact sequence 0 → N
g→ H → G→ 0. So we get the induced

exact sequence

HomR(F,H) → HomR(F,G) → Ext1R(F,N)
Ext1R(F,g)
−→ Ext1R(F,H).

Since HomR(F,H) → HomR(F,G) is an epimorphism, Ext1R(F, g) is a monomor-
phism. Thus Ext1R(F, f) = 0, i.e., f is a twist morphism.

(1) ⇒ (5) For any flat left R-module F , there is an exact sequence

0 → K → P → F → 0

with P projective and K flat.

Consider the following commutative diagram with exact rows:

Ext1R(K,M)

0
��

γ // Ext2R(F,M)

Ext2R(F,f)
��

// Ext2R(P,M) = 0

��
Ext1R(K,N) // Ext2R(F,N) // Ext2R(P,N) = 0.

Then Ext2R(F, f)γ = 0. Since γ is an epimorphism, Ext2R(F, f) = 0. By
induction, ExtnR(F, f) = 0 for any n ≥ 1.

(5) ⇒ (1) is trivial.

Remark 2.4. (1) Obviously, M is a cotorsion left R-module if and only if
the identity map 1M is a twist morphism. So, in the context of modules, just
as we know that a phantom morphism may be viewed as the morphism version
of a flat module, a twist morphism may be viewed as the morphism version of
a cotorsion module.

(2) Recall that a morphism g : X → Y of left R-modules is a cotorsion
representation of the quiver • → • by left R-modules [5] if Ext1R(G, g) = 0 for
any flat morphism G. Here we simply call the morphism g : X → Y a cotorsion
morphism. By [5, Theorem 5.3.5], g : X → Y is a cotorsion morphism if and
only if X and Y are cotorsion modules. So the concept of twist morphisms is
a proper generalization of cotorsion morphisms.

(3) It is well known that any pure-injective module is cotorsion. So, if a
left R-morphism f factors through a pure-injective left R-module, then f is a
twist morphism by Theorem 2.3. In particular, either morphism M+ → N or
M → N+ in R-Mod is a twist morphism.

Proposition 2.5. Let 0 → X
φ→ Y

π→ Z → 0 be a flat-pure exact

sequence in R-Mod and 0 → A
λ→ B

f→ Z → 0 be an exact sequence in R-Mod.
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Consider the following pullback:

0

��

0

��
X

��

X

φ

��
0 // A

ι //M

φ

��

h // Y

π
��

// 0

0 // A
λ // B

��

f // Z

��

// 0

0 0

1. 0 → A
λ→ B

f→ Z → 0 is flat-pure if and only if 0 → A
ι→M

h→ Y → 0
is flat-pure.

2. λ is a twist morphism if and only if ι is a twist morphism.

Proof. For any flat left R-module F , we get the following commutative
diagram with exact rows and column:

HomR(F,M)

φ∗

��

h∗ // HomR(F, Y )

π∗

��

θ // Ext1R(F,A)
Ext1R(F,ι)

// Ext1R(F,M)

Ext1R(F,φ)
��

HomR(F,B)
f∗ // HomR(F,Z)

γ //

��

Ext1R(F,A)
Ext1R(F,λ)

// Ext1R(F,B)

0

(1) 0 → A
λ→ B

f→ Z → 0 is flat-pure if and only if γ = 0 if and only if

θ = 0 if and only if 0 → A
ι→M

h→ Y → 0 is flat-pure.
(2) λ is a twist morphism if and only if γ is an epimorphism if and only

if θ is an epimorphism if and only if ι is a twist morphism.

Following [7], an additive subbifunctor of the bifunctor HomR(−,−) : R-
Modop × R-Mod → Ab is called an ideal I of R-Mod. This means that, for
every pair of left R-modules M and N , the morphisms M → N in I form a
subgroup of the abelian group HomR(M,N), and given any three left R-module
morphisms f, g, h for which fgh is defined and g ∈ I, we have fgh ∈ I.

Let I be an ideal of R-Mod. Recall that a morphism ϕ : M → N in I
is an I-preenvelope of a left R-module M [7] if for any morphism ψ : M → L
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in I, there is a morphism θ : N → L such that θϕ = ψ. An I-preenvelope
ϕ : M → N is called an I-envelope if every endomorphism h of N such that
hϕ = ϕ is an isomorphism. An I-precover and an I-cover of a left R-module
are defined dually.

Clearly, the collection of twist morphisms in R-Mod is an ideal of R-Mod.

Proposition 2.6. Let R be a ring.

