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Motivated by recent progress in operator representation of frames, we investigate
the frames of the form {Tnφ}n∈I for I = N,Z, and answer questions about repre-
sentations, perturbations and frames induced by the action of powers of bounded
linear operators. As a particular case, we discuss problems concerning represen-
tation of frames in terms of iterations of the mixed frame operators. As our an-
other contribution, we consider frames of the form {anT

nφ}∞n=0 for some non-zero
scalars {an}∞n=0, and we obtain some new results in dynamical sampling. Finally,
we will present some auxiliary results related to the perturbation of sequences of
the form {Tnφ}∞n=0.
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1. INTRODUCTION

A frame in a separable Hilbert space H is a countable collection of ele-
ments in H that allows each f ∈ H to be written as an (infinite) linear com-
bination of the frame elements, but linear independence between the frame
elements is not required. Duffin and Schaeffer [12] introduced frames, and
they used frames as a tool in the study sequences of the form {eiλnx}n∈Z,
where {λn}n∈Z is a family of real or complex numbers. Dynamical sampling
has already introduced in [1] by Aldroubi et al., and it deals with frame proper-
ties of sequences of the form {Tnφ}∞n=0, where φ ∈ H and T : H → H belongs
to certain classes of linear operators.

Throughout this paper, let N0 = {0, 1, 2, · · · }.We let H denote a complex
separable infinite-dimensional Hilbert space. Given a Hilbert space H, we let
B(H) denote the set of all bounded linear operators T : H → H. Moreover,
GL(H) will denote the set of all bijective operators in B(H).
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Definition 1.1. Let I denote a countable set and let {fk}k∈I be a sequence
in H.

• {fk}k∈I is called a frame for H if there exist constants A,B > 0 such
that A∥f∥2 ≤

∑
k∈I |⟨f, fk⟩|2 ≤ B∥f∥2 for all f ∈ H; it is a frame sequence if

the stated inequalities hold for all f ∈ span{fk}k∈I .

• {fk}k∈I is called a Bessel sequence with Bessel bound B, if∑
k∈I |⟨f, fk⟩|2 ≤ B∥f∥2 for all f ∈ H;

• {fk}k∈I is called a Riesz sequence if there exist constants A,B > 0
such that A

∑
k∈I |ck|2 ≤ ∥

∑
k∈I ckfk∥2 ≤ B

∑
k∈I |ck|2 for all finite scalar

sequences {ck}k∈I .
• {fk}k∈I is called a Riesz basis for H, if it is a Riesz sequence for which

span{fk}k∈I = H.

The following theorem was proved in [4] which is about frames and oper-
ators:

Theorem 1.2. Consider a sequence {fk}∞k=1 in a separable Hilbert space
H. Then the following hold:

• {fk}∞k=1 is a Bessel sequence if and only if U : {ck}∞k=1 7→
∑∞

k=1 ckfk is
a well-defined mapping from ℓ2(N) to H, i.e, the infinite series is convergent
for all {ck}∞k=1 ∈ ℓ2(N); in the affirmative case the operator U is linear and
bounded.

• {fk}∞k=1 is a frame if and only if the mapping {ck}∞k=1 7→
∑∞

k=1 ckfk is
well-defined from ℓ2(N) to H and surjective.

• {fk}∞k=1 is a Riesz basis if and only if the mapping {ck}∞k=1 7→
∑∞

k=1 ckfk
is well-defined from ℓ2(N) to H and bijective.

For I = N or Z, Theorem 1.2 tells us that if {fk}k∈I is a Bessel sequence,
the synthesis operator

U : ℓ2(I) → H, U{ck}k∈I :=
∑
k∈I

ckfk,

is well-defined and bounded. A central role will be played by the kernel of the
operator U , i.e., the subset of ℓ2(I) given by

NU =
{
{ck}k∈I ∈ ℓ2(I) :

∑
k∈I

ckfk = 0
}
.

