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Let R be a Dedekind ring, K its quotient field, and L = K(α) a finite field
extension of K defined by a monic irreducible polynomial f(x) ∈ R[x]. We give
an easy version of Dedekind’s criterion which computationally improves those
versions known in the literature. We further use this result to give a sufficient
condition for the integral closedness of R[α] when f(x) = xn − a. In case R is the
ring of integers of a number field, we give yet sufficient and necessary conditions
for this to hold, generalizing and improving in both cases some known results in
this direction. Some highlighting examples are also given.
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1. INTRODUCTION AND STATEMENTS OF MAIN RESULTS

For a complex number α integral over Q, a criterion that tests the integral
closedness of Z[α] in the number field Q(α) was given in the milestone paper [4]
of R. Dedekind (see also [3] or almost any book in algebraic number theory for
a more modern treatment). As is well known, Dedekind’s criterion utilizes the
irreducible factorization of the reduction modulo prime integres of the minimal
polynomial of α. S. Khanduja and M. Kummar, in [10], gave a generalization
of this criterion to extensions of Dedekind rings. Ershov, in [6], gave yet a
generalization of this criterion to extensions of rings of valuation. This criterion
had, and still has, important applications in many relevant areas such as (but
not limited to) the study of prime ideal factorizations in Dedekind rings, the
computation of discriminants of number fields, and the existence of integral
power bases in extensions of Dedekind rings (see for instance [1], [9], [12], [13]).

Let (K, ν) be a valued field with ν a rank-one discrete valuation, Rν the
ring of valuation of ν, mν the maximal ideal of Rν , π a generator of mν , and
kν = Rν/mν the residue field of ν. We assume, by normalization if necessary,
that ν(K∗) = Z (so, in particular, ν(π) = 1). Denote also by ν the Gaussian
extension of ν to the ring Rν [x]. Let F (x) ∈ Rν [x] be a monic irreducible
polynomial, L = K(α) the extension field of K generated by a root α of F , and
Sν the integral closure of Rν in L. Assume that F (x) ≡

∏r
i=1 ϕi(x)

li (mod mν)
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is the monic irreducible factorization of F in kν [x]. For each i = 1, . . . , r, let
ϕi(x) ∈ Rν [x] be a monic lift of ϕi(x), and Qi(x), Ri(x) ∈ Rν [x], respectively,
the quotient and remainder upon the Euclidean division of F (x) by ϕi(x). So
Qi(x) is monic and either Ri(x) = 0 or deg(Ri(x)) < deg(ϕi(x)).

Our first theorem (Theorem 1.1) gives a precise and easy criterion for the
integral closedness of the ring Rν [α] in L.

Theorem 1.1. With the above assumptions and notations, Rν [α] is in-
tegrally closed in L if and only if, for each i = 1, . . . , r, either li = 1 or
ν(Ri(x)) = 1.

For the next result, let R be a Dedekind ring, K its fraction field, p a
nonzero prime ideal of R, νp the (rank-one) discrete valuation of R associated
to p, F (x) ∈ R[x] a monic irreducible polynomial, L = K(α) an extension field
of K generated by a root α of F , S the integral closure of R in L, and kp
the residue field R/p. Keep the same notations and assumptions as above for
the factorization of the reduction of F modulo p. The following result can be
deduced from Theorem 1.1, which dramatically and computationally improves
Dedekind’s criterion in Dedekind ring extensions (see [6] and [10] for instance).

Corollary 1.2. Keep the assumptions and notations of the paragraph
above. Then, S = R[α] if and only if, for every prime ideal p of R whose square
divides DiscR(α) and for each i = 1, · · · , r, either li = 1 or νp(Ri(x)) = 1.