1. Every twist monomorphism with cokernel flat is a twist preenvelope.

2. Every left R-module has a twist envelope.

Proof. (1) Let f : A → B be a twist monomorphism in R-Mod with
L = coker(f) flat. For any twist morphism g : A → D, we get the following
pushout:

0 // A

g

��

f // B

h
��

// L // 0

0 // D
ι // H // L // 0.

By Theorem 2.3, 0 → D → H → L → 0 is a flat-pure exact sequence. Since
L is flat, the exact sequence 0 → D → H → L → 0 is split. Thus there
exists π : H → D such that πι = 1. So g = πιg = (πh)f . Thus f is a twist
preenvelope.

(2) Every left R-module M has a cotorsion envelope λ : M → C(M),
which is certainly a twist morphism. For any twist morphism β : M → G, β
factors through a cotorsion left R-module N by Theorem 2.3, i.e., there exist
φ : M → N and γ : N → G such that β = γφ. Then there exists θ : C(M) →
N such that θλ = φ. So (γθ)λ = γφ = β. Hence λ : M → C(M) is a twist
preenvelope. Since λ is a cotorsion envelope, it is also a twist envelope.

Let R be a ring and R-Mor denote the category whose objects are left R-

module morphisms and the morphism from a left R-module morphism M1
f→

M2 to a left R-module morphismN1
g→ N2 is a pair of left R-module morphisms

(M1
d→ N1,M2

s→ N2) such that sf = gd. The category R-Mor is also denoted
by A2 in [6], which means the category of all representations of the quiver
• → • by left R-modules.

Since the class of twist morphisms in R-Mor is an ideal, it is not closed
under extensions in R-Mor by [6, Remark 3.4]. However we have

Proposition 2.7. The class of twist morphisms in R-Mor is closed under
direct products, direct summands and cosyzygies.
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Proof. Let (fi : Mi → Ni)i∈I be a family of twist morphisms in R-Mor
and

∏
i∈I fi :

∏
i∈IMi →

∏
i∈I Ni be the induced morphism. For any flat left

R-module F , we have the following commutative diagram:

Ext1R(F,
∏
i∈IMi)

∼=
��

Ext1R(F,
∏

i∈I fi)// Ext1R(F,
∏
i∈I Ni)

∼=
��∏

i∈I Ext
1
R(F,Mi)

∏
i∈I Ext

1
R(F,fi)//

∏
i∈I Ext

1
R(F,Ni).

Since
∏
i∈I Ext

1
R(F, fi) = 0,Ext1R(F,

∏
i∈I fi) = 0. So

∏
i∈I fi :

∏
i∈IMi →∏

i∈I Ni is a twist morphism.

It is easy to see that the class of twist morphisms in R-Mor is closed
under direct summands.

Now let f : A1 → A2 be a twist morphism of left R-modules. Consider
the following exact sequence in R-Mor:

0 // A1
//

f
��

E1

g

��

// D1

h
��

// 0

0 // A2
// E2

// D2
// 0,

where E1 → E2 is an injective morphism in R-Mor, i.e., E1 and E2 are injective
left R-modules and g is a split epimorphism. For any flat left R-module F , we
get the following commutative diagram:

0 = Ext1R(F,E1)

��

// Ext1R(F,D1)

Ext1R(F,h)
��

// Ext2R(F,A1)

Ext2R(F,f)
��

0 = Ext1R(F,E2) // Ext1R(F,D2)
γ // Ext2R(F,A2).

Note that Ext2R(F, f) = 0 by Theorem 2.3. So γExt1R(F, h) = 0. Since γ is a
monomorphism, Ext1R(F, h) = 0. It follows that the class of twist morphisms
in R-Mor is closed under cosyzygies.

Next we give some characterizations of left perfect rings and von Neumann
regular rings in terms of twist morphisms.

Theorem 2.8. The following are equivalent for a ring R:

1. R is a left perfect ring.

2. The class of twist morphisms in R-Mor is closed under direct limits.

3. The class of twist morphisms in R-Mor is closed under direct sums.

4. The class of twist morphisms in R-Mor is closed under subobjects.
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5. Every left R-module has a twist (pre)cover.

6. Every pure exact sequence in R-Mod is flat-pure.

7. Every phantom morphism in R-Mod is twist.

8. Every twist morphism in R-Mod is cotorsion.

Proof. By [16, Proposition 3.3.1], R is a left perfect ring if and only if
every left R-module is cotorsion. Thus (1) ⇒ (2)-(8) are trivial.