The excess of a frame is the number of elements that can be removed in
order for the remaining set to form a basis. Given a Bessel sequence {fk}∞k=1,
the frame operator S : H → H is defined by

S := UU∗, Sf := UU∗f =
∞∑
k=1

⟨f, fk⟩fk.
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1.1. Motivation and idea of dynamical sampling

Dynamical sampling is a recent research was introduced earlier in [1]
deals with frame properties of the sequence {Tnφ}∞n=0 for some T ∈ (H) and
some φ ∈ H. We will consider frames {fk}k∈I with indexing over I = N or
I = Z. It is natural to ask whether we can find a linear operator T such that
fk+1 = Tfk for all k ∈ I. Various characterizations of frames having the form
{fk}k∈I = {T kφ}k∈I , where T is a linear (not necessarily bounded) operator
can be found in [7, 8, 5]. We are interested in the structure of the set of
iterations of the operator T ∈ B(H) when acting on the vector φ ∈ H. Indeed,
we are interested in the following two questions:

• Under what conditions on T and I is the the iterated system of vectors
{Tnφ}n∈I a frame or a Riesz basis for H?

• If {Tnφ}n∈I is a frame or a Riesz basis for H, what can be deduced
about the operator T?

Example 1.3. Let {ek}∞k=1 denote an orthonormal basis for H. Define the
operator T : H → H by T (f) =

∑∞
k=1⟨f, ek⟩ek+1. It is clear that {ek}∞k=1 =

{T ke1}∞k=0.

Example 1.4. Assume that {ek}∞k=1 is an orthonormal basis for H, and
define the bounded operator T : H → H by T (f) =

∑∞
k=1⟨f, ek⟩2−kek+1. In

particular, T is compact, being the norm-limit of the finite-rank operators

TN : H → H, TN (f) =

N∑
k=1

⟨f, ek⟩2−kek+1.

On the other hand, by construction the sequence
{

Tke1
∥Tke1∥

}∞

k=0
is {ek}∞k=1.

Definition 1.5. Suppose that {fk}∞k=1 and {gk}∞k=1 are two frames (or
Bessel sequences) for H. The operator T : H → H defined by

Tf =

∞∑
k=1

⟨f, gk⟩fk

is called the mixed frame operator associated with {fk}∞k=1 and {gk}∞k=1.

Obviously, any bounded linear operator T : H → H is indeed a mixed
frame operator. Because, if T ∈ B(H) and {ek}∞k=1 is an orthonormal basis for
H, then by applying T on the decomposition f =

∑∞
k=1⟨f, ek⟩ek, we have that

Tf =
∑∞

k=1⟨f, ek⟩Tek for all f ∈ H. Hence, T is the mixed frame operator for
the Bessel sequences {ek}∞k=1 and {Tek}∞k=1.

The following example of a mixed frame operator was already in [5]:
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Example 1.6. Suppose that {fk}∞k=1 = {Tnf1}∞n=0 is a frame for H for
some T ∈ B(H). Let {gk}∞k=1 be a dual frame of {fk}∞k=1. Then Tf =∑∞

k=1⟨f, gk⟩Tfk =
∑∞

k=1⟨f, gk⟩fk+1, for every f ∈ H. Therefore, T is a mixed
frame operator.

Let {fk}∞k=1 be a Bessel sequence and {ek}∞k=1 be an orthonormal basis
for H. Define the operator T : H → H by Tf =

∑∞
k=1⟨f, ek⟩fk. It is clear that

T is bounded and Tek = fk for all k. Therefore we have the following:

Proposition 1.7. The Bessel sequences in H are precisely the sequences
{Tek}∞k=1, where T ∈ B(H) and {ek}∞k=1 is an orthonormal basis for H.

1.2. Recent results on dynamical sampling and frames

Various aspect of the dynamical sampling problem and related frame
theory have been studied by Aldroubi et al. and Christensen et al. in [1, 2, 3,
5, 6, 7, 8, 9, 10]. They deal with frame properties of sequences in a Hilbert space
H of the form {Tnφ}∞n=0, where φ ∈ H and T ∈ B(H). However, some no-go
results in dynamical sampling have been proved; for example, if T is a normal
operator, then {Tnφ}∞n=0 cannot be a basis [2]. Moreover, if T is a unitary
operator or a compact operator, then {Tnφ}∞n=0 cannot be a frame [3, 5]. The
following recent results in dynamical sampling and frame representations with
bounded operators can be found in [5, 7, 8, 10]. Suppose that {fk}∞k=1 is a
frame for H:

(i) {fk}∞k=1 has a representation{fk}∞k=1 = {T kf1}∞k=0 for some bounded
operator T : H → H if and only if {fk}∞k=1 is linearly independent.