In [7, Theorem 3.1], it was shown that if α is a complex root of an
irreducible polynomial xn − m ∈ Z[x] such that m is square free and every
prime divisor of n divides m, then Z[α] is integrally closed in Q(α). In the
following theorem, we give yet an easy new proof of a generalization of the
aforementioned result. Note that by saying that an element a of a Dedekind
ring R is square-free, we mean that the principal ideal aR is not divisible by
the square of any prime ideal of R.

Theorem 1.3. Let R be a Dedekind ring, K its quotient field, a ∈ R
square-free such that f(x) = xn − a is irreducible over R, and α a root of f(x).
If every prime ideal of R that contains n.1K also contains a, then R[α] is
integrally closed.

In the case of rings of integers of number fields, the following theorem
strongly enhances Theorem 1.3. Besides, Theorem 1.4 generalizes the relevant
results in [9] and [13]. For a ring of integers R, by νp(s) we mean νp(sR) for
s ∈ R and a nonzero prime ideal p of R.

Theorem 1.4. Let R be the ring of integers of a number field K and
L = K(α) be defined by a root of an irreducible polynomial f(x) = xn − u ∈ R[x].
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Then R[α] is integrally closed if and only if, for every nonzero prime ideal p of
R, either of the following holds:

1. νp(u) = 1, or

2. νp(u) = 0 and νp(u
pf − u) = 1, where p is the rational prime lying

under p and f is the residue degree of p over p.

If we let R = Z and K = Q in Theorem 1.4, then [9, Thoerem 1.3] can
be phrased as follows: Z[α] is integrally closed if and only if, for every rational

prime p, either νp(u) = 0 or νp(u) = 1 and νp(u
pνp(n) − u) = 1. The following

corollary is an improvement of [9, Theorem 1.3].

Corollary 1.5. Keep the assumptions of Theorem 1.4 with R = Z and
K = Q. Then Z[α] is integrally closed if and only if, for every rational prime
p, either of the following holds:

1. νp(u) = 1, or

2. νp(u) = 0 and νp(u
p − u) = 1.

2. PROOFS OF THE MAIN RESULTS

In the notation of Theorem 1.1, denote by ω a valuation of L extending ν,
by Sω the valuation ring of ω, and by Mω the maximal ideal of Sω. Note that
Sν = ∩ωSω, where the intersection runs over all valuations ω of L extending ν
(see [8, Lemma 3.17]).

We first tackle the following interesting lemma.

Lemma 2.1. Keep the assumptions and notations of Theorem 1.1.

(i) For every 1 ≤ i ≤ r, there exists a valuation ω of L extending ν such
that ω(ϕi(α)) > 0.

(ii) For every valuation ω of L extending ν, there exists a unique 1 ≤ i ≤ r
such that ω(ϕi(α)) > 0 and ω(ϕj(α)) = 0 for all j ̸= i.

(iii) For every valuation ω of L extending ν and every nonzero p(x) ∈
Rν [x], ω(p(α)) ≥ ν(p(x)), where equality holds if and only if ϕi(x) does not

divide (p(x)/πν(p(x))) for some ϕi(x) satisfying ω(ϕi(α)) > 0.

Proof. (i) We know (see [11, Proposition II.8.2]) that the valuations
ω1, · · · , ωt of L extending ν are in one-to-one correspondence with the irre-
ducible factors F1(x), · · · , Ft(x) of F (x) in Kν [x], where Kν is the Henselian-
ization of (K, ν) (i.e. the separable closure of K in the ν-adic completion of
K). Note that although [11, Proposition II.8.2] states that the factors Fi(X)
are over the ν-adic completion of K, the proposition remains valid if we only
assume that the factorization is over the Henselianization of (K, ν). Moreover,
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if ν is the unique valuation extending ν to the algebraic closure of Kν , then
for any h(x) ∈ K[x] and every root αj of Fj(x), ωj(h(α)) = ν(h(αj)). Now fix
some 1 ≤ i ≤ r. As ϕi(x) divides F (x) =

∏t
j=1 Fj(x), ϕi(x) divides Fj(x) for

some j. Since Fj(x) is irreducible over Kν , it follows by Hensel’s Lemma that
Fj(x) is a power of ϕi(x), say ϕi(x)

ei , modulo mν . Let αj be a root of Fj(x)
and Mν the maximal ideal of the valuation ring of ν. Since Fj(αj) = 0 and
mν ⊆Mν , ϕi(αj)

ei ∈Mν . So, ϕi(αj) ∈Mν and thus ωj(ϕi(α)) = ν(ϕi(αj)) > 0
as claimed.