(2) ⇒ (3) is clear.
(3) ⇒ (1) Let (Mi)i∈I be a family of cotorsion left R-modules. Then

every morphism Mi
1→ Mi is a twist morphism and so the induced morphism

⊕i∈IMi
1→ ⊕i∈IMi is a twist morphism by (3). Hence Ext1R(F,⊕i∈IMi) = 0

for every flat left R-module F . Therefore ⊕i∈IMi is a cotorsion left R-module
and so R is a left perfect ring by [9, Theorem 19].

(4) ⇒ (1) Let M be any left R-module. Then there is a monomorphism

M → M++. So M
1→ M is a subobject of M++ 1→ M++ in R-Mor. Since

M++ 1→ M++ is a twist morphism, M
1→ M is a twist morphism. Thus M is

a cotorsion left R-module. So R is a left perfect ring.
(5) ⇒ (1) Let (Mi)i∈I be a family of cotorsion left R-modules. Then

⊕i∈IMi has a twist precover α : N → ⊕i∈IMi by (5). So there exist β : N → C
and γ : C → ⊕i∈IMi with C cotorsion such that α = γβ by Theorem 2.3. Let
λi : Mi → ⊕i∈IMi be the injection. Then every λi is twist. So there exists
θi :Mi → N such that αθi = λi. Therefore there is ξ : ⊕i∈IMi → C such that
ξλi = βθi. So for any i ∈ I, we have

γξλi = γβθi = αθi = λi.

Thus γξ = 1. Hence ⊕i∈IMi is isomorphic to a direct summand of C and
so is a cotorsion left R-module. It follows that R is a left perfect ring by [9,
Theorem 19].

(6) ⇒ (1) Let M be any left R-module. Then there is an exact sequence

0 →M
λ→ C(M) → F → 0 with F flat. Since the exact sequence is pure, it is

flat-pure by (6) and so is split. Thus M is a cotorsion left R-module. Whence
R is a left perfect ring.

(7) ⇒ (1) Let F be any flat left R-module. Then F
1→ F is a phantom

morphism and so is twist by (7). Hence F
1→ F factors through a cotorsion

left R-module by Theorem 2.3. Thus F is a cotorsion left R-module. So R is
a left perfect ring by [16, Proposition 3.3.1].

(8) ⇒ (1) Let M be any left R-module. Then λ : M → C(M) is a twist
morphism and so is a cotorsion morphism by (8). Hence M is a cotorsion left
R-module by [5, Theorem 5.3.5]. So R is a left perfect ring.
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Recall that a left R-module M is FP -injective [14] if Ext1R(N,M) = 0
for any finitely presented left R-module N .

Proposition 2.9. The following are equivalent for a ring R:

1. R is a von Neumann regular ring.

2. Every flat-pure exact sequence in R-Mod is pure exact.

3. Every twist morphism in R-Mod is an Ext-phantom morphism.

4. Every twist morphism in R-Mod is a phantom morphism.

Proof. (1) ⇒ (2)-(4) are trivial.
(2) ⇒ (1) For any left R-module M , there is an exact sequence 0 →

M
λ→ C(M) → F → 0 with F flat. Also there is an exact sequence 0 →

C(M) → E → L→ 0 with E injective. By Proposition 2.1, the exact sequence
0 → C(M) → E → L→ 0 is flat-pure and so is pure exact by (2). Thus C(M)
is FP -injective. Hence M is FP -injective. So R is a von Neumann regular
ring by [15, 37.6].

(3) ⇒ (1) For any left R-module M , there is an exact sequence 0 →
M → C(M) → F → 0 with F flat. Since the twist morphism C(M)

1→ C(M)
is an Ext-phantom morphism by (3), C(M) is FP -injective. Hence M is FP -
injective. So R is a von Neumann regular ring.

(4) ⇒ (1) For any cotorsion left R-module M , M
1→ M is a twist mor-

phism and so is a phantom morphism by (4). Thus M is flat. Hence R is a
von Neumann regular ring by [16, Theorem 3.3.2].

3. TWIST MORPHISMS UNDER CHANGE OF RINGS

Let R → S be a ring homomorphism. Then S is an R-R-bimodule in a
canonical way. Moreover any left (resp. right) S-module can be regarded as a
left (resp. right) R-module and any left (resp. right) S-module morphism can
be regarded as a left (resp. right) R-module morphism.

Let RM be a left R-module and SN be a left S-module. Then there are
a natural R-module morphism εM : HomR(S,M) → RM defined by εM (f) =
f(1) for any f ∈ HomR(S,M) and a natural S-module morphism ηN : SN →
HomR(S,N) defined by ηN (y)(t) = ty for any y ∈ N and t ∈ S.

It is not hard to verify that the composition of R-module morphisms

SN
ηN→ HomR(S,N)

εN→ RN is the identity and the composition of S-module

morphisms HomR(S,M)
ηHomR(S,M)→ HomR(S,HomR(S,M))

(εM )∗→ HomR(S,M)
is also the identity.

