# DYNAMICAL SAMPLING: MIXED FRAME OPERATORS, REPRESENTATIONS AND PERTURBATIONS 

EHSAN RASHIDI, ABBAS NAJATI, and ELNAZ OSGOOEI

Communicated by Dan Timotin


#### Abstract

Motivated by recent progress in operator representation of frames, we investigate the frames of the form $\left\{T^{n} \varphi\right\}_{n \in I}$ for $I=\mathbb{N}, \mathbb{Z}$, and answer questions about representations, perturbations and frames induced by the action of powers of bounded linear operators. As a particular case, we discuss problems concerning representation of frames in terms of iterations of the mixed frame operators. As our another contribution, we consider frames of the form $\left\{a_{n} T^{n} \varphi\right\}_{n=0}^{\infty}$ for some non-zero scalars $\left\{a_{n}\right\}_{n=0}^{\infty}$, and we obtain some new results in dynamical sampling. Finally, we will present some auxiliary results related to the perturbation of sequences of the form $\left\{T^{n} \varphi\right\}_{n=0}^{\infty}$.


AMS 2020 Subject Classification: 42C15, 47B40.
Key words: frames, operator representation of frames, dynamical sampling, iterative actions of mixed frame operators, Riesz basis, perturbation theory.

## 1. INTRODUCTION

A frame in a separable Hilbert space $\mathcal{H}$ is a countable collection of elements in $\mathcal{H}$ that allows each $f \in \mathcal{H}$ to be written as an (infinite) linear combination of the frame elements, but linear independence between the frame elements is not required. Duffin and Schaeffer [12] introduced frames, and they used frames as a tool in the study sequences of the form $\left\{e^{i \lambda_{n} x}\right\}_{n \in \mathbb{Z}}$, where $\left\{\lambda_{n}\right\}_{n \in \mathbb{Z}}$ is a family of real or complex numbers. Dynamical sampling has already introduced in [1] by Aldroubi et al., and it deals with frame properties of sequences of the form $\left\{T^{n} \varphi\right\}_{n=0}^{\infty}$, where $\varphi \in \mathcal{H}$ and $T: \mathcal{H} \rightarrow \mathcal{H}$ belongs to certain classes of linear operators.

Throughout this paper, let $\mathbb{N}_{0}=\{0,1,2, \cdots\}$. We let $\mathcal{H}$ denote a complex separable infinite-dimensional Hilbert space. Given a Hilbert space $\mathcal{H}$, we let $B(\mathcal{H})$ denote the set of all bounded linear operators $T: \mathcal{H} \rightarrow \mathcal{H}$. Moreover, $G L(\mathcal{H})$ will denote the set of all bijective operators in $B(\mathcal{H})$.

Definition 1.1. Let $I$ denote a countable set and let $\left\{f_{k}\right\}_{k \in I}$ be a sequence in $\mathcal{H}$.

- $\left\{f_{k}\right\}_{k \in I}$ is called a frame for $\mathcal{H}$ if there exist constants $A, B>0$ such that $A\|f\|^{2} \leq \sum_{k \in I}\left|\left\langle f, f_{k}\right\rangle\right|^{2} \leq B\|f\|^{2}$ for all $f \in \mathcal{H}$; it is a frame sequence if the stated inequalities hold for all $f \in \operatorname{span}\left\{f_{k}\right\}_{k \in I}$.
- $\left\{f_{k}\right\}_{k \in I}$ is called a Bessel sequence with Bessel bound $B$, if $\sum_{k \in I}\left|\left\langle f, f_{k}\right\rangle\right|^{2} \leq B\|f\|^{2}$ for all $f \in \mathcal{H}$;
- $\left\{f_{k}\right\}_{k \in I}$ is called a Riesz sequence if there exist constants $A, B>0$ such that $A \sum_{k \in I}\left|c_{k}\right|^{2} \leq\left\|\sum_{k \in I} c_{k} f_{k}\right\|^{2} \leq B \sum_{k \in I}\left|c_{k}\right|^{2}$ for all finite scalar sequences $\left\{c_{k}\right\}_{k \in I}$.
- $\left\{f_{k}\right\}_{k \in I}$ is called a Riesz basis for $\mathcal{H}$, if it is a Riesz sequence for which $\overline{\operatorname{span}}\left\{f_{k}\right\}_{k \in I}=\mathcal{H}$.

The following theorem was proved in [4] which is about frames and operators:

Theorem 1.2. Consider a sequence $\left\{f_{k}\right\}_{k=1}^{\infty}$ in a separable Hilbert space $\mathcal{H}$. Then the following hold:

- $\left\{f_{k}\right\}_{k=1}^{\infty}$ is a Bessel sequence if and only if $U:\left\{c_{k}\right\}_{k=1}^{\infty} \mapsto \sum_{k=1}^{\infty} c_{k} f_{k}$ is a well-defined mapping from $\ell^{2}(\mathbb{N})$ to $\mathcal{H}$, i.e, the infinite series is convergent for all $\left\{c_{k}\right\}_{k=1}^{\infty} \in \ell^{2}(\mathbb{N})$; in the affirmative case the operator $U$ is linear and bounded.
- $\left\{f_{k}\right\}_{k=1}^{\infty}$ is a frame if and only if the mapping $\left\{c_{k}\right\}_{k=1}^{\infty} \mapsto \sum_{k=1}^{\infty} c_{k} f_{k}$ is well-defined from $\ell^{2}(\mathbb{N})$ to $\mathcal{H}$ and surjective.
- $\left\{f_{k}\right\}_{k=1}^{\infty}$ is a Riesz basis if and only if the mapping $\left\{c_{k}\right\}_{k=1}^{\infty} \mapsto \sum_{k=1}^{\infty} c_{k} f_{k}$ is well-defined from $\ell^{2}(\mathbb{N})$ to $\mathcal{H}$ and bijective.

For $I=\mathbb{N}$ or $\mathbb{Z}$, Theorem 1.2 tells us that if $\left\{f_{k}\right\}_{k \in I}$ is a Bessel sequence, the synthesis operator

$$
U: \ell^{2}(I) \rightarrow \mathcal{H}, \quad U\left\{c_{k}\right\}_{k \in I}:=\sum_{k \in I} c_{k} f_{k}
$$

is well-defined and bounded. A central role will be played by the kernel of the operator $U$, i.e., the subset of $\ell^{2}(I)$ given by

$$
\mathcal{N}_{U}=\left\{\left\{c_{k}\right\}_{k \in I} \in \ell^{2}(I): \sum_{k \in I} c_{k} f_{k}=0\right\}
$$

The excess of a frame is the number of elements that can be removed in order for the remaining set to form a basis. Given a Bessel sequence $\left\{f_{k}\right\}_{k=1}^{\infty}$, the frame operator $S: \mathcal{H} \rightarrow \mathcal{H}$ is defined by

$$
S:=U U^{*}, \quad S f:=U U^{*} f=\sum_{k=1}^{\infty}\left\langle f, f_{k}\right\rangle f_{k}
$$

### 1.1. Motivation and idea of dynamical sampling

Dynamical sampling is a recent research was introduced earlier in [1] deals with frame properties of the sequence $\left\{T^{n} \varphi\right\}_{n=0}^{\infty}$ for some $T \in(\mathcal{H})$ and some $\varphi \in \mathcal{H}$. We will consider frames $\left\{f_{k}\right\}_{k \in I}$ with indexing over $I=\mathbb{N}$ or $I=\mathbb{Z}$. It is natural to ask whether we can find a linear operator $T$ such that $f_{k+1}=T f_{k}$ for all $k \in I$. Various characterizations of frames having the form $\left\{f_{k}\right\}_{k \in I}=\left\{T^{k} \varphi\right\}_{k \in I}$, where $T$ is a linear (not necessarily bounded) operator can be found in $[7,8,5]$. We are interested in the structure of the set of iterations of the operator $T \in B(\mathcal{H})$ when acting on the vector $\varphi \in \mathcal{H}$. Indeed, we are interested in the following two questions:

- Under what conditions on $T$ and $I$ is the the iterated system of vectors $\left\{T^{n} \varphi\right\}_{n \in I}$ a frame or a Riesz basis for $\mathcal{H}$ ?
- If $\left\{T^{n} \varphi\right\}_{n \in I}$ is a frame or a Riesz basis for $\mathcal{H}$, what can be deduced about the operator $T$ ?

Example 1.3. Let $\left\{e_{k}\right\}_{k=1}^{\infty}$ denote an orthonormal basis for $\mathcal{H}$. Define the operator $T: \mathcal{H} \rightarrow \mathcal{H}$ by $T(f)=\sum_{k=1}^{\infty}\left\langle f, e_{k}\right\rangle e_{k+1}$. It is clear that $\left\{e_{k}\right\}_{k=1}^{\infty}=$ $\left\{T^{k} e_{1}\right\}_{k=0}^{\infty}$.

Example 1.4. Assume that $\left\{e_{k}\right\}_{k=1}^{\infty}$ is an orthonormal basis for $\mathcal{H}$, and define the bounded operator $T: \mathcal{H} \rightarrow \mathcal{H}$ by $T(f)=\sum_{k=1}^{\infty}\left\langle f, e_{k}\right\rangle 2^{-k} e_{k+1}$. In particular, $T$ is compact, being the norm-limit of the finite-rank operators

$$
T_{N}: \mathcal{H} \rightarrow \mathcal{H}, \quad T_{N}(f)=\sum_{k=1}^{N}\left\langle f, e_{k}\right\rangle 2^{-k} e_{k+1}
$$

On the other hand, by construction the sequence $\left\{\frac{T^{k} e_{1}}{\left\|T^{k} e_{1}\right\|}\right\}_{k=0}^{\infty}$ is $\left\{e_{k}\right\}_{k=1}^{\infty}$.
Definition 1.5. Suppose that $\left\{f_{k}\right\}_{k=1}^{\infty}$ and $\left\{g_{k}\right\}_{k=1}^{\infty}$ are two frames (or Bessel sequences) for $\mathcal{H}$. The operator $T: \mathcal{H} \rightarrow \mathcal{H}$ defined by

$$
T f=\sum_{k=1}^{\infty}\left\langle f, g_{k}\right\rangle f_{k}
$$

is called the mixed frame operator associated with $\left\{f_{k}\right\}_{k=1}^{\infty}$ and $\left\{g_{k}\right\}_{k=1}^{\infty}$.
Obviously, any bounded linear operator $T: \mathcal{H} \rightarrow \mathcal{H}$ is indeed a mixed frame operator. Because, if $T \in B(\mathcal{H})$ and $\left\{e_{k}\right\}_{k=1}^{\infty}$ is an orthonormal basis for $\mathcal{H}$, then by applying $T$ on the decomposition $f=\sum_{k=1}^{\infty}\left\langle f, e_{k}\right\rangle e_{k}$, we have that $T f=\sum_{k=1}^{\infty}\left\langle f, e_{k}\right\rangle T e_{k}$ for all $f \in \mathcal{H}$. Hence, $T$ is the mixed frame operator for the Bessel sequences $\left\{e_{k}\right\}_{k=1}^{\infty}$ and $\left\{T e_{k}\right\}_{k=1}^{\infty}$.