(ii) Let ω be a valuation of L extending ν. Assume for the moment
that the first assertion of part (iii) is true. Since

∏r
i=1 ϕi(α)

li ≡ f(α) ≡
0 (mod Mω), ω(

∏r
i=1 ϕi(α)

li) > 0. So, ω(ϕi(α)) > 0 for some 1 ≤ i ≤ r.
For any j ̸= i, let sj(x), tj(x) ∈ Rν [x] be such that sj(x)ϕi(x) + tj(x)ϕj(x) ≡
1 (mod mν). Then, sj(α)ϕi(α) + tj(α)ϕj(α) = 1+ h(α) for some h(x) ∈ mν [x].
As ν(h(x)) > 0, it follows from the first assertion of part (iii) that ω(h(α)) > 0
and, thus, h(α) ∈Mω. Since ϕi(α) ∈ Mω (because ω(ϕi(α)) > 0) and sj(α) ∈
Rν [α] ⊆ Sν ⊆ Sω, sj(α)ϕi(α)) ∈ Mω. So, tj(α)ϕj(α) − 1 ∈ Mω and, thus,
tj(α)ϕj(α) ∈ Sω −Mω. So ω(tj(α)ϕj(α)) = 0 and, thus, ω(ϕj(α)) = 0, and
the uniqueness of i such that ω(ϕi(α)) > 0 follows.

(iii) Let ω be a valuation of L extending ν, p(x) ∈ Rν [x] be nonzero,
and set p1(x) = p(x)/πu, where u = ν(p(x)). As ν(p1(x)) = 0, p1(x) ∈ Rν [x].
Thus, p1(α) ∈ Sν ⊆ Sω and ω(p(α)) = ω(πup1(α)) = u + ω(p1(α)) ≥ u as
claimed. Now define the map ψ : kν [x] → Sω/Mω by p(x) 7→ p(α) + Mω.
This is a well-defined map since mν ⊆ Mω. It can also be checked that ψ is
a ring homomorphism. For a nonzero p(x) ∈ Rν [x] and p1(x) = p(x)/πu with
u = ν(p(x)), we have ω(p(α)) = u + ω(p1(α)). So, ω(p(α)) = u if and only if
ω(p1(α)) = 0 if and only if p1(α) ∈ Sω −Mω if and only if p1(x) ̸∈ kerψ. From
part (ii), let ϕi(x) be such that ω(ϕi(α)) > 0. Then, ϕi(α) ∈ Mω and, thus,
ϕi(x) ∈ kerψ. Since kerψ is principal (as kν is a field) and ϕi(x) is irreducible
over kν , kerψ is generated by ϕi(x). It now follows that ω(p(α)) = u if and
only if ϕi(x) does not divide p1(x) as claimed.

Proof of Theorem 1.1. We prove first that if Rν [α] is integrally closed in
L, then li = 1 or ν(Ri(x)) = 1 for each i = 1, . . . , r. Assume that there exists
some k ∈ {1, . . . , r} such that lk > 1 and ν(Rk(x)) > 1. Set