(ii) Let T : span{fk}∞k=0 → span{fk}∞k=0 be a linear operator and
{fk}∞k=1 = {T kf1}∞k=0. Then T is bounded if and only if the kernel NU of the
synthesis operator is invariant under right-shifts; in particular T is bounded if
{fk}∞k=1 = {T kf1}∞k=0 is a Riesz basis.

(iii) Assume that {fk}∞k=1 is linearly independent and overcomplete. Then
{fk}∞k=1 has infinite excess.

For countable subsets G ⊂ H and a normal operator T , Aldroubi et al.
[2] proved that the iterative system {Tnφ}φ∈G,n≥0 can be a frame for H, but
cannot be a basis. However, it is difficult for a system of vectors of the form
{Tnφ}φ∈G,n≥0 to be a frame. The difficulty is that the the spectrum of T must
be very special. Such frames however do exist, as shown by the constructions
in [1].

The paper is organized as follows. In section 2, we provide an alternative
proof to show that

⋃k
j=1{Tnφj}∞n=0 cannot form a frame for H, whenever T is
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compact. Moreover, we provide necessary and sufficient conditions for T being
surjective. The main purpose of this section is to characterize and compare the
Bessel and frame properties of orbits {Tnφ}∞n=0 with a bounded operator T
in connection with frame operators and mixed frame operators. We also show
that the iterative actions of the mixed frame operator associated with two
orthonormal basis cannot form a frame. Section 3 discusses representations of
frames which can be represented of the form {anTnφ}∞n=0 for some non-zero

scalars {an}∞n=0 with supn
∣∣ an
an+1

∣∣ <∞. Finally, in section 4 we illustrate some

auxiliary results related to the perturbation of an operator to construct frame
orbits in terms of the operator representations.

2. ITERATIVE ACTIONS OF FRAME OPERATOR AND
MIXED FRAME OPERATOR

The representation of frames in the form {Tnφ}∞n=0 and {Tnφ}n∈Z for
some φ ∈ H and some T ∈ B(H) was already studied in [5, 7]. Aldroubi et al.
[1] showed that iterative actions of compact self-adjoint operators cannot form
a frame. However, for a normal operator, Philipp [13] proved that {Tnφ}n∈N
can be a Bessel sequence. It is clear that the iterative system {Tnφ}∞n=0is a
Bessel sequence if ∥T∥ < 1. Indeed, for any f ∈ H, we have

∞∑
n=0

|⟨f, Tnφ⟩|2 ≤
∞∑
n=0

∥f∥2∥Tnφ∥2 ≤ ∥f∥2∥φ∥2
∞∑
n=0

∥T∥2n =
∥φ∥2

1− ∥T∥2
∥f∥2.

It has already proved that if T is a compact operator on an infinite-
dimensional Hilbert space H and φ1, ..., φk ∈ H, then

⋃k
j=1{Tnφj}∞n=0 cannot

be a frame for H [5]. Here we provide an alternative simple proof. We first
prove a lemma.

Lemma 2.1. Let T ∈ B(H) and φ1, ..., φk ∈ H. If
⋃k
j=1{Tnφj}∞n=0 is a

frame for H, then T has closed rang and the range of T is RT = span{Tnφj :
j = 1, 2, · · · , k}∞n=1.

Proof. For each x ∈ H there exists a sequence {cn,j : j = 1, 2, · · · , k}∞n=0

of scalars such that x =
∑k

j=1

∑∞
n=0 cn,jT

nφj . Therefore

Tx =

k∑
j=1

∞∑
n=0

cn,jT
n+1φj ∈ span{Tnφj : j = 1, 2, · · · , k}∞n=1.

Therefore RT ⊆ K := span{Tnφj : j = 1, 2, · · · , k}∞n=1. On the other hand,

since
⋃k
j=1{Tnφj}∞n=1 is a frame for K, for each x ∈ K there is a sequence
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{cn,j : j = 1, 2, · · · , k}∞n=1 of scalars such that x =
∑k

j=1

∑∞
n=1 cn,jT

nφj =

T
(∑k

j=1

∑∞
n=0 cn,jT

nφj
)
∈ RT . Therefore

RT = span{Tnφj : j = 1, 2, · · · , k}∞n=1,

i.e., T has closed range.