The following example of a mixed frame operator was already in [5]:

Example 1.6. Suppose that $\left\{f_{k}\right\}_{k=1}^{\infty}=\left\{T^{n} f_{1}\right\}_{n=0}^{\infty}$ is a frame for $\mathcal{H}$ for some $T \in B(\mathcal{H})$. Let $\left\{g_{k}\right\}_{k=1}^{\infty}$ be a dual frame of $\left\{f_{k}\right\}_{k=1}^{\infty}$. Then $T f=$ $\sum_{k=1}^{\infty}\left\langle f, g_{k}\right\rangle T f_{k}=\sum_{k=1}^{\infty}\left\langle f, g_{k}\right\rangle f_{k+1}$, for every $f \in \mathcal{H}$. Therefore, $T$ is a mixed frame operator.

Let $\left\{f_{k}\right\}_{k=1}^{\infty}$ be a Bessel sequence and $\left\{e_{k}\right\}_{k=1}^{\infty}$ be an orthonormal basis for $\mathcal{H}$. Define the operator $T: \mathcal{H} \rightarrow \mathcal{H}$ by $T f=\sum_{k=1}^{\infty}\left\langle f, e_{k}\right\rangle f_{k}$. It is clear that $T$ is bounded and $T e_{k}=f_{k}$ for all $k$. Therefore we have the following:

Proposition 1.7. The Bessel sequences in $\mathcal{H}$ are precisely the sequences $\left\{T e_{k}\right\}_{k=1}^{\infty}$, where $T \in B(\mathcal{H})$ and $\left\{e_{k}\right\}_{k=1}^{\infty}$ is an orthonormal basis for $\mathcal{H}$.

### 1.2. Recent results on dynamical sampling and frames

Various aspect of the dynamical sampling problem and related frame theory have been studied by Aldroubi et al. and Christensen et al. in $[1,2,3$, $5,6,7,8,9,10]$. They deal with frame properties of sequences in a Hilbert space $\mathcal{H}$ of the form $\left\{T^{n} \varphi\right\}_{n=0}^{\infty}$, where $\varphi \in \mathcal{H}$ and $T \in B(\mathcal{H})$. However, some no-go results in dynamical sampling have been proved; for example, if $T$ is a normal operator, then $\left\{T^{n} \varphi\right\}_{n=0}^{\infty}$ cannot be a basis [2]. Moreover, if $T$ is a unitary operator or a compact operator, then $\left\{T^{n} \varphi\right\}_{n=0}^{\infty}$ cannot be a frame [3, 5]. The following recent results in dynamical sampling and frame representations with bounded operators can be found in $[5,7,8,10]$. Suppose that $\left\{f_{k}\right\}_{k=1}^{\infty}$ is a frame for $\mathcal{H}$ :
(i) $\left\{f_{k}\right\}_{k=1}^{\infty}$ has a representation $\left\{f_{k}\right\}_{k=1}^{\infty}=\left\{T^{k} f_{1}\right\}_{k=0}^{\infty}$ for some bounded operator $T: \mathcal{H} \rightarrow \mathcal{H}$ if and only if $\left\{f_{k}\right\}_{k=1}^{\infty}$ is linearly independent.
(ii) Let $T: \operatorname{span}\left\{f_{k}\right\}_{k=0}^{\infty} \rightarrow \operatorname{span}\left\{f_{k}\right\}_{k=0}^{\infty}$ be a linear operator and $\left\{f_{k}\right\}_{k=1}^{\infty}=\left\{T^{k} f_{1}\right\}_{k=0}^{\infty}$. Then $T$ is bounded if and only if the kernel $\mathcal{N}_{U}$ of the synthesis operator is invariant under right-shifts; in particular $T$ is bounded if $\left\{f_{k}\right\}_{k=1}^{\infty}=\left\{T^{k} f_{1}\right\}_{k=0}^{\infty}$ is a Riesz basis.
(iii) Assume that $\left\{f_{k}\right\}_{k=1}^{\infty}$ is linearly independent and overcomplete. Then $\left\{f_{k}\right\}_{k=1}^{\infty}$ has infinite excess.

For countable subsets $\mathcal{G} \subset \mathcal{H}$ and a normal operator $T$, Aldroubi et al. [2] proved that the iterative system $\left\{T^{n} \varphi\right\}_{\varphi \in \mathcal{G}, n \geq 0}$ can be a frame for $\mathcal{H}$, but cannot be a basis. However, it is difficult for a system of vectors of the form $\left\{T^{n} \varphi\right\}_{\varphi \in \mathcal{G}, n \geq 0}$ to be a frame. The difficulty is that the the spectrum of $T$ must be very special. Such frames however do exist, as shown by the constructions in [1].

The paper is organized as follows. In section 2 , we provide an alternative proof to show that $\bigcup_{j=1}^{k}\left\{T^{n} \varphi_{j}\right\}_{n=0}^{\infty}$ cannot form a frame for $\mathcal{H}$, whenever $T$ is
compact. Moreover, we provide necessary and sufficient conditions for $T$ being surjective. The main purpose of this section is to characterize and compare the Bessel and frame properties of orbits $\left\{T^{n} \varphi\right\}_{n=0}^{\infty}$ with a bounded operator $T$ in connection with frame operators and mixed frame operators. We also show that the iterative actions of the mixed frame operator associated with two orthonormal basis cannot form a frame. Section 3 discusses representations of frames which can be represented of the form $\left\{a_{n} T^{n} \varphi\right\}_{n=0}^{\infty}$ for some non-zero scalars $\left\{a_{n}\right\}_{n=0}^{\infty}$ with $\sup _{n}\left|\frac{a_{n}}{a_{n+1}}\right|<\infty$. Finally, in section 4 we illustrate some auxiliary results related to the perturbation of an operator to construct frame orbits in terms of the operator representations.

## 2. ITERATIVE ACTIONS OF FRAME OPERATOR AND MIXED FRAME OPERATOR

The representation of frames in the form $\left\{T^{n} \varphi\right\}_{n=0}^{\infty}$ and $\left\{T^{n} \varphi\right\}_{n \in \mathbb{Z}}$ for some $\varphi \in \mathcal{H}$ and some $T \in B(\mathcal{H})$ was already studied in [5, 7]. Aldroubi et al. [1] showed that iterative actions of compact self-adjoint operators cannot form a frame. However, for a normal operator, Philipp [13] proved that $\left\{T^{n} \varphi\right\}_{n \in \mathbb{N}}$ can be a Bessel sequence. It is clear that the iterative system $\left\{T^{n} \varphi\right\}_{n=0}^{\infty}$ is a Bessel sequence if $\|T\|<1$. Indeed, for any $f \in \mathcal{H}$, we have

$$
\sum_{n=0}^{\infty}\left|\left\langle f, T^{n} \varphi\right\rangle\right|^{2} \leq \sum_{n=0}^{\infty}\|f\|^{2}\left\|T^{n} \varphi\right\|^{2} \leq\|f\|^{2}\|\varphi\|^{2} \sum_{n=0}^{\infty}\|T\|^{2 n}=\frac{\|\varphi\|^{2}}{1-\|T\|^{2}}\|f\|^{2}
$$

It has already proved that if $T$ is a compact operator on an infinitedimensional Hilbert space $\mathcal{H}$ and $\varphi_{1}, \ldots, \varphi_{k} \in \mathcal{H}$, then $\bigcup_{j=1}^{k}\left\{T^{n} \varphi_{j}\right\}_{n=0}^{\infty}$ cannot be a frame for $\mathcal{H}$ [5]. Here we provide an alternative simple proof. We first prove a lemma.

Lemma 2.1. Let $T \in B(\mathcal{H})$ and $\varphi_{1}, \ldots, \varphi_{k} \in \mathcal{H}$. If $\bigcup_{j=1}^{k}\left\{T^{n} \varphi_{j}\right\}_{n=0}^{\infty}$ is a frame for $\mathcal{H}$, then $T$ has closed rang and the range of $T$ is $\mathcal{R}_{T}=\overline{\operatorname{span}}\left\{T^{n} \varphi_{j}\right.$ : $j=1,2, \cdots, k\}_{n=1}^{\infty}$.

Proof. For each $x \in \mathcal{H}$ there exists a sequence $\left\{c_{n, j}: j=1,2, \cdots, k\right\}_{n=0}^{\infty}$ of scalars such that $x=\sum_{j=1}^{k} \sum_{n=0}^{\infty} c_{n, j} T^{n} \varphi_{j}$. Therefore

$$
T x=\sum_{j=1}^{k} \sum_{n=0}^{\infty} c_{n, j} T^{n+1} \varphi_{j} \in \overline{\operatorname{span}}\left\{T^{n} \varphi_{j}: j=1,2, \cdots, k\right\}_{n=1}^{\infty}
$$

Therefore $\mathcal{R}_{T} \subseteq \mathcal{K}:=\overline{\operatorname{span}}\left\{T^{n} \varphi_{j}: j=1,2, \cdots, k\right\}_{n=1}^{\infty}$. On the other hand, since $\bigcup_{j=1}^{k}\left\{T^{n} \varphi_{j}\right\}_{n=1}^{\infty}$ is a frame for $\mathcal{K}$, for each $x \in K$ there is a sequence
$\left\{c_{n, j}: j=1,2, \cdots, k\right\}_{n=1}^{\infty}$ of scalars such that $x=\sum_{j=1}^{k} \sum_{n=1}^{\infty} c_{n, j} T^{n} \varphi_{j}=$ $T\left(\sum_{j=1}^{k} \sum_{n=0}^{\infty} c_{n, j} T^{n} \varphi_{j}\right) \in \mathcal{R}_{T}$. Therefore

$$
\mathcal{R}_{T}=\overline{\operatorname{span}}\left\{T^{n} \varphi_{j}: j=1,2, \cdots, k\right\}_{n=1}^{\infty},
$$

i.e., $T$ has closed range.