θk = Qk(α)/π = −Rk(α)/(πϕk(α));

we show that θk is an element of Sν −Rν [α] and, thus, Rν [α] is not integrally
closed. SinceQi(x) is monic, θk ̸∈ Rν [α] as, otherwise, 1/π would be an element
of Rν , which is absurd. To show that θk ∈ Sν , we show that θk ∈ Sω for each
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valuation ω of L extending ν (as Sν = ∩ωSω). Let ω be such a valuation. By
LEMMA 2.1 (ii), let i ∈ {1, . . . , r} be such that ω(ϕi(α)) > 0 and ω(ϕj(α)) = 0
for all j ̸= i. Note, by LEMMA 2.1 (iii), that ω(Rk(α)) ≥ ν(Rk(x)) > 1. If
k ̸= i, then

ω(Qk(α)) = ω(ϕk(α)) + ω(Qk(α)) = ω(ϕk(α)Qk(α)) = ω(Rk(α)) > 1.

So, ω(θk) = ω(Qk(α))−1 > 0. Thus, θk ∈ Sω in this case. If k = i, we consider
two possibilities. If 0 < ω(ϕk(α)) ≤ 1, then

ω(θk) = ω(Rk(α))− ω(π)− ω(ϕk(α)) ≥ 2− 1− 1 = 0.

So, θk ∈ Sω in this case too. If, on the other hand, ω(ϕk(α)) > 1, we let
qk(x), rk(x) ∈ Rν [x] be, respectively, the quotient and remainder upon the
Euclidean division of Qk(x) by ϕk(x) with qk(x) monic. We now have

F (x) ≡ qk(x)ϕk
2
(x) + rk(x)ϕk(x) +Rk(x) (modmν).

Since ϕk
2
(x) divides F (x) (as lk ≥ 2) and Rk(x) ≡ 0 (modmν), it follows

that ϕk
2
(x) divides rk(x)ϕk(x) and, therefore, ϕk(x) divides rk(x). Since

deg(rk(x)) < deg(ϕk(x)), rk(x) ≡ 0 (modmν) and ν(rk(x)) ≥ 1. Now (us-
ing LEMMA 2.1 (iii) in the third inequality below), we have

ω(Qk(α)) = ω(qk(α)ϕk(α) + rk(α))

≥ min{ω(qk(α)) + ω(ϕk(α)), ω(rk(α))}
≥ min{ω(ϕk(α)), ω(rk(α))}
≥ min{ν(ϕk(x), ν(rk(x))}
≥ 1.

Thus, ω(θk) = ω(Qk(α))− 1 ≥ 0 and, hence, θk ∈ Sω in this case as well.
For the converse, assume that for every 1 ≤ i ≤ r, either li = 1 or

ν(Ri(x)) = 1. We proceed in three steps.
Step 1: We show that if, for some i, li = 1, then we can always assume

that ν(Ri(x)) = 1 too. Suppose that ν(Ri(x)) > 1. Note that

F (x) = Qi(x)ϕi(x) +Ri(x) = Qi(x)(ϕi(x) + π)− πQi(x) +Ri(x).

Let Hi(x), Ti(x) ∈ Rν [x] be such that Qi(x) = Hi(x)ϕi(x) + Ti(x) with
deg(Ti(x)) < deg(ϕi(x)). Set ϕ∗i (x) = ϕi(x) + π, Q∗

i (x) = Qi(x) − πHi(x)
and R∗

i (x) = Ri(x) − πTi(x) + π2Hi(x). Then, F (x) = Q∗
i (x)ϕ

∗
i (x) + R∗

i (x).
Note that Q∗

i (x) and R
∗
i (x) are, respectively, the quotient and remainder upon

the Euclidean division of F (x) by ϕ∗i (x). As Ti(x) is nonzero (as li = 1),
ν(πTi(X)) = 1. Since also ν(Ri(x)) > 1 and ν(π2Hi(x)) ≥ 2, it must follow
that ν(R∗