Proposition 2.2. Suppose that dimH = ∞, φ1, · · · , φk ∈ H and
T : H → H is a compact operator. Then

⋃k
j=1{Tnφj}∞n=0 cannot form a

frame for H.

Proof. Let
⋃k
j=1{Tnφj}∞n=0 be a frame for H. Then T has closed rang

and RT = span{Tnφj : j = 1, 2, · · · , k}∞n=1 by Lemma 2.1. We denote by
T † ∈ B(H) the pseudo-inverse of T , i.e.,

T † : H → H, TT †x = x, x ∈ RT .

Since T is compact, TT † = IRT
is compact. This implies that RT is finite-

dimensional, and it leads to conclude dimH < ∞, which is a contradiction.
Therefore

⋃k
j=1{Tnφj}∞n=0 cannot be a frame for H.

As we saw in Lemma 2.1, RT is closed if {Tnφ}∞n=0 is a frame. The
following proposition provides necessary and sufficient conditions for T being
surjective.

Proposition 2.3. Let T ∈ B(H) and φ ∈ H. Assume that {Tnφ}∞n=0 is
a frame for H with frame operator S. Then the following hold:

(i) T is surjective if and only if there exists n ≥ 1 such that
⟨Tnφ, S−1φ⟩ ≠ 0.

(ii) T is surjective if and only if φ ∈ RT .

(iii) T is surjective if and only if S−1φ /∈ kerT ∗.

(iv) T is surjective if and only if ∥S−1/2φ∥ ≠ 1.

Proof. (i) First assume that T is surjective. Then H = span{Tnφ}∞n=1 by
Lemma 2.1. If ⟨Tnφ, S−1φ⟩ = 0 for all n ≥ 1, then S−1φ ⊥ H. This implies
that φ = 0, which is a contradiction. Conversely, assume that ⟨Tnφ, S−1φ⟩ ≠ 0
for some n ≥ 1. Then

Tnφ =
∞∑
i=0

⟨S−1Tnφ, T iφ⟩T iφ = ⟨Tnφ, S−1φ⟩φ+
∞∑
i=1

⟨S−1Tnφ, T iφ⟩T iφ.
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Therefore φ ∈ RT . On the other hand, {Tnφ}∞n=1 is a frame sequence, and
RT = span{Tnφ}∞n=1 by Lemma 2.1. Hence φ ∈ RT implies that RT =
span{Tnφ}∞n=1 = span{Tnφ}∞n=0 = H, as desired.

The result in (ii) follows from the proof of (i).
To prove (iii), it follows from (i) that T is surjective if and only if S−1φ /∈

[RT ]
⊥ = kerT ∗.
For the proof of (iv), assume that T is surjective and ∥S−1/2φ∥ = 1. Since

(2.1) φ = ⟨S−1φ,φ⟩φ+
∞∑
n=1

⟨S−1φ, Tnφ⟩Tnφ,

we get
∑∞

n=1⟨S−1φ, Tnφ⟩Tnφ = 0. Then
∑∞

n=1

∣∣⟨S−1φ, Tnφ⟩
∣∣2 = 0. Apply-

ing (i), we conclude that T is not surjective, which is a contradiction. Con-
versely, if ∥S−1/2φ∥ ̸= 1, then (2.1) implies that there exists n ≥ 1 such that
⟨Tnφ, S−1φ⟩ ≠ 0. Hence T is surjective by (i).

Since a Riesz base and its canonical dual are bi-orthogonal, we have

Corollary 2.4. Let T ∈ B(H) and φ ∈ H. Assume that {Tnφ}∞n=0

is a Riesz basis for H. Then T is not surjective. In particular, φ /∈ RT and
S−1φ ∈ kerT ∗.

Let {fk}∞k=1 be a frame for H with frame operator S. We investigate the
question: Does there exist some φ ∈ H such that {Snφ}∞n=0 is a frame? There
are many frames for which this cannot happen. For example, if {fk}∞k=1 is a
tight frame for H with bound A, then for φ( ̸= 0) ∈ H, we have

∞∑
n=0

|⟨f, Snφ⟩|2 =
∞∑
n=0

|⟨f,Anφ⟩|2 = |⟨f, φ⟩|2
∞∑
n=0

A2n, f ∈ H.