Proposition 2.2. Suppose that $\operatorname{dim} \mathcal{H}=\infty, \varphi_{1}, \cdots, \varphi_{k} \in \mathcal{H}$ and $T: \mathcal{H} \rightarrow \mathcal{H}$ is a compact operator. Then $\bigcup_{j=1}^{k}\left\{T^{n} \varphi_{j}\right\}_{n=0}^{\infty}$ cannot form a frame for $\mathcal{H}$.

Proof. Let $\bigcup_{j=1}^{k}\left\{T^{n} \varphi_{j}\right\}_{n=0}^{\infty}$ be a frame for $\mathcal{H}$. Then $T$ has closed rang and $\mathcal{R}_{T}=\overline{\operatorname{span}}\left\{T^{n} \varphi_{j}: j=1,2, \cdots, k\right\}_{n=1}^{\infty}$ by Lemma 2.1. We denote by $T^{\dagger} \in B(\mathcal{H})$ the pseudo-inverse of $T$, i.e.,

$$
T^{\dagger}: \mathcal{H} \rightarrow \mathcal{H}, \quad T T^{\dagger} x=x, \quad x \in \mathcal{R}_{T}
$$

Since $T$ is compact, $T T^{\dagger}=I_{\mathcal{R}_{T}}$ is compact. This implies that $\mathcal{R}_{T}$ is finitedimensional, and it leads to conclude $\operatorname{dim} \mathcal{H}<\infty$, which is a contradiction. Therefore $\bigcup_{j=1}^{k}\left\{T^{n} \varphi_{j}\right\}_{n=0}^{\infty}$ cannot be a frame for $\mathcal{H}$.

As we saw in Lemma 2.1, $\mathcal{R}_{T}$ is closed if $\left\{T^{n} \varphi\right\}_{n=0}^{\infty}$ is a frame. The following proposition provides necessary and sufficient conditions for $T$ being surjective.

Proposition 2.3. Let $T \in B(\mathcal{H})$ and $\varphi \in \mathcal{H}$. Assume that $\left\{T^{n} \varphi\right\}_{n=0}^{\infty}$ is a frame for $\mathcal{H}$ with frame operator $S$. Then the following hold:
(i) $T$ is surjective if and only if there exists $n \geq 1$ such that $\left\langle T^{n} \varphi, S^{-1} \varphi\right\rangle \neq 0$.
(ii) $T$ is surjective if and only if $\varphi \in \mathcal{R}_{T}$.
(iii) $T$ is surjective if and only if $S^{-1} \varphi \notin \operatorname{ker} T^{*}$.
(iv) $T$ is surjective if and only if $\left\|S^{-1 / 2} \varphi\right\| \neq 1$.

Proof. (i) First assume that $T$ is surjective. Then $\mathcal{H}=\overline{\operatorname{span}}\left\{T^{n} \varphi\right\}_{n=1}^{\infty}$ by Lemma 2.1. If $\left\langle T^{n} \varphi, S^{-1} \varphi\right\rangle=0$ for all $n \geq 1$, then $S^{-1} \varphi \perp \mathcal{H}$. This implies that $\varphi=0$, which is a contradiction. Conversely, assume that $\left\langle T^{n} \varphi, S^{-1} \varphi\right\rangle \neq 0$ for some $n \geq 1$. Then

$$
T^{n} \varphi=\sum_{i=0}^{\infty}\left\langle S^{-1} T^{n} \varphi, T^{i} \varphi\right\rangle T^{i} \varphi=\left\langle T^{n} \varphi, S^{-1} \varphi\right\rangle \varphi+\sum_{i=1}^{\infty}\left\langle S^{-1} T^{n} \varphi, T^{i} \varphi\right\rangle T^{i} \varphi
$$

Therefore $\varphi \in \mathcal{R}_{T}$. On the other hand, $\left\{T^{n} \varphi\right\}_{n=1}^{\infty}$ is a frame sequence, and $\mathcal{R}_{T}=\overline{\operatorname{span}}\left\{T^{n} \varphi\right\}_{n=1}^{\infty}$ by Lemma 2.1. Hence $\varphi \in \mathcal{R}_{T}$ implies that $\mathcal{R}_{T}=$ $\overline{\operatorname{span}}\left\{T^{n} \varphi\right\}_{n=1}^{\infty}=\overline{\operatorname{span}}\left\{T^{n} \varphi\right\}_{n=0}^{\infty}=\mathcal{H}$, as desired.

The result in (ii) follows from the proof of (i).
To prove (iii), it follows from (i) that $T$ is surjective if and only if $S^{-1} \varphi \notin$ $\left[\mathcal{R}_{T}\right]^{\perp}=\operatorname{ker} T^{*}$.

For the proof of (iv), assume that $T$ is surjective and $\left\|S^{-1 / 2} \varphi\right\|=1$. Since

$$
\begin{equation*}
\varphi=\left\langle S^{-1} \varphi, \varphi\right\rangle \varphi+\sum_{n=1}^{\infty}\left\langle S^{-1} \varphi, T^{n} \varphi\right\rangle T^{n} \varphi \tag{2.1}
\end{equation*}
$$

we get $\sum_{n=1}^{\infty}\left\langle S^{-1} \varphi, T^{n} \varphi\right\rangle T^{n} \varphi=0$. Then $\sum_{n=1}^{\infty}\left|\left\langle S^{-1} \varphi, T^{n} \varphi\right\rangle\right|^{2}=0$. Applying (i), we conclude that $T$ is not surjective, which is a contradiction. Conversely, if $\left\|S^{-1 / 2} \varphi\right\| \neq 1$, then (2.1) implies that there exists $n \geq 1$ such that $\left\langle T^{n} \varphi, S^{-1} \varphi\right\rangle \neq 0$. Hence $T$ is surjective by (i).

Since a Riesz base and its canonical dual are bi-orthogonal, we have
Corollary 2.4. Let $T \in B(\mathcal{H})$ and $\varphi \in \mathcal{H}$. Assume that $\left\{T^{n} \varphi\right\}_{n=0}^{\infty}$ is a Riesz basis for $\mathcal{H}$. Then $T$ is not surjective. In particular, $\varphi \notin \mathcal{R}_{T}$ and $S^{-1} \varphi \in \operatorname{ker} T^{*}$.

Let $\left\{f_{k}\right\}_{k=1}^{\infty}$ be a frame for $\mathcal{H}$ with frame operator $S$. We investigate the question: Does there exist some $\varphi \in \mathcal{H}$ such that $\left\{S^{n} \varphi\right\}_{n=0}^{\infty}$ is a frame? There are many frames for which this cannot happen. For example, if $\left\{f_{k}\right\}_{k=1}^{\infty}$ is a tight frame for $\mathcal{H}$ with bound $A$, then for $\varphi(\neq 0) \in \mathcal{H}$, we have

$$
\sum_{n=0}^{\infty}\left|\left\langle f, S^{n} \varphi\right\rangle\right|^{2}=\sum_{n=0}^{\infty}\left|\left\langle f, A^{n} \varphi\right\rangle\right|^{2}=|\langle f, \varphi\rangle|^{2} \sum_{n=0}^{\infty} A^{2 n}, \quad f \in \mathcal{H}
$$

Therefore, $\left\{S^{n} \varphi\right\}_{n=0}^{\infty}$ is a frame for $\mathcal{H}$ if and only if $\operatorname{dim} \mathcal{H}=1$ and $A<1$.
The following exhibits a concrete example of a frame $\left\{f_{k}\right\}_{k=1}^{\infty}=\left\{T^{n} f_{1}\right\}_{n=0}^{\infty}$ for which $T$ is a frame operator:

Example 2.5. Consider the operator $T: \ell^{2}(\mathbb{N}) \rightarrow \ell^{2}(\mathbb{N})$ defined by

$$
\begin{equation*}
T\left\{c_{k}\right\}_{k=1}^{\infty}=\left\{\left(1-2^{-k}\right) c_{k}\right\}_{k=1}^{\infty}, \quad\left\{c_{k}\right\}_{k=1}^{\infty} \in \ell^{2}(\mathbb{N}) \tag{2.2}
\end{equation*}
$$

Letting $\lambda_{k}=1-2^{-k}$ for $k \in \mathbb{N}$, Aldroubi et al. [1] proved that the sequence $\left\{T^{n} b\right\}_{n=0}^{\infty}$ is a frame for $\ell^{2}(\mathbb{N})$ whenever $b=\left\{\sqrt{1-\lambda_{k}^{2}}\right\}_{k=1}^{\infty}$. Defining the bounded operator $U: \ell^{2}(\mathbb{N}) \rightarrow \ell^{2}(\mathbb{N})$ by $U\left\{c_{k}\right\}_{k=1}^{\infty}=\left\{\sqrt{1-2^{-k}} c_{k}\right\}_{k=1}^{\infty}$, we have $U=U^{*}$ and $T=U^{2}$. Let $\left\{\delta_{k}\right\}_{k=1}^{\infty}$ be the standard basis of $\ell^{2}(\mathbb{N})$ and let $S$ be the frame operator of $\left\{U \delta_{k}\right\}_{k=1}^{\infty}=\left\{\sqrt{1-2^{-k}} \delta_{k}\right\}_{k=1}^{\infty}$. Then

$$
S f=\sum_{k=1}^{\infty}\left\langle f, U \delta_{k}\right\rangle U \delta_{k}=U \sum_{k=1}^{\infty}\left\langle U^{*} f, \delta_{k}\right\rangle \delta_{k}=U U^{*} f=T f, \quad f \in \ell^{2}(\mathbb{N})
$$

i.e., $S=T$.

Motivated by Example 2.5, we can characterize the case that a frame has a representation $\left\{T^{n} \varphi\right\}_{n=0}^{\infty}$, where $T$ is a frame operator. Indeed, we show that positive and invertible operators are a characteristic of frame operators:

Proposition 2.6. Let $T \in B(\mathcal{H})$. Then the followings are equivalent:
(i) $T$ is positive and invertible.
(ii) $T$ is the frame operator for a frame.