i (x)) = 1. So, up to replacing the lifting of ϕi(x) by ϕ
∗
i (x) instead of

ϕi(x) if necessary, we can assume that ν(Ri(x)) = 1 as claimed.
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Step 2: Based on Step 1, we can assume that ν(Ri(x)) = 1 for every
1 ≤ i ≤ r. Let ω be a valuation of L extending ν and i ∈ {1, · · · , r}, we show
that if ω(ϕi(α)) > 0 then ω(ϕi(α)) = 1/li. If li = 1, then ϕi(x) does not divide
Qi(x). So, by Lemma 2.1 (iii), ω(Qi(α)) = 0 and ω(ϕi(α)) = ω(Qi(α)ϕi(α)) =
ω(−Ri(α)) = ν(Ri(x)) = 1 = 1/li. If li > 1, then set

F (x) = Gi(x)ϕ
li
i (x) + Si(x)ϕi(x) +Ri(x),

for some Gi(x), Si(x) ∈ Rν [x] with ν(Gi(x)) = 0 and ν(Si(x)) > 1. It then
follows that ω(Gi(α)ϕ

li
i (α)) = ω(Si(α)ϕi(α)+Ri(α)) = 1. Thus, ω(ϕlii (α)) = 1

and, therefore, ω(ϕi(α)) = 1/li.

Step 3: Now assume that Rν [α] is not integrally closed. So, there exists
some monic p(x) ∈ Rν [x] with deg(p(x)) < deg(F (x)) such that p(α)/π is
integral over Rν . Note then that p(α)/π ∈ Sν − Rν [α]. Let ri ≥ 0 be such
that ϕi

ri(x) is the highest power of ϕi(x) that divides p(x). Since deg(p(x)) <
deg(F (x)), ri0 < li0 for some i0 ∈ {1, · · · , r}. Let Mi0(x), Li0(x) ∈ Rν [x] be,
respectively, the quotient and remainder upon the Euclidean division of p(x)
by ϕ

ri0
i0

(x). So

p(x) = ϕ
ri0
i0

(x)Mi0(x) + Li0(x),

ϕi0(x) ∤ Mi0(x), and ν(Li0(x)) ≥ 1. Since p(x) and ϕi0(x) are monic, Mi0(x)
is monic and, therefore, ν(Mi0(x)) = 0. By LEMMA 2.1 (i), let ω be a val-
uation of L extending ν such that ω(ϕi0(α)) > 0. Then, by Step 2 above,
ω(ϕi0(α)) = 1/li0 . Since ϕi0(x) ∤ Mi0(x) and ν(Mi0(x)) = 0, it follows from
LEMMA 2.1 (iii) that ω(Mi0(α)) = ν(Mi0(x)) = 0. Also, by LEMMA 2.1 (iii),
ω(Li0(α)) ≥ ν(Li0(x)) ≥ 1. As ri0/li0 < 1, ri0/li0 < ω(Li0(α)). We, thus, have

ω(p(α)) = min{ω(ϕri0i0
(α)Mi0(α)), ω(Li0(α))}

= min{ri0ω(ϕi0(α)) + ω(Mi0(α)), ω(Li0(α))}
= min{ri0/li0 , ω(Li0(α))}
= ri0/li0 < 1.

Thus, ω(p(α)/π) < 0 and, therefore, p(α)/π ̸∈ Sν , a contradiction.

Remark. Checking that ν(Ri(x)) = 1 is needed only if li ≥ 2. In this case,
note that the requirement that ν(Ri(x)) = 1 is independent of the choice of the
monic lifting of ϕi(x). Indeed, if li ≥ 2, then we show that ν(Ri(x)) = 1 if and
only if ν(ri(x)) = 1 for the remainder ri(x) upon the Euclidean division of f(x)
by any other monic lifting of ϕi(x). Let ν(Ri(x)) = 1, Pi(x) = ϕi(x) + πH(x)
be another monic lifting of ϕi(x), with H(x) ∈ Rν [x]. Let qi(x), ri(x) ∈ Rν [x]
be, respectively, the quotient and remainder upon the Euclidean division of
f(x) by Pi(x). Let ω be a valuation of L extending ν such that ω(ϕi(α)) > 0.
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By the proof of Theorem 1.1, ω(ϕi(α)) = 1/li. We have

f(x) = Qi(x)ϕi(x) +Ri(x) = qi(x)Pi(x) + ri(x).