Lemma 3.1. Let R→ S be a ring homomorphism.
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1. If SR is flat and φ : SM → SN is a twist morphism in S-Mod, then
φ : RM → RN is a twist morphism in R-Mod.

2. If RS is flat and ψ : RU → RV is a twist morphism in R-Mod, then
ψ∗ : HomR(S,U) → HomR(S, V ) is a twist morphism in S-Mod.

Proof. (1) For any flat left R-module RL, S ⊗R L is a flat left S-module.
By [13, Theorem 11.65], we have the following commutative diagram:

Ext1S(S ⊗R L,M)

Ext1S(S⊗RL,φ)
��

∼= // Ext1R(L,M)

Ext1R(L,φ)
��

Ext1S(S ⊗R L,N)
∼= // Ext1R(L,N).

Since Ext1S(S ⊗R L,φ) = 0, we have Ext1R(L,φ) = 0. So φ : RM → RN is a
twist morphism in R-Mod.

(2) By Theorem 2.3, ψ : RU → RV factors through a cotorsion left R-
module RW . By [12, Lemma 2.16]. HomR(S,W ) is a cotorsion left S-module.
Thus ψ∗ : HomR(S,U) → HomR(S, V ) factors through the cotorsion left S-
module HomR(S,W ). It follows that ψ∗ : HomR(S,U) → HomR(S, V ) is a
twist morphism in S-Mod by Theorem 2.3.

Theorem 3.2. Let R→ S be a ring homomorphism with RS and SR flat.

1. If a left S-module morphism φ : SM → SN is a twist preenvelope in
S-Mod, then φ : RM → RN is a twist preenvelope in R-Mod.

2. If a left R-module morphism ψ : RU → RV is a twist precover in
R-Mod, then ψ∗ : HomR(S,U) → HomR(S, V ) is a twist precover in S-Mod.

Proof. (1) By Lemma 3.1(1), φ : RM → RN is a twist morphism in
R-Mod. Let f : RM → RA be a twist morphism in R-Mod. Then f∗ :
HomR(S,M) → HomR(S,A) is a twist morphism in S-Mod by Lemma 3.1(2).

So f∗ηM : SM
ηM→ HomR(S,M)

f∗→ HomR(S,A) is also a twist morphism in
S-Mod. Thus there exists g : SN → HomR(S,A) such that gφ = f∗ηM .

From the following commutative diagram

HomR(S,M)

εM

��

f∗ // HomR(S,A)

εA

��
RM

f //
RA,

we have
(εAg)φ = εAf∗ηM = fεMηM = f.
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Hence φ : RM → RN is a twist preenvelope in R-Mod.

(2) By Lemma 3.1(2), ψ∗ : HomR(S,U) → HomR(S, V ) is a twist mor-
phism in S-Mod. Let h : SB → HomR(S, V ) be any twist morphism in S-Mod.
Then h : RB → HomR(S, V ) is a twist morphism in R-Mod by Lemma 3.1(1).

Thus εV h : RB
h→ HomR(S, V )

εV→ RV is also a twist morphism in R-Mod.
Hence there exists α : RB → RU such that ψα = εV h. From the following
commutative diagram

SB

ηB
��

h // HomR(S, V )

ηHomR(S,V )

��
HomR(S,B)

h∗ // HomR(S,HomR(S, V )),

we obtain

ψ∗(α∗ηB) = (ψα)∗ηB = (εV h)∗ηB = (εV )∗(h∗ηB) = (εV )∗ηHomR(S,V )h = h.

Therefore ψ∗ : HomR(S,U) → HomR(S, V ) is a twist precover in S-Mod.

Let S be a multiplicative subset of a commutative ringR. We can form the
ring of fractions S−1R. There is a canonical ring homomorphism R → S−1R.
For an R-module M , we also can construct the localization of M with respect
to S, denoted by S−1M , which is an S−1R-module and hence an R-module.

It is well known that S−1R is a flat R-module. So the following result is
an immediate consequence of Theorem 3.2.

Corollary 3.3. Let S be a multiplicative subset of a commutative ring R.

1. If an S−1R-module morphism φ : S−1RM → S−1RN is a twist preen-
velope in S−1R-Mod, then φ : RM → RN is a twist preenvelope in R-Mod.

2. If an R-module morphism ψ : RU → RV is a twist precover in R-Mod,
then ψ∗ : HomR(S

−1R,U) → HomR(S
−1R, V ) is a twist precover in S−1R-

Mod.