Proof. To prove (i) $\Rightarrow$ (ii), consider the bounded and surjective operator $U: \mathcal{H} \rightarrow \mathcal{H}$ such that $T=U U^{*}$. Let $\left\{e_{k}\right\}_{k=1}^{\infty}$ denote an orthonormal basis for $\mathcal{H}$, and let $f_{k}=U e_{k}$ for each $k \in \mathbb{N}$. Then $\left\{f_{k}\right\}_{k=1}^{\infty}$ is a frame and its frame operator $T$ because

$$
T f=U U^{*} f=\sum_{k=1}^{\infty}\left\langle f, U e_{k}\right\rangle U e_{k}=\sum_{k=1}^{\infty}\left\langle f, f_{k}\right\rangle f_{k}, \quad f \in \mathcal{H}
$$

This proves (ii). The implication (ii) $\Rightarrow$ (i) is clear.

In the following proposition we provide a necessary condition for

$$
\left\{S^{n} g\right\}_{n \geq 0, g \in \mathcal{G}}
$$

to be a frame, where $\mathcal{G} \subset \mathcal{H}$ is a countable set.
Proposition 2.7. Assume that $\left\{f_{k}\right\}_{k=1}^{\infty}$ is a frame with lower frame bound $A$ and frame operator $S$. If $\mathcal{G}$ is a countable subset of $\mathcal{H}$ and $\left\{S^{n} g\right\}_{n \geq 0, g \in \mathcal{G}}$ is a frame for $\mathcal{H}$, then $A<1$.

Proof. Since $A\langle f, f\rangle \leq\langle S f, f\rangle$, we get $A\|f\| \leq\|S f\|$ for all $f \in \mathcal{H}$. Therefore,

$$
\left\langle S^{2} f, f\right\rangle=\langle S f, S f\rangle=\|S f\|^{2} \geq A^{2}\|f\|^{2}=A^{2}\langle f, f\rangle
$$

and then $A^{2}\|f\| \leq\left\|S^{2} f\right\|$ for all $f \in \mathcal{H}$. By Induction, we conclude that for each positve integer $m$,

$$
A^{m}\|f\| \leq\left\|S^{m} f\right\|, \quad f \in \mathcal{H}
$$

Since $\left\{S^{n} g\right\}_{n \geq 0, g \in \mathcal{G}}$ is a frame for $\mathcal{H}$, we get $\left\|S^{m} f\right\| \rightarrow 0$ as $m \rightarrow \infty$ for all $f \in \mathcal{H}$ by [[3], Theorem 7]. Then $A^{m} \rightarrow 0$ as $m \rightarrow \infty$, and this leads to get $A<1$.

Remark 2.8. Suppose that $\left\{f_{k}\right\}_{k=1}^{\infty}$ is a frame for $\mathcal{H}$ with lower bound $A$. Let $S$ be the frame operator for $\left\{f_{k}\right\}_{k=1}^{\infty}$ such that $V \subset \mathcal{H}$ is an invariant subspace under $S$. If there exists $\lambda \in[0,1)$ such that $\|S \varphi\| \leq \lambda\|\varphi\|$ for all $\varphi \in V$, then $\left\{S^{n} \varphi\right\}_{n=0}^{\infty}$ is a Bessel sequence for all $\varphi \in V$. Indeed, for all $f \in \mathcal{H}$ and $\varphi \in V$, we have that

$$
\sum_{n=0}^{\infty}\left|\left\langle f, S^{n} \varphi\right\rangle\right|^{2} \leq\|f\|^{2} \sum_{n=0}^{\infty}\left\|S^{n} \varphi\right\|^{2} \leq\|f\|^{2} \sum_{n=0}^{\infty} \lambda^{2 n}=\frac{\|f\|^{2}}{1-\lambda^{2}}
$$

It follows from [[3], Theorem 7] that for any unitary operator $T: \mathcal{H} \rightarrow \mathcal{H}$ and any set of vectors $G \subseteq \mathcal{H},\left\{T^{n} g\right\}_{g \in \mathcal{G}, n \geq 0}$ is not a frame.

Proposition 2.9. Let $\left\{e_{k}\right\}_{k=1}^{\infty}$ and $\left\{\delta_{k}\right\}_{k=1}^{\infty}$ denote two orthonormal bases for a Hilbert space $\mathcal{H}$, and consider the mixed frame operator

$$
T: \mathcal{H} \rightarrow \mathcal{H}, \quad T f=\sum_{k=1}^{\infty}\left\langle f, e_{k}\right\rangle \delta_{k} .
$$

Then $\left\{T^{n} \varphi\right\}_{n=0}^{\infty}$ cannot be a frame for $\mathcal{H}$ for any $\varphi \in \mathcal{H}$.
Proof. Since $T e_{j}=\delta_{j}$ for all $j \in \mathbb{N}$, the operator $T$ maps the orthonormal basis $\left\{e_{k}\right\}_{k=1}^{\infty}$ onto the orthonormal basis $\left\{\delta_{k}\right\}_{k=1}^{\infty}$. Therefore $T$ is unitary. By [[3], Corollary 2], we conclude that $\left\{T^{n} \varphi\right\}_{n=0}^{\infty}$ is not a frame for $\mathcal{H}$ for any $\varphi \in \mathcal{H}$.

By use of Theorem 1.2 we get some useful results related to iterative actions of a mixed frame operator:

Corollary 2.10. Suppose that $\left\{e_{k}\right\}_{k=1}^{\infty}$ and $\left\{\delta_{k}\right\}_{k=1}^{\infty}$ are orthonormal bases for $\mathcal{H}$. The following statements hold:
(i) Let $\left\{U e_{k}\right\}_{k=1}^{\infty}$ be a Riesz basis for $\mathcal{H}$ and $G f:=\sum_{k=1}^{\infty}\left\langle f, \delta_{k}\right\rangle U e_{k}$ for all $f \in \mathcal{H}$, where $U \in G L(\mathcal{H})$ is a bounded bijective operator. If $\left\{G^{n} \varphi\right\}_{n=0}^{\infty}$ is a frame for some $\varphi \in \mathcal{H}$, then $\|U\| \geq 1$.
(ii) Let $\left\{U e_{k}\right\}_{k=1}^{\infty}$ and $\left\{V \delta_{k}\right\}_{k=1}^{\infty}$ be two frames for $\mathcal{H}$ and

$$
G f:=\sum_{k=1}^{\infty}\left\langle f, V \delta_{k}\right\rangle U e_{k}
$$

for all $f \in \mathcal{H}$, where $U, V: \mathcal{H} \rightarrow \mathcal{H}$ are bounded surjective linear operators. If $\left\{G^{n} \varphi\right\}_{n=0}^{\infty}$ is a frame for $\mathcal{H}$, then $\|U\|\|V\| \geq 1$.

Proof. (i) We define the operator $T: \mathcal{H} \rightarrow \mathcal{H}$ by $T f=\sum\left\langle f, \delta_{k}\right\rangle e_{k}$. It is clear that $T$ is isometric, and $G f=U T f$ for all $f \in \mathcal{H}$. Therefore, $\|G\| \leq\|U\|$.

On the other hand, [[3], Theorem 9] shows that $\|G\| \geq 1$, which yields the result.
(ii) Let $T$ as in (i). Therefore $G=U T V^{*}$, and we get $\|G\| \leq\|U\|\|V\|$. Hence, $\|U\|\|V\| \geq 1$ by [[3], Theorem 9].

Corollary 2.11. Suppose that $\left\{e_{k}\right\}_{k=1}^{\infty}$ and $\left\{\delta_{k}\right\}_{k=1}^{\infty}$ are two orthonormal bases for a Hilbert space $\mathcal{H}$.
(i) Let $\left\{f_{k}\right\}_{k=1}^{\infty}$ be a Parseval frame for $\mathcal{H}$ and let $T$ be the mixed frame operator defined by $T f=\sum_{k=1}^{\infty}\left\langle f, f_{k}\right\rangle e_{k}$. If $\left\{T^{n} \varphi\right\}_{n=0}^{\infty}$ is a frame for $\mathcal{H}$ for some $\varphi \in \mathcal{H}$, then $T$ is not a surjective operator.
(ii) Let $\left\{U \delta_{k}\right\}_{k=1}^{\infty}$ be a frame for $\mathcal{H}$ and $T f=\sum_{k=1}^{\infty}\left\langle f, U \delta_{k}\right\rangle e_{k}$, where $U: \mathcal{H} \rightarrow \mathcal{H}$ is a bounded surjective linear operator. If $\left\{T^{n} \varphi\right\}_{n=0}^{\infty}$ is a frame for $\mathcal{H}$ for some $\varphi \in \mathcal{H}$, then $U^{*} U \neq I$, i.e., $U$ is not isometric.

Proof. (i) Since $\left\{f_{k}\right\}_{k=1}^{\infty}$ is a Parseval frame, we have

$$
\|T f\|^{2}=\sum_{k=1}^{\infty}\left|\left\langle f, f_{k}\right\rangle\right|^{2}=\|f\|^{2}
$$

for all $f \in \mathcal{H}$. Then $T^{*} T=I$. If we suppose that $T$ is surjective, then $T$ is unitary. Using [[3], Corollary 2], we conclude that $\left\{T^{n} \varphi\right\}_{n=0}^{\infty}$ is not a frame for $\mathcal{H}$. For part $(i i)$, if $U^{*} U=I$ and $U$ is surjective, then $U$ will be a unitary operator. Since $T U \delta_{k}=e_{k}$ for all $k \in \mathbb{N}$, we get $T U$ is unitary. Therefore $T$ is unitary, and then $\left\{T^{n} \varphi\right\}_{n=0}^{\infty}$ cannot be a frame for $\mathcal{H}$.

In the case of normal operators, we have the following result for infinite dimensional Hilbert spaces:

Lemma 2.12. Suppose that $T: \mathcal{H} \rightarrow \mathcal{H}$ is a normal operator and $\varphi \in \mathcal{H}$ such that $\left\{T^{n} \varphi\right\}_{n=0}^{\infty}$ is a frame for $\mathcal{H}$. Then $\|T\|=1$.

Proof. Using [[2], Theorem 5.7], we have $T=\sum_{j=0}^{\infty} \lambda_{j} P_{j}$, where each $P_{j}$ is a rank one orthogonal projection such that $\sum_{j} P_{j}=I, P_{j} P_{i}=0$ for all $j \neq i$, and $\left|\lambda_{j}\right|<1$ for all $j \in \mathbb{N}$. Since $\sum_{j} P_{j}=I$, we have that $\|f\|^{2}=\sum_{j}\left\|P_{j} f\right\|^{2}$ for all $f \in \mathcal{H}$. Therefore

$$
\|T f\|^{2}=\sum_{j}\left|\lambda_{j}\right|^{2}\left\|P_{j} f\right\|^{2} \leq \sum_{j}\left\|P_{j} f\right\|^{2}=\|f\|^{2}, \quad f \in \mathcal{H}
$$

Therefore $\|T\| \leq 1$. On the other hand, we have $\|T\| \geq 1$ by [[3], Theorem 9], which leads to the desired result.