As ω(ϕi(α)) = 1/li < 1 and ω(πH(α)) ≥ 1,

ω(Pi(α)) = ω(ϕi(α) + πH(α)) = 1/li.

Let Mi(x), Si(x) ∈ Rν [x] be, respectively, the quotient and remainder
upon the Euclidean division of f(x) by P li

i (x). Since ϕi(x) does not divide
Mi(x), ω(Mi(α)) = ν(Mi(x)) = 0 (by Lemma 2.1). Therefore,

ω(Si(α)) = ω(Mi(α)P
li
i (α)) = 1.

Note that Si(x) = Ni(x)Pi(x) + ri(x) for some Ni(x) ∈ m[x]. It thus follows
that ω(ri(α)) = ω(Si(α)) = 1 because ω(Ni(α)Pi(α)) ≥ 1 + 1/li > 1. Since
ϕi(x) does not divide ri(x), ν(ri(x)) = ω(ri(α)) = 1.

Proof of Corollary 1.2. On the one hand, it is known that R[α] is in-
tegrally closed (i.e. S = R[α]) if and only if Rp[α] is integrally closed for
every nonzero prime ideal p of R (see [1]). On the other hand, the generalized
discriminant-index formula ”DiscR(F ) = IndR(α)

2DR(S)” was shown in [2]. It
is thus obvious that for the equality S = R[α] to hold, we need only to consider
those prime ideals p of R whose squares divide DiscR(F ). For such a prime
ideal, (K, ν) is a valued field of rank 1 with discrete valuation νp and ring of
valuation Rp. Applying Theorem 1.1 yields the desired conclusion.

Proof of Theorem 1.3. In order to use Corollary 1.2, and since
disc(f) = ±nnan−1, we need only to consider those prime ideals of R con-
taining n.1K or a. Since any prime ideal p that contains disc(f) must contain
a (by our assumption on n), we let p be a prime ideal of R containing a, Then
xn − a ≡ xn (mod p). By the Euclidean division of xn − a by x, the remainder
is −a. Since a is square-free, νp(−a) = 1. Thus, by Corollary 1.2, R[α] is
integrally closed in K(α).

Proof of Theorem 1.4. It is known that R[α] is integrally closed in L if
and only if Rp[α] is integrally closed in L for every nonzero prime ideal p of R
that divides the discriminant of f(x). Since the discriminant of f(x) is nnun−1,
we seek to show the integral closedness of Rp[α] in L for every nonzero prime
ideal p of R that contains nu. Let p be such a prime ideal. If u ∈ p, then
it follows from Theorem 1.3 that Rp[α] is integrally closed in L if and only if
u ̸∈ p2. Assume that u ̸∈ p. So, n1K ∈ p and n is thus divisible by p. Let
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n = mpr with m ∈ N not divisible by p. If, on the one hand, f ≤ r, then set
r = s+ f . So,

f(x) = xmpr − u ≡ xmpspf − up
f ≡ (xmps − u)p

f
(mod p).

We also have,

f(x) = (xmps)p
f − u = (xmps − u+ u)p

f − u

=

pf−1∑
k=0

(
pf

k

)
uk(xmps − u)p

f−k + up
f − u

= H(x)(xmps − u) + up
f − u,

H(x) ∈ R[x]. If xmps − u =
∏t

i=1 gi
ei(x) is the monic irreducible factorization

of xmps − u module p, then f(x) =
∏t

i=1 gi
eip

f
(x) is the monic irreducible

factorization of f(x) modulo p. Letting gi(x) ∈ R[x] be a monic lift of gi(x)
for each i, it follows that the remainder upon the Euclidean division of f(x)

by each gi(x) is u
pf − u. If, on the other hand, r < f , then set f = s+ r. So,

f(x) = xmpr − u ≡ xmpr − up
f ≡ (xm − up

s
)p

r
(mod p).