Therefore, {Snφ}∞n=0 is a frame for H if and only if dimH = 1 and A < 1.
The following exhibits a concrete example of a frame {fk}∞k=1 ={Tnf1}∞n=0

for which T is a frame operator:

Example 2.5. Consider the operator T : ℓ2(N) → ℓ2(N) defined by

(2.2) T{ck}∞k=1 = {(1− 2−k)ck}∞k=1, {ck}∞k=1 ∈ ℓ2(N).
Letting λk = 1 − 2−k for k ∈ N, Aldroubi et al. [1] proved that the sequence

{Tnb}∞n=0 is a frame for ℓ2(N) whenever b = {
√

1− λ2k}
∞
k=1. Defining the

bounded operator U : ℓ2(N) → ℓ2(N) by U{ck}∞k=1 = {
√
1− 2−kck}∞k=1, we

have U = U∗ and T = U2. Let {δk}∞k=1 be the standard basis of ℓ2(N) and let

S be the frame operator of {Uδk}∞k=1 = {
√
1− 2−kδk}∞k=1. Then

Sf =

∞∑
k=1

⟨f, Uδk⟩Uδk = U

∞∑
k=1

⟨U∗f, δk⟩δk = UU∗f = Tf, f ∈ ℓ2(N),
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i.e., S = T. □

Motivated by Example 2.5, we can characterize the case that a frame has
a representation {Tnφ}∞n=0, where T is a frame operator. Indeed, we show that
positive and invertible operators are a characteristic of frame operators:

Proposition 2.6. Let T ∈ B(H). Then the followings are equivalent:

(i) T is positive and invertible.

(ii) T is the frame operator for a frame.

Proof. To prove (i)⇒ (ii) , consider the bounded and surjective operator
U : H → H such that T = UU∗. Let {ek}∞k=1 denote an orthonormal basis for
H, and let fk = Uek for each k ∈ N. Then {fk}∞k=1 is a frame and its frame
operator T because

Tf = UU∗f =
∞∑
k=1

⟨f, Uek⟩Uek =
∞∑
k=1

⟨f, fk⟩fk, f ∈ H.

This proves (ii). The implication (ii)⇒ (i) is clear.

In the following proposition we provide a necessary condition for

{Sng}n≥0,g∈G

to be a frame, where G ⊂ H is a countable set.

Proposition 2.7. Assume that {fk}∞k=1 is a frame with lower frame
bound A and frame operator S. If G is a countable subset of H and {Sng}n≥0,g∈G
is a frame for H, then A < 1.

Proof. Since A⟨f, f⟩ ≤ ⟨Sf, f⟩, we get A∥f∥ ≤ ∥Sf∥ for all f ∈ H.
Therefore,

⟨S2f, f⟩ = ⟨Sf, Sf⟩ = ∥Sf∥2 ≥ A2∥f∥2 = A2⟨f, f⟩,

and then A2∥f∥ ≤ ∥S2f∥ for all f ∈ H. By Induction, we conclude that for
each positve integer m,

Am∥f∥ ≤ ∥Smf∥, f ∈ H.

Since {Sng}n≥0,g∈G is a frame for H, we get ∥Smf∥ → 0 as m → ∞ for all
f ∈ H by [[3], Theorem 7]. Then Am → 0 as m → ∞, and this leads to get
A < 1.
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Remark 2.8. Suppose that {fk}∞k=1 is a frame for H with lower bound
A. Let S be the frame operator for {fk}∞k=1 such that V ⊂ H is an invariant
subspace under S. If there exists λ ∈ [0, 1) such that ∥Sφ∥ ≤ λ∥φ∥ for all
φ ∈ V , then {Snφ}∞n=0 is a Bessel sequence for all φ ∈ V . Indeed, for all f ∈ H
and φ ∈ V , we have that

∞∑
n=0

|⟨f, Snφ⟩|2 ≤ ∥f∥2
∞∑
n=0

∥Snφ∥2 ≤ ∥f∥2
∞∑
n=0

λ2n =
∥f∥2

1− λ2
.

It follows from [[3], Theorem 7] that for any unitary operator T : H → H
and any set of vectors G ⊆ H, {Tng}g∈G,n≥0 is not a frame.

Proposition 2.9. Let {ek}∞k=1 and {δk}∞k=1 denote two orthonormal bases
for a Hilbert space H, and consider the mixed frame operator

T : H → H, T f =
∞∑
k=1

⟨f, ek⟩δk.