Proposition 2.13. Let $T \in B(\mathcal{H})$ and $\varphi \in \mathcal{H}$ be such that $\left\{T^{n} \varphi\right\}_{n=0}^{\infty}$ is a frame for $\mathcal{H}$.
(i) There exists a countable set $\mathcal{G} \subset \mathcal{H}$ such that $\left\{V^{n} \psi\right\}_{\psi \in \mathcal{G}, n \geq 0}$ is a tight frame for $\mathcal{H}$, where $V=\|T\|^{-1} T$.
(ii) If $T$ is a normal operator, then there exists a countable set $\mathcal{G} \subset \mathcal{H}$ such that $\left\{\left(T T^{*}\right)^{n} \psi\right\}_{\psi \in \mathcal{G}, n \geq 0}$ is a tight frame for $\mathcal{H}$.

Proof. (i) By using of [[3], Theorems 7, 9], we have $\|T\| \geq 1$ and $\left(T^{*}\right)^{n} f \rightarrow$ 0 for all $f \in \mathcal{H}$ as $n \rightarrow \infty$. Since $\|V\|=1$ and $\left(V^{*}\right)^{n} f \rightarrow 0$ for all $f \in \mathcal{H}$ as $n \rightarrow \infty$, the result follows from [[3], Theorem 8].

In order to prove (ii), since $\left\{T^{n} \varphi\right\}_{n=0}^{\infty}$ is a frame and $T$ is normal, Lemma 2.12 leads us to get $\|T\|=1$, and then $\left\|T T^{*}\right\|=1$. On the other hand, we have $\left\|\left(T T^{*}\right)^{n} f\right\|=\left\|T^{n}\left(T^{*}\right)^{n} f\right\| \leq\|T\|^{n}\left\|\left(T^{*}\right)^{n} f\right\|=\left\|\left(T^{*}\right)^{n} f\right\| \rightarrow 0$, for all $f \in \mathcal{H}$ as $n \rightarrow \infty$. Therefore, the result follows from [[3], Theorem 8].

Remark 2.14. Consider a linearly independent frame sequence $\left\{f_{k}\right\}_{k \in \mathbb{Z}}$ in a Hilbert space $\mathcal{H}$ which spans an infinite dimensional subspace. By using [[7], Proposition 2.1] and [[8], Proposition 2.3], there exists a linear invertible operator $T: \operatorname{span}\left\{f_{k}\right\}_{k \in \mathbb{Z}} \rightarrow \operatorname{span}\left\{f_{k}\right\}_{k \in \mathbb{Z}}$ such that $T f_{k}=f_{k+1}$. However, if $\left\{f_{k}\right\}_{k \in \mathbb{Z}}$ is a frame sequence and the operator $T$ is bounded, it has a unique extension to a bounded operator $\widetilde{T}: \overline{\operatorname{span}}\left\{f_{k}\right\}_{k \in \mathbb{Z}} \rightarrow \overline{\operatorname{span}}\left\{f_{k}\right\}_{k \in \mathbb{Z}}$ such that

$$
\widetilde{T}\left(\sum_{k \in \mathbb{Z}} c_{k} f_{k}\right)=\sum_{k \in \mathbb{Z}} c_{k} f_{k+1}, \quad\left\{c_{k}\right\}_{k \in \mathbb{Z}} \in \ell^{2}(\mathbb{Z})
$$

By using previous remark and operator representation of dual frames, we can construct a frame in terms of its frame operator:

Proposition 2.15. Let $\left\{f_{k}\right\}_{k \in \mathbb{Z}}=\left\{T^{k} f_{0}\right\}_{k \in \mathbb{Z}}$ be a frame for $\mathcal{H}$ for some bounded, invertible and self-adjoint operator $T: \mathcal{H} \rightarrow \mathcal{H}$ with the frame operator $S$. Assume that $V \in B(\mathcal{H})$ and $\left\{V^{k} f_{m}\right\}_{k \in \mathbb{Z}}$ is a dual frame of $\left\{f_{k}\right\}_{k \in \mathbb{Z}}$ for some $m \in \mathbb{Z}$. Then $\left\{S^{k} f_{0}\right\}_{k \in \mathbb{Z}}$ is a frame for $\mathcal{H}$, whenever $T$ is an isometry.

Proof. We let $V^{k} f_{m}=g_{k}$ for all $k \in \mathbb{Z}$. It is clear that $T f_{k}=f_{k+1}=$ $T^{k+1} f_{0}$ for all $k \in \mathbb{Z}$ and $T f=\sum_{k \in \mathbb{Z}}\left\langle f, g_{k}\right\rangle f_{k+1}$ for all $f \in \mathcal{H}$. On the other hand, by [[7], Lemma 3.3], $V=\left(T^{*}\right)^{-1}$. Since $T$ is self-adjoint, we have $T f=\sum_{k \in \mathbb{Z}}\left\langle f, T^{-k} f_{m}\right\rangle T^{k+1} f_{0}$, for all $f \in \mathcal{H}$. If $T$ is an isometry, i.e., $T^{*} T=I$, then $T=T^{-1}$, and therefore we get

$$
T f=\sum_{k \in \mathbb{Z}}\left\langle f, T^{k+m} f_{0}\right\rangle T^{k+1} f_{0}=T^{m+1} \sum_{k \in \mathbb{Z}}\left\langle f, T^{k} f_{0}\right\rangle T^{k} f_{0}=T^{m+1} S f
$$

for all $f \in \mathcal{H}$. Hence, $T^{m}=S$, and we infer that $\left\{S^{k} f_{0}\right\}_{k \in \mathbb{Z}}$ is a frame for $\mathcal{H}$.

It can be an interesting question whether the converse of Proposition 2.15 holds. We know that if $\left\{S^{k} f_{0}\right\}_{k \in \mathbb{Z}}$ is a tight frame for $\mathcal{H}$, [[7], Corollary 2.7] shows that the frame operator $S$ is an isometry. It is still an open question whether $T$ is an isometry or not.

Suppose that $T$ is a bounded bijective operator on $\mathcal{H}$, and $f_{0} \in \mathcal{H}$ such that $\left\{T^{n} f_{0}\right\}_{n \in \mathbb{Z}}$ is a frame for $\mathcal{H}$. We get that $T S T^{*}=S$, where $S$ is the frame operator for $\left\{T^{n} f_{0}\right\}_{n \in \mathbb{Z}}$. Indeed,

$$
T S T^{*} f=\sum_{n \in \mathbb{Z}}\left\langle T^{*} f, T^{n} f_{0}\right\rangle T^{n+1} f_{0}=\sum_{n \in \mathbb{Z}}\left\langle f, T^{n+1} f_{0}\right\rangle T^{n+1} f_{0}=S f
$$

In particular, $T$ is similar to a unitary operator.
Proposition 2.16. Let $T \in G L(\mathcal{H})$ and $\varphi \in \mathcal{H}$ such that $\left\{T^{n} \varphi\right\}_{n \in \mathbb{Z}}$ is a frame for $\mathcal{H}$ with frame bounds $A, B$ and frame operator $S$. Let $U:=$ $S^{-1 / 2} T S^{1 / 2}$ and $\psi=S^{-1 / 2} \varphi$. Then $\left\{U^{n} \psi\right\}_{n \in \mathbb{Z}}$ is a frame for $\mathcal{H}$ with bounds $A B^{-1}$ and $B A^{-1}$.

Proof. It is clear that $T S T^{*}=S$ and $U$ is unitary (see [[9], Lemma 4.4]). Since $U^{n}=S^{-1 / 2} T^{n} S^{1 / 2}$ for all $n \in \mathbb{Z}$, we have $\sum_{n \in \mathbb{Z}}\left|\left\langle f, U^{n} \psi\right\rangle\right|^{2}=$ $\sum_{n \in \mathbb{Z}}\left|\left\langle S^{-1 / 2} f, T^{n} \varphi\right\rangle\right|^{2}$. Then

$$
\frac{A}{B}\|f\|^{2} \leq A\left\|S^{-1 / 2} f\right\|^{2} \leq \sum_{n \in \mathbb{Z}}\left|\left\langle f, U^{n} \psi\right\rangle\right|^{2} \leq B\left\|S^{-1 / 2} f\right\|^{2} \leq \frac{B}{A}\|f\|^{2}, \quad f \in \mathcal{H}
$$

As a minor modification in [[9], Corollary 4.5], we also obtain the following result:

Proposition 2.17. Let $T \in G L(\mathcal{H})$ and $\varphi \in \mathcal{H}$ such that $\left\{T^{n} \varphi\right\}_{n \in \mathbb{Z}}$ is a frame for $\mathcal{H}$ with frame bounds $A, B$. Then
$\sqrt{\frac{A}{B}}\|f\| \leq\left\|T^{n} f\right\| \leq \sqrt{\frac{B}{A}}\|f\|, \sqrt{\frac{A}{B}}\|f\| \leq\left\|\left(T^{*}\right)^{n} f\right\| \leq \sqrt{\frac{B}{A}}\|f\|, n \in \mathbb{Z}, f \in \mathcal{H}$.
In particular, if $\left\{T^{n} \varphi\right\}_{n \in \mathbb{Z}}$ is a tight frame, then $T^{n}$ and $\left(T^{*}\right)^{n}$ are isometric for all $n \in \mathbb{Z}$.

Proof. Let $S$ denote the frame operator of $\left\{T^{n} \varphi\right\}_{n \in \mathbb{Z}}$ and let

$$
U:=S^{-1 / 2} T S^{1 / 2}
$$

Since $T$ is invertible, we infer that $U$ is unitary. Hence, for $f \in \mathcal{H}$ and $n \in \mathbb{Z}$ we have

$$
\frac{1}{\sqrt{B}}\|f\| \leq\left\|U^{n} S^{-1 / 2} f\right\| \leq \frac{1}{\sqrt{A}}\|f\|
$$

Therefore

$$
\sqrt{\frac{A}{B}}\|f\| \leq\left\|S^{1 / 2} U^{n} S^{-1 / 2} f\right\|=\left\|T^{n} f\right\|=\left\|S^{1 / 2} U^{n} S^{-1 / 2} f\right\| \leq \sqrt{\frac{B}{A}}\|f\|
$$

A similar calculation applies to $\left\|\left(T^{*}\right)^{n} f\right\|$.