We also have,

f(x) = (xm)p
r − u = (xm − up

s
+ up

s
)p

r − u

=

pr−1∑
k=0

(
pr

k

)
ukps(xm − up

s
)p

r−k + up
f − u

=M(x)(xm − up
s
) + up

f − u,

M(x) ∈ R[x]. If xm − ups =
∏v

i=1 hi
li(x) is the monic irreducible factorization

of xm − up
s
module p, then f(x) =

∏v
i=1 hi

lip
r

(x) is the monic irreducible
factorization of f(x) modulo p. Letting hi(x) ∈ R[x] be a monic lift of hi(x)
for each i, it follows that the remainder upon the Euclidean division of f(x) by

each hi(x) is u
pf − u. In either case, it follows from Theorem 1.1 that Rp[α] is

integrally closed if and only if νp(u
pf − u) = 1.

Remark. In case (ii) of Theorem 1.4, any r ∈ N with νp(u
pr − u) = 1

suffices for the same conclusion to hold.

Proof of Corollary 1.5. Just apply Theorem 1.4 noting that f = 1.



9 On the integral closedness of R[α] 579

3. APPLICATIONS AND EXAMPLES

Corollary 3.1. Keep the notations and assumptions of Theorem 1.1.
Let f(x) =

∑n
i=0 aix

i ∈ Rν [x] be monic with ν(ak) ≥ 1 for 1 ≤ k ≤ n− 1, and
ν(a0) = 1. Let L = K(α) a field extension of K with α a root of f(x). Then
f(x) is irreducible over K and Rν [α] is integrally closed in L.

Proof. By the well-known Eisenstein’s Criterion, f(x) is irreducible over
Rν . By Gauss’ Lemma (see [5, Proposition 9.3.5]), f(x) is also irreducible over
K as well. As f(x) ≡ xn (mod mν) and the remainder when dividing f(x) by
x is a0 with ν(a0) = 1, it follows from Theorem 1.1 that Rν [α] is integrally
closed in L.

With the notation of Theorem 1.1, assume that f(x), ϕ(x) ∈ Rν [x] are
monic polynomials such that deg(ϕ(x)) ≤ deg(f(x)) and ϕ(x) ∈ k[x] is monic
and irreducible. Let f(x) =

∑l
i=0 ai(x)ϕ(x)

l−i be the ϕ-adic expansion of f(x).
This entails, in particular, that, for each i, either ai(x) = 0 or deg(ai(x)) <
deg(ϕ(x)). We say that f(x) is (ϕ, ν)-Eisenstein if ν(ai(x)) ≥ 1 for i = 1, . . . , l−
1 and ν(al(x)) = 1.

Corollary 3.2. Keep the above notations and assumptions. Let L =
K(α) be a field extension of K with α a root of f(x). If f(x) ≡ ϕ(x)l (mod mν)
and f(x) is (ϕ, ν)-Eisenstein, then f(x) is irreducible over Rν and Rν [α] is
integrally closed in L.

Proof. Assume that f(x) = g(x)h(x) for some monic g(x), h(x) ∈ Rν [x].
Then g(x) ≡ ϕ(x)l1 , h(x) ≡ ϕ(x)l2 (mod mν), with l1+ l2 = l. Note that li ≥ 1
for i = 1, 2 as both g(x) and h(x) are monic. Let g(x) =