Lemma 3.4. Let R → S be a surjective ring homomorphism and SM a
left S-module. Then ηM : SM → HomR(S,M) is an isomorphism.

Proof. It is routine.

Lemma 3.5. Let R → S be a surjective ring homomorphism and φ:

SM → SN be a morphism in S-Mod. If φ: SM → SN is a twist morphism
in S-Mod, then φ : RM → RN is a twist morphism in R-Mod. The converse
holds if RS is a flat left R-module.
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Proof. By Theorem 2.3, φ : SM → SN factors through a cotorsion left
S-module SL. By [16, Proposition 3.3.3], RL is a cotorsion left R-module. So
φ : RM → RN factors through the cotorsion left R-module RL. Hence φ is a
twist morphism in R-Mod.

Conversely, if φ : RM → RN is twist as a morphism of left R-modules and

RS is a flat left R-module, then ψ∗ : HomR(S,M) → HomR(S,N) is a twist
morphism in S-Mod by Lemma 3.1(2). So φ : SM → SN is a twist morphism
in S-Mod by Lemma 3.4.

Theorem 3.6. Let R → S be a surjective ring homomorphism with RS
flat.

1. A left S-module morphism φ : SM → SN is a twist preenvelope (resp.
twist envelope) in S-Mod if and only if the induced morphism φ : RM → RN
is a twist preenvelope (resp. twist envelope) in R-Mod.

2. If a left R-module morphism ψ : RU → RV is a twist precover in
R-Mod, then ψ∗ : HomR(S,U) → HomR(S, V ) is a twist precover in S-Mod.

Proof. (1) “ ⇒ ” If φ : SM → SN is a twist preenvelope in S-Mod, then
φ : RM → RN is a twist morphism in R-Mod by Lemma 3.5. Let f : RM →
RA be a twist morphism in R-Mod. Then f∗ : HomR(S,M) → HomR(S,A) is a

twist morphism in S-Mod by Lemma 3.1(2). So f∗ηM : SM
ηM→ HomR(S,M)

f∗→
HomR(S,A) is also a twist morphism in S-Mod. Thus there exists g : SN →
HomR(S,A) such that the following diagram is commutative:

HomR(S,M)
f∗ // HomR(S,A)

SM

ηM

OO

φ //
SN.

g

OO

So we have

(εAg)φ = εAf∗ηM = fεMηM = f.

Hence φ : RM → RN is a twist preenvelope in R-Mod.

Furthermore suppose that φ : SM → SN is a twist envelope in S-Mod.
Let θ : RN → RN be a left R-module morphism such that θφ = φ. Then
θ∗φ∗ = φ∗.

By Lemma 3.4, we have

(η−1
N θ∗ηN )φ = η−1

N θ∗φ∗ηM = η−1
N φ∗ηM = η−1

N ηNφ = φ.

Hence η−1
N θ∗ηN is an isomorphism. So θ = εNθ∗ε

−1
N is an isomorphism. It

follows that φ : RM → RN is a twist envelope in R-Mod.
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“ ⇐ ” If the induced morphism φ : RM → RN is a twist preenvelope in
R-Mod, then φ : SM → SN is a twist morphism in S-Mod by Lemma 3.5. Let
α : SM → SB be a twist morphism in S-Mod. Then α : RM → RB is a twist
morphism in R-Mod by Lemma 3.5. Thus there exists β : RN → RB such that
βφ = α. By Lemma 3.4, β = εBβ∗ε

−1
N = η−1

B β∗ηN is an S-module morphism.
Hence φ : SM → SN is a twist preenvelope in S-Mod.

Furthermore, if the induced morphism φ : RM → RN is a twist envelope
in R-Mod, then it is easy to verify that φ : SM → SN is a twist envelope in
S-Mod.

(2) By Lemma 3.1(2), ψ∗ : HomR(S,U) → HomR(S, V ) is a twist mor-
phism in S-Mod. Let γ : SC → HomR(S, V ) be any twist morphism in S-Mod.
Then γ : RC → HomR(S, V ) is a twist morphism in R-Mod by Lemma 3.5.

Thus εV γ : RC
γ→ HomR(S, V )

εV→ RV is also a twist morphism in R-Mod.
Hence there exists δ : RC → RU such that the following diagram is commuta-
tive:

RC

δ
��

γ // HomR(S, V )

εV
��

RU
ψ //

RV.

So we have

ψ∗(δ∗ηC) = (ψδ)∗ηC = (εV γ)∗ηC = (εV )∗(γ∗ηC) = (εV )∗ηHomR(S,V )γ = γ.

Therefore ψ∗ : HomR(S,U) → HomR(S, V ) is a twist precover in S-Mod.
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