Let $T \in G L(\mathcal{H})$. Similarly as in [9], we define the set

$$
\mathcal{V}_{\mathbb{Z}}(T):=\left\{f \in \mathcal{H}:\left\{T^{n} f\right\}_{n \in \mathbb{Z}} \text { is a frame for } \mathcal{H}\right\} .
$$

Proposition 4.11 of [9] shows that from one vector $\varphi \in \mathcal{V}_{\mathbb{Z}}(T)$ (if it exists) we obtain all vectors in $\mathcal{V}_{\mathbb{Z}}(T)$. Indeed,

$$
\mathcal{V}_{\mathbb{Z}}(T)=\{V \varphi: V \in G L(\mathcal{H}) \text { and } V T=T V\}
$$

Proposition 2.18. Assume that $T \in G L(\underset{\mathcal{H}}{ }), \varphi \in \mathcal{V}_{\mathbb{Z}}(T)$ and $V$ is a unitary operator such that $V T=T V$. Let $S$ and $\widetilde{S}$ be the frame operators for $\left\{T^{n} \varphi\right\}_{n \in \mathbb{Z}}$ and $\left\{T^{n} V \varphi\right\}_{n \in \mathbb{Z}}$, respectively. Then $\left\{(\widetilde{S})^{n} f\right\}_{n \in \mathbb{Z}}$ is a frame for $\mathcal{H}$ if and only if $\left\{S^{n} V^{*} f\right\}$ is a frame for $\mathcal{H}$. In other words, $f \in \mathcal{V}_{\mathbb{Z}}(\widetilde{S})$ if and only if $V^{*} f \in \mathcal{V}_{\mathbb{Z}}(S)$.

Proof. For each $f \in \mathcal{H}$, we have

$$
\begin{array}{r}
\widetilde{S} f=\sum_{n \in \mathbb{Z}}\left\langle f, T^{n} V \varphi\right\rangle T^{n} V \varphi=\sum_{n \in \mathbb{Z}}\left\langle f, V T^{n} \varphi\right\rangle V T^{n} \varphi \\
=V \sum_{n \in \mathbb{Z}}\left\langle V^{*} f, T^{n} \varphi\right\rangle T^{n} \varphi=V S V^{*} f
\end{array}
$$

As $V$ is unitary, we get $(\widetilde{S})^{n}=V S^{n} V^{*}$ and $V^{*}(\widetilde{S})^{n}=S^{n} V^{*}$ which immediately yields the desired conclusion.

## 3. FRAME REPRESENTATION OF THE FORM $\left\{A_{N} T^{N} \varphi\right\}_{N=0}^{\infty}$

In this section, we generalize some results in the recent papers $[8,10]$ which have been proved by Christensen et al. We consider frames of the form $\left\{f_{k}\right\}_{k=1}^{\infty}=\left\{a_{n} T^{n} f_{1}\right\}_{n=0}^{\infty}$ for some scalars $a_{n} \neq 0$ with $\sup _{n}\left|\frac{a_{n}}{a_{n+1}}\right|<\infty$ and a bounded linear operator $T: \operatorname{span}\left\{f_{k}\right\}_{k=1}^{\infty} \rightarrow \mathcal{H}$. Using [10], we define $\mathcal{T}_{\omega}$ : $\ell^{2}\left(\mathbb{N}_{0}\right) \rightarrow \ell^{2}\left(\mathbb{N}_{0}\right)$ by $\mathcal{T}_{\omega}\left\{c_{i}\right\}_{i=0}^{\infty}=\left(0, \frac{a_{0}}{a_{1}} c_{0}, \frac{a_{1}}{a_{2}} c_{1}, \cdots\right)$. The following theorem was proved in [10]:

THEOREM 3.1. Let $\left\{a_{n}\right\}_{n=0}^{\infty}$ be a sequence of non-zero scalars with $\sup _{n}\left|\frac{a_{n}}{a_{n+1}}\right|<\infty$, and let $\left\{f_{k}\right\}_{k=1}^{\infty}=\left\{a_{n} T^{n} f_{1}\right\}_{n=0}^{\infty}$ be a linearly independent frame for an infinite-dimensional Hilbert space $\mathcal{H}$, where $T: \operatorname{span}\left\{f_{k}\right\}_{k=1}^{\infty} \rightarrow \mathcal{H}$ is a linear operator. Then $T$ is bounded if and only if $\mathcal{N}_{U}$ is invariant under $\mathcal{T}_{\omega}$.

The condition $\sup _{n}\left|\frac{a_{n}}{a_{n+1}}\right|<\infty$ is indeed necessary for frames of the form $\left\{a_{n} T^{n} \varphi\right\}_{n=0}^{\infty}$ when $T \in B(\mathcal{H})$.

Proposition 3.2. Assume that $T \in B(\mathcal{H})$ such that $\left\{a_{n} T^{n} \varphi\right\}_{n=0}^{\infty}$ is a frame for some $\varphi \in \mathcal{H}$ and some non-zero scalars $\left\{a_{n}\right\}_{n=0}^{\infty}$. Then

$$
\sup _{n}\left|\frac{a_{n}}{a_{n+1}}\right|<\infty
$$

Proof. Let $A$ and $B$ be frames bounds of $\left\{f_{k}\right\}_{k=1}^{\infty}=\left\{a_{n} T^{n} \varphi\right\}_{n=0}^{\infty}$. Using that $\sqrt{A} \leq\left\|f_{k}\right\| \leq \sqrt{B}$ for all $k \in \mathbb{N}$, we get

$$
\left\|f_{k}\right\|\|T\| \geq\left\|T f_{k}\right\|=\left\|\frac{a_{k-1}}{a_{k}} f_{k+1}\right\| \geq\left|\frac{a_{k-1}}{a_{k}}\right| \sqrt{A} \geq\left|\frac{a_{k-1}}{a_{k}}\right| \sqrt{\frac{A}{B}}\left\|f_{k}\right\|
$$

Then $\sup _{n}\left|\frac{a_{n}}{a_{n+1}}\right| \leq \sqrt{\frac{B}{A}}\|T\|$ as desired.
If $T: \mathcal{H} \rightarrow \mathcal{H}$ is a linear operator and $\left\{f_{k}\right\}_{k=1}^{\infty}=\left\{a_{n} T^{n} \varphi\right\}_{n=0}^{\infty}$ is a frame (with frame bounds $A$ and $B$ ) for some $\varphi \in \mathcal{H}$ and some non-zero scalars $\left\{a_{n}\right\}_{n=0}^{\infty}$ with $\sup _{n}\left|\frac{a_{n}}{a_{n+1}}\right|<\infty$, then we have

$$
\left\|T f_{k}\right\|=\left\|\frac{a_{k-1}}{a_{k}} f_{k+1}\right\| \leq\left|\frac{a_{k-1}}{a_{k}}\right| \sqrt{B} \leq \sqrt{\frac{B}{A}}\left\|f_{k}\right\|, \quad k \in \mathbb{N} .
$$

In this case $T$ may be unbouded (see Proposition 3.5). Using [[8], Proposition 2.5], we can obtain the following result for a frame in the form $\left\{a_{n} T^{n} \varphi\right\}_{n=0}^{\infty}$.

Proposition 3.3. Assume that $T \in B(\mathcal{H})$ such that $\left\{a_{n} T^{n} \varphi\right\}_{n=0}^{\infty}$ is a frame for some $\varphi \in \mathcal{H}$ and some non-zero scalars $\left\{a_{n}\right\}_{n=0}^{\infty}$. Then $T$ has closed range and $\mathcal{R}_{T}=\overline{\operatorname{span}}\left\{a_{n} T^{n+1} \varphi\right\}_{n=0}^{\infty}$.

Proof. Using [[4], Theorem 5.5.1], the synthesis operator

$$
U: \ell^{2}\left(\mathbb{N}_{0}\right) \rightarrow \mathcal{H}, \quad U\left(c_{0}, c_{1}, c_{2}, \ldots\right)=\sum_{i=0}^{\infty} c_{i} a_{i} T^{i} \varphi
$$

is surjective. Letting $x \in \mathcal{H}$ there exists $\left(c_{0}, c_{1}, c_{2}, \ldots\right) \in \ell^{2}\left(\mathbb{N}_{0}\right)$ such that $x=\sum_{i=0}^{\infty} c_{i} a_{i} T^{i} \varphi$. Therefore

$$
T x=\sum_{i=0}^{\infty} c_{i} a_{i} T^{i+1} \varphi \in \overline{\operatorname{span}}\left\{a_{i} T^{i+1} \varphi\right\}_{i=0}^{\infty}
$$

Therefore $\mathcal{R}_{T} \subseteq \mathcal{K}:=\overline{\operatorname{span}\left\{a_{i} T^{i+1} \varphi\right\}_{i=0}^{\infty} \text {. On the other hand, }\left\{a_{i} T^{i+1} \varphi\right\}_{i=0}^{\infty} \text { is a }}$ frame for $\mathcal{K}$, and then its synthesis operator is surjective. Letting $x \in \mathcal{K}$, there is $\left(c_{0}, c_{1}, c_{2}, \ldots\right) \in \ell^{2}\left(\mathbb{N}_{0}\right)$ such that $x=\sum_{i=0}^{\infty} c_{i} a_{i} T^{i+1} \varphi=T \sum_{i=0}^{\infty} c_{i} a_{i} T^{i} \varphi \in$ $\mathcal{R}_{T}$. Therefore $\mathcal{R}_{T}=\overline{\operatorname{span}}\left\{a_{n} T^{n+1} \varphi\right\}_{n=0}^{\infty}$, i.e., $T$ has closed range.

The following proposition generalize a result in $[5,6]$, where we characterize the availability of the representation $\left\{f_{k}\right\}_{k=1}^{\infty}=\left\{a_{n} T^{n} f_{1}\right\}_{n=0}^{\infty}$.