∑l1
i=0 gi(x)ϕ(x)

l1−i

and h(x) =
∑l2

i=0 hi(x)ϕ(x)
l2−i be the ϕ-adic expansions of g(x) and h(x),

respectively. As g(x) and h(x) are monic, g0(x) = h0(x) = 1. Since li ≥ 1
and g(x) ≡ ϕ(x)l1 , h(x) ≡ ϕ(x)l2 (mod mν), ν(gl1(x)) ≥ 1 and ν(hl2(x)) ≥ 1.
By the uniqueness of the ϕ-adic expansion of f(x), al(x) = gl1(x)hl2(x). Thus,
ν(al(x)) ≥ 2, a contradiction. Thus, f(x) is irreducible over Rν . Hence, f(x)
is irreducible over Rν . Now, since ν(al(x)) = 1, it follows from Theorem 1.1
that Rν [α] is integrally closed in L.

Corollary 3.3. Consider the above notation and assumptions, and let
f(x) = xn+a ∈ Rν [x] be monic such that ν(a) = m ≥ 1 with m and n relatively
prime. Let L = K(α) be a field extension of K with α a root of f(x) and S
the integral closure of Rν in L. Then f(x) is irreducible over K and θ = αs/πt

generates a power basis for S over Rν , where s, t ∈ Z such that ms− nt = 1 .
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Proof. As θn = αns/πnt = as/πnt, ν(θn) = ms − nt = 1 and, therefore,
F (x) = xn − θn ∈ Rν [x] is ν-Eisenstein. Hence, by Corollary 3.1, F (x) is
irreducible over K and Rν [θ] is integrally closed in K(θ). But θ = αs/πt ∈ L.
On the other hand, α = αms−nt = αms/αnt = (πmtθm)/at ∈ K(θ). Thus,
L = K(θ). This, on the one hand, implies that Rν [θ] is integrally closed in L
as claimed. On the other hand, as f(x) and F (x) are of the same degree and
F (x) is irreducible over K, f(x) is irreducible over K as well.

Example 1. In this example we use Corollary 1.2 to give a much easier
proof of the very well-know monogenity of nth cyclotomic number fields. By
[14, p. 11], it suffices to prove the monogenity of prth cyclotomic number fields
for rational primes p.

Let Kpr = Q(ζ) be the prth cyclotomic field with ζ = ζpr = exp(2πi/pr).
It is known that the minimal polynomial of ζ is

Φpr(x) =
xp

r − 1

xpr−1 − 1
= xϕ(p

r) + xϕ(p
r)−pr−1

+ · · ·+ xϕ(p
r)−(p−2)pr−1

+ 1

and p is the only rational prime whose square divides disc(Φpr) (in fact,

disc(Φpr) is a power of p). Reducing Φpr(x) =
xp

r − 1

xpr−1 − 1
modolo p yields

Φpr(x) ≡ (x− 1)
ϕ(pr)

(mod p).

Let Q(x), R(x) ∈ Z[x] be, respectively, the quotient and remainder upon the
Euclidean division of Φpr(x) by x−1. Since deg(x−1) = 1, R(x) = a for some
constant a ∈ Z. Thus, Φpr(x) = (x − 1)Q(x) + a. Evaluating both sides at 1
yields p = Φpr(1) = a. Since νp(p) = 1, it now follows from Corollary 1.2 that
ZKpr

= Z[ζ], which is what we need to show.

Example 2. Let R = ZK , where K is the quadratic number field defined
by x2 − 3. It is well known that R = Z[

√
3] and 3R = p2, where p =

√
3R. Let

(m,n) ∈ Z×N be two integers such f(x) = xn−m is irreducible over K and 3
divides n. Let L = K(α), where α is a root of f(x). We show that R[α] is not
integrally closed. If 3 divides m, then as 3 is a square in R, m is not square free
in R. So, by Theorem 1.4, R[α] is not integrally closed. If 3 does not divide
m, then as m3 ≡ mmod 3, 3 divides m3 −m in R and, thus, νp(m

3 −m) ≥ 2.
Again, by Theorem 1.4, R[α] is not integrally closed in this case either.
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