Proposition 3.4. Let $\left\{f_{k}\right\}_{k=1}^{\infty}$ and $\left\{g_{k}\right\}_{k=1}^{\infty}$ be sequences in $\mathcal{H}$ such that each $f \in \mathcal{H}$ has the convergent expansion

$$
\begin{equation*}
f=\sum_{k=1}^{\infty}\left\langle f, g_{k}\right\rangle f_{k} \tag{3.1}
\end{equation*}
$$

Suppose that $\left\{a_{n}\right\}_{n=0}^{\infty}$ is a sequence of non-zero scalars such that for any $f \in \mathcal{H}$ the series $\sum_{k=1}^{\infty}\left\langle f, g_{k}\right\rangle \frac{a_{k-1}}{a_{k}} f_{k+1}$ converges. Then $\left\{f_{k}\right\}_{k=1}^{\infty}=\left\{a_{n} T^{n} f_{1}\right\}_{n=0}^{\infty}$ for some $T \in B(\mathcal{H})$ if and only if

$$
\begin{equation*}
f_{j+1}=\frac{a_{j}}{a_{j-1}} \sum_{k=1}^{\infty}\left\langle f_{j}, g_{k}\right\rangle \frac{a_{k-1}}{a_{k}} f_{k+1}, \quad j \in \mathbb{N} \tag{3.2}
\end{equation*}
$$

Proof. Assume that $\left\{f_{k}\right\}_{k=1}^{\infty}$ can be represented as $\left\{a_{n} T^{n} f_{1}\right\}_{n=0}^{\infty}$ for some $T \in B(\mathcal{H})$. Then $T f_{k}=\frac{a_{k-1}}{a_{k}} f_{k+1}$ for all $k \in \mathbb{N}$. By applying $T$ on (3.1), we get

$$
T f=\sum_{k=1}^{\infty}\left\langle f, g_{k}\right\rangle T f_{k}=\sum_{k=1}^{\infty}\left\langle f, g_{k}\right\rangle \frac{a_{k-1}}{a_{k}} f_{k+1}, \quad f \in \mathcal{H}
$$

Letting $f=\stackrel{k=1}{f_{j}}$ in the above expression, it follows that $\frac{a_{j-1}}{a_{j}} f_{j+1}=$ $\sum_{k=1}^{\infty}\left\langle f_{j}, g_{k}\right\rangle \frac{a_{k-1}}{a_{k}} f_{k+1}$, and we get (3.2).

For the opposite implication, suppose that (3.2) holds. Define the linear operator

$$
T: \mathcal{H} \rightarrow \mathcal{H}, \quad T f=\sum_{k=1}^{\infty}\left\langle f, g_{k}\right\rangle \frac{a_{k-1}}{a_{k}} f_{k+1}, \quad f \in \mathcal{H} .
$$

By uniform boundedness principle, $T$ is bounded. Then by (3.2) we conclude that $T f_{j}=\sum_{k=1}^{\infty}\left\langle f_{j}, g_{k}\right\rangle \frac{a_{k-1}}{a_{k}} f_{k+1}=\frac{a_{j-1}}{a_{j}} f_{j+1}$ for all $j \in \mathbb{N}$. Therefore $\left\{f_{k}\right\}_{k=1}^{\infty}=\left\{a_{n} T^{n} f_{1}\right\}_{n=0}^{\infty}$.

Motivated by Proposition 2.6 in [8] and with a small change in its proof, we can obtain the following result which generalizes it.

Proposition 3.5. Assume that the frame $\left\{f_{k}\right\}_{k=1}^{\infty}$ is linearly independent, contains a Riesz basis and has finite and strictly positive excess. Let $T: \mathcal{H} \rightarrow \mathcal{H}$ be a linear operator such that $\left\{f_{k}\right\}_{k=1}^{\infty}=\left\{a_{n} T^{n} f_{1}\right\}_{n=0}^{\infty}$ for some non-zero scalars $\left\{a_{n}\right\}_{n=0}^{\infty}$ with $\sup _{n}\left|\frac{a_{n}}{a_{n+1}}\right|<\infty$ and $\inf _{n}\left|\frac{a_{n}}{a_{n+1}}\right|>0$. Then $T$ is unbounded.

Proof. Let $\delta:=\inf _{n}\left|\frac{a_{n}}{a_{n+1}}\right|$ and $\gamma:=\sup _{n}\left|\frac{a_{n}}{a_{n+1}}\right|$. By assumption there exists $m \in \mathbb{N}$ such that $\left\{f_{k}\right\}_{k=m+1}^{\infty}$ is a Riesz basis for $\mathcal{K}:=\overline{\operatorname{span}}\left\{f_{k}\right\}_{k=m+1}^{\infty}$ and $\left\{f_{k}\right\}_{k=m}^{\infty}$ is an overcomplete frame for $\mathcal{K}$. Since $0<\delta \leq \gamma<\infty$, we infer that $\left\{\frac{a_{k-1}}{a_{k}} f_{k+1}\right\}_{k=m}^{\infty}$ is a Riesz basis for $\mathcal{K}$, and we denote its lower Riesz basis bound by $A$. For each $n \in \mathbb{N}$, let $A_{n}$ denote the optimal lower Riesz basis bound for the finite sequence $\left\{f_{k}\right\}_{k=m}^{m+n-1}$. Since $\left\{f_{k}\right\}_{k=m}^{\infty}$ is a linearly independentan and overcomplete frame, it follows $A_{n} \rightarrow 0$ as $n \rightarrow \infty$ by Proposition 7.2.1 in [4]. Let $n \in \mathbb{N}$, then there exists a non-zero sequence $\left\{c_{k}\right\}_{k=m}^{m+n-1}$ such that

$$
\left\|\sum_{k=m}^{m+n-1} c_{k} f_{k}\right\|^{2} \leq\left(A_{n}+\frac{1}{n}\right) \sum_{k=m}^{m+n-1}\left|c_{k}\right|^{2} .
$$

Then

$$
\begin{aligned}
\left\|T \sum_{k=m}^{m+n-1} c_{k} f_{k}\right\|^{2} & =\left\|\sum_{k=m}^{m+n-1} c_{k} \frac{a_{k-1}}{a_{k}} f_{k+1}\right\|^{2} \\
& \geq A \sum_{k=m}^{m+n-1}\left|c_{k}\right|^{2} \\
& \geq \frac{A}{A_{n}+\frac{1}{n}}\left\|\sum_{k=m}^{m+n-1} c_{k} f_{k}\right\|^{2}
\end{aligned}
$$

If $T$ is bounded, then it follows from the above inequlity that $\|T\| \geq \frac{A}{A_{n}+\frac{1}{n}}$. Since $\frac{A}{A_{n}+\frac{1}{n}} \rightarrow \infty$ as $n \rightarrow \infty$, we obtain a contradiction.

## 4. SOME AUXILIARY RESULTS: PERTURBATION OF A FRAME $\left\{T^{N} \varphi\right\}_{N=0}^{\infty}$

Motivated by some results about perturbations of frames of the form $\left\{T^{n} \varphi\right\}_{n=0}^{\infty}$ in [5], we give some results by restricting ourself to perturb a frame
$\left\{T^{n} \varphi\right\}_{n=0}^{\infty}$ with elements from a subspace on which $T$ acts as a contraction. We also state some stability results obtained by considering perturbations of operators belonging to an invariant subspace.

Proposition 4.1. Assume that $\left\{T^{n} \varphi\right\}_{n=0}^{\infty}$ is a Riesz sequence for some $T \in B(\mathcal{H})$ and some $\varphi \in \mathcal{H}$, and let $A$ denote a lower Riesz bound. Suppose that $V \subset \mathcal{H}$ is invariant under $T$ and that there exists $\mu \in[0,1)$ such that $\|T \psi\| \leq \mu\|\psi\|$. Then $\left\{T^{n}(\varphi+\psi)\right\}_{n=0}^{\infty}$ is a Riesz sequence for all $\psi \in V$ for which $\|\psi\|<(1-\mu) \sqrt{A}$.

Proof. It is clear that $\sum_{n=0}^{\infty}\left\|T^{n} \psi\right\|^{2}<\infty$ for all $\psi \in V$. By [[11], Theorem 2.14] it is sufficient to show that $\sum_{n=0}^{\infty}\left\|T^{n}(\varphi+\psi)-T^{n} \varphi\right\|\left\|S^{-1} T^{n} \varphi\right\|<1$, where $S$ is frame operator for $\left\{T^{n} \varphi\right\}_{n=0}^{\infty}$. Since $\left\|S^{-1} T^{n} \varphi\right\| \leq 1 / \sqrt{A}$, we have

$$
\sum_{n=0}^{\infty}\left\|T^{n}(\varphi+\psi)-T^{n} \varphi\right\|\left\|S^{-1} T^{n} \varphi\right\| \leq \frac{\|\psi\|}{\sqrt{A}} \sum_{n=0}^{\infty} \mu^{n}=\frac{\|\psi\|}{(1-\mu) \sqrt{A}}<1
$$

as desired.

A similar approach as in the proof of Proposition 3.3 in [5] yields the following result.

Proposition 4.2. Let $\left\{a_{n}\right\}_{n=0}^{\infty}$ be a bounded sequence of scalars. Assume that $\left\{a_{n} T^{n} \varphi\right\}_{n=0}^{\infty}$ is a frame for some bounded linear operator $T: \mathcal{H} \rightarrow \mathcal{H}$ and some $\varphi \in \mathcal{H}$, and let $A$ denote a lower frame bound. Suppose that $V \subset \mathcal{H}$ is invariant under $T$ and that there exists $\mu \in[0,1)$ such that $\|T \psi\| \leq \mu\|\psi\|$. Then the following hold:
(i) $\left\{a_{n} T^{n}(\varphi+\psi)\right\}_{n=0}^{\infty}$ is a frame sequence for all $\psi \in V$.
(ii) $\left\{a_{n} T^{n}(\varphi+\psi)\right\}_{n=0}^{\infty}$ is a frame for all $\psi \in V$ for which $\sup _{n}\left\|a_{n} \psi\right\|<$ $\sqrt{A\left(1-\mu^{2}\right)}$.

We now provide a perturbation result which can be used to construct a frame with representation $\left\{a_{n} T^{n} \varphi\right\}_{n=0}^{\infty}$.

Proposition 4.3. Let $T \in B(\mathcal{H})$ and $\varphi, \psi \in \mathcal{H}$. Assume that $\left\{a_{n}\right\}_{n=0}^{\infty}$ is sequence of non-zero scalars such that $\left\{a_{n} T^{n} \varphi\right\}_{n=0}^{\infty}$ is a frame for $\mathcal{H}$ with lower bound $A$ and $\left\{a_{n+1} T^{n} \psi\right\}_{n=0}^{\infty}$ is a Bessel sequence for $\mathcal{H}$ with Bessel bound $B$. If $\sup _{n}\left|\frac{a_{n}}{a_{n+1}}\right|<\sqrt{\frac{A}{B}}$, then $\left\{a_{n} T^{n}(\varphi+\psi)\right\}_{n=0}^{\infty}$ is a frame for $\mathcal{H}$.

Proof. Let $\left\{c_{n}\right\}_{n=0}^{\infty} \in \ell^{2}\left(\mathbb{N}_{0}\right)$ and $\alpha:=\sup _{n}\left|\frac{a_{n}}{a_{n+1}}\right|$. By assumption, we have

$$
\begin{aligned}
\left\|\sum_{n=0}^{\infty} c_{n}\left(a_{n} T^{n} \varphi-a_{n} T^{n}(\varphi+\psi)\right)\right\|^{2} & =\left\|\sum_{n=0}^{\infty} c_{n} a_{n} T^{n} \psi\right\|^{2} \\
& =\sup _{\|f\|=1}\left|\left\langle\sum_{n=0}^{\infty} c_{n} a_{n} T^{n} \psi, f\right\rangle\right|^{2} \\
& =\sup _{\|f\|=1}\left|\sum_{n=0}^{\infty} c_{n} \frac{a_{n}}{a_{n+1}}\left\langle a_{n+1} T^{n} \psi, f\right\rangle\right|^{2} \\
& \leq \sum_{n=0}^{\infty}\left|c_{n} \frac{a_{n}}{a_{n+1}}\right|^{2} \sup _{\|f\|=1} \sum_{n=0}^{\infty}\left|\left\langle a_{n+1} T^{n} \psi, f\right\rangle\right|^{2} \\
& \leq \alpha^{2} B \sum_{n=0}^{\infty}\left|c_{n}\right|^{2}
\end{aligned}
$$

Hence, [[4], Theorem 22.1.1] implies that the desired result.
Here $\mathcal{B}$ denotes the set of bounded linear operators $T: \mathcal{H} \rightarrow \mathcal{H}$ for which there exist $\lambda_{T} \in[0,1)$ and an invariant subspace $V_{T} \subset \mathcal{H}$ under $T$ such that $\|T \varphi\| \leq \lambda_{T}\|\varphi\|$ for all $\varphi \in V_{T}$. In the following proposition $I$ is a countable index set and $\left\{g_{j}\right\}_{j \in I}$ is a sequence in $\mathcal{H}$.

Proposition 4.4. Suppose that $T, W \in \mathcal{B}$ and $\left\{g_{j}\right\}_{j \in I} \subseteq V_{W} \cap V_{T}$. Let $\left\{W^{n} g_{j}\right\}_{n \geq 0, j \in I}$ be a Riesz sequence with frame operator $S$, and $\left\{T^{n} g_{j}\right\}_{n \geq 0, j \in I}$ be a Bessel sequence for $\mathcal{H}$. Assume that $\sum_{j \in I}\left\|g_{j}\right\|^{2}<\frac{1-\lambda^{2}}{2\left\|S^{-1}\right\|}$, where $\lambda:=$ $\max \left\{\lambda_{W}, \lambda_{T}\right\}$. Then $\left\{T^{n} g_{j}\right\}_{n \geq 0, j \in I}$ is a Riesz sequence.

Proof. By assumptions, we have

$$
\left\|W g_{j}\right\| \leq \lambda\left\|g_{j}\right\|, \quad\left\|T g_{j}\right\| \leq \lambda\left\|g_{j}\right\|, \quad j \in I
$$

Then

$$
\begin{aligned}
\sum_{j \in I} \sum_{n=0}^{\infty}\left\|W^{n} g_{j}-T^{n} g_{j}\right\|\left\|S^{-1} W^{n} g_{j}\right\| & \leq \sum_{j \in I} \sum_{n=0}^{\infty}\left\|W^{n} g_{j}-T^{n} g_{j}\right\|\left\|S^{-1}\right\|\left\|W^{n} g_{j}\right\| \\
& \leq \sum_{j \in I} \sum_{n=0}^{\infty}\left(\left\|W^{n} g_{j}\right\|+\left\|T^{n} g_{j}\right\|\right)\left\|S^{-1}\right\|\left\|W^{n} g_{j}\right\| \\
& \leq 2\left\|S^{-1}\right\| \sum_{j \in I} \sum_{n=0}^{\infty} \lambda^{2 n}\left\|g_{j}\right\|^{2}
\end{aligned}
$$

$$
=\frac{2\left\|S^{-1}\right\|}{1-\lambda^{2}} \sum_{j \in I}\left\|g_{j}\right\|^{2}<1 .
$$

Therefore, [[11], Theorem 2.14] leads to the desired result.
Proposition 4.5. Let $T, W \in \mathcal{B}$ and $\varphi \in V_{T} \cap V_{W}$. Suppose that $\left\{T^{n} \varphi\right\}_{n=0}^{\infty}$ is a frame for $\mathcal{H}$ with lower frame bound $A$ and $\left\{W^{n} \varphi\right\}_{n=0}^{\infty}$ is a Bessel sequence for $\mathcal{H}$. Let $2\|\varphi\|<\sqrt{A\left(1-\lambda^{2}\right.}$, where $\lambda:=\max \left\{\lambda_{T}, \lambda_{W}\right\}$. Then $\left\{W^{n} \varphi\right\}_{n=0}^{\infty}$ is a frame for $\mathcal{H}$.

In the case where $\left\{T^{n} \varphi\right\}_{n=0}^{\infty}$ is a Riesz sequence with lower bound $A$, then $\left\{T^{n} \varphi+W^{n} \varphi\right\}_{n=0}^{\infty}$ is a Riesz sequence, whenever $\|\varphi\|<\sqrt{A\left(1-\lambda^{2}\right)}$.

Proof. By assumptions, we have

$$
\begin{aligned}
\sum_{n=0}^{\infty}\left\|T^{n} \varphi-W^{n} \varphi\right\|^{2} \leq & 2\left(\sum_{n=0}^{\infty}\left\|T^{n} \varphi\right\|^{2}+\sum_{n=0}^{\infty}\left\|W^{n} \varphi\right\|^{2}\right) \\
& \leq 4\|\varphi\|^{2} \sum_{n=0}^{\infty} \lambda^{2 n}=\frac{4\|\varphi\|^{2}}{1-\lambda^{2}}<A
\end{aligned}
$$

We conclude by [[4], Corollary 22.1.5] that $\left\{W^{n} \varphi\right\}_{n=0}^{\infty}$ is a frame for $\mathcal{H}$. If $\left\{T^{n} \varphi\right\}_{n=0}^{\infty}$ be a Riesz sequence, then

$$
\begin{aligned}
\left\|\sum_{n=0}^{\infty} c_{n}\left(T^{n} \varphi-\left(T^{n} \varphi+W^{n} \varphi\right)\right)\right\|^{2} & =\left\|\sum_{n=0}^{\infty} c_{n} W^{n} \varphi\right\|^{2} \\
& \leq \sum_{n=0}^{\infty}\left|c_{n}\right|^{2} \sum_{n=0}^{\infty}\left\|W^{n} \varphi\right\|^{2} \\
& \leq \frac{\|\varphi\|^{2}}{1-\lambda^{2}} \sum_{n=0}^{\infty}\left|c_{n}\right|^{2}
\end{aligned}
$$

Therefore, the result follows from [[4], Theorem 22.3.2].

Acknowledgments. The authors would like to thank the anonymous reviewers whose comments helped us improve the presentation of the paper.

## REFERENCES

[1] A. Aldroubi, C. Cabrelli, U. Molter, and S. Tang, Dynamical sampling. Appl. Comput. Harmon. Anal. 42 (2017), 378-401.
[2] A. Aldroubi, C. Cabrelli, A. F. Cakmak, U. Molter, and A. Petrosyan, Iterative actions of normal operators. J. Funct. Anal. 272 (2017), 1121-1146.
[3] A. Aldroubi and A. Petrosyan, Dynamical sampling and systems from iterative actions of operators. In: Frames and other bases in abstract and function spaces, pp. 15-26, Appl. Numer. Harmon. Anal., Birkhäuser/Springer, Cham, 2017.
[4] O. Christensen, An Introduction to Frames and Riesz Bases, second expanded edition. Birkhäuser, Boston 2016.
[5] O. Christensen, M. Hasannasab, and E. Rashidi, Dynamical sampling and frame representations with bounded operators J. Math. Anal. Appl. 463 (2018), 634-644.
[6] O. Christensen, M. Hasannasab, and D. T. Stoeva, Operator representations of sequences and dynamical sampling. Sampl. Theory Signal Image Process 17 (2018), 29-42.
[7] O. Christensen and M. Hasannasab, Operator representations of frames: boundedness, duality, and stability. Integral Equations Operator Theory 88 (2017), 483-499.
[8] O. Christensen and M. Hasannasab, Frames propertys of systems arising via iterative actions of operators. Appl. Comput. Harmon. Anal. 46 (2018), 3, 664-673.
[9] O. Christensen, M. Hasannasab, and F. Philipp, Frames properties of operator orbits. Preprint (2018), arXiv:1804.03438v2.
[10] O. Christensen and M. Hasannasab, Frames, operator representations, and open problems. In: The diversity and beauty of applied operator theory, pp. 155-165, Oper. Theory Adv. Appl. 268, Birkhäuser/Springer, Cham, 2018.
[11] D. Y. Chen, L. Li, and B. T. Zheng, Perturbations of frames. Acta Math. Sin. Engl. Ser. 30 (2014), 1089-1108.
[12] R. J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series. Trans. Amer. Math. Soc. 72 (1952), 341-366.
[13] F. Philipp, Bessel orbits of normal operators. J. Math. Anal. Appl. 448 (2017), 767-785.

Received October 11, 2018

Ehsan Rashidi and Abbas Najati<br>University of Mohaghegh Ardabili<br>Faculty of Sciences<br>Department of Mathematics<br>Ardabil, Iran<br>erashidi@uma.ac.ir,<br>a.nejati@yahoo.com, a.najati@uma.ac.ir<br>Elnaz Osgooei<br>Urmia University of Technology<br>Department of Science<br>Urmia, Iran<br>e.osgooei@uut.ac.ir