Then {Tnφ}∞n=0 cannot be a frame for H for any φ ∈ H.

Proof. Since Tej = δj for all j ∈ N, the operator T maps the orthonormal
basis {ek}∞k=1 onto the orthonormal basis {δk}∞k=1. Therefore T is unitary. By
[[3], Corollary 2], we conclude that {Tnφ}∞n=0 is not a frame for H for any
φ ∈ H.

By use of Theorem 1.2 we get some useful results related to iterative
actions of a mixed frame operator:

Corollary 2.10. Suppose that {ek}∞k=1 and {δk}∞k=1 are orthonormal
bases for H. The following statements hold:

(i) Let {Uek}∞k=1 be a Riesz basis for H and Gf :=
∑∞

k=1⟨f, δk⟩Uek for
all f ∈ H, where U ∈ GL(H) is a bounded bijective operator. If {Gnφ}∞n=0 is
a frame for some φ ∈ H, then ∥U∥ ≥ 1.

(ii) Let {Uek}∞k=1 and {V δk}∞k=1 be two frames for H and

Gf :=

∞∑
k=1

⟨f, V δk⟩Uek

for all f ∈ H, where U, V : H → H are bounded surjective linear operators. If
{Gnφ}∞n=0 is a frame for H, then ∥U∥∥V ∥ ≥ 1.

Proof. (i) We define the operator T : H → H by Tf =
∑

⟨f, δk⟩ek. It is
clear that T is isometric, and Gf = UTf for all f ∈ H. Therefore, ∥G∥ ≤ ∥U∥.
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On the other hand, [[3], Theorem 9] shows that ∥G∥ ≥ 1, which yields the
result.

(ii) Let T as in (i). Therefore G = UTV ∗, and we get ∥G∥ ≤ ∥U∥∥V ∥.
Hence, ∥U∥∥V ∥ ≥ 1 by [[3], Theorem 9].

Corollary 2.11. Suppose that {ek}∞k=1 and {δk}∞k=1 are two orthonor-
mal bases for a Hilbert space H.

(i) Let {fk}∞k=1 be a Parseval frame for H and let T be the mixed frame
operator defined by Tf =

∑∞
k=1⟨f, fk⟩ek. If {Tnφ}∞n=0 is a frame for H for

some φ ∈ H, then T is not a surjective operator.

(ii) Let {Uδk}∞k=1 be a frame for H and Tf =
∑∞

k=1⟨f, Uδk⟩ek, where
U : H → H is a bounded surjective linear operator. If {Tnφ}∞n=0 is a frame for
H for some φ ∈ H, then U∗U ̸= I, i.e., U is not isometric.

Proof. (i) Since {fk}∞k=1 is a Parseval frame, we have

∥Tf∥2 =
∞∑
k=1

|⟨f, fk⟩|2 = ∥f∥2

for all f ∈ H. Then T ∗T = I. If we suppose that T is surjective, then T is
unitary. Using [[3], Corollary 2], we conclude that {Tnφ}∞n=0 is not a frame
for H. For part (ii), if U∗U = I and U is surjective, then U will be a unitary
operator. Since TUδk = ek for all k ∈ N, we get TU is unitary. Therefore T is
unitary, and then {Tnφ}∞n=0 cannot be a frame for H.

In the case of normal operators, we have the following result for infinite
dimensional Hilbert spaces:

Lemma 2.12. Suppose that T : H → H is a normal operator and φ ∈ H
such that {Tnφ}∞n=0 is a frame for H. Then ∥T∥ = 1.

Proof. Using [[2], Theorem 5.7], we have T =
∑∞

j=0 λjPj , where each Pj
is a rank one orthogonal projection such that

∑
j Pj = I , PjPi = 0 for all j ̸= i,

and |λj | < 1 for all j ∈ N. Since
∑

j Pj = I, we have that ∥f∥2 =
∑

j ∥Pjf∥2
for all f ∈ H. Therefore

∥Tf∥2 =
∑
j

|λj |2∥Pjf∥2 ≤
∑
j

∥Pjf∥2 = ∥f∥2, f ∈ H.

Therefore ∥T∥ ≤ 1. On the other hand, we have ∥T∥ ≥ 1 by [[3], Theorem 9],
which leads to the desired result.

Proposition 2.13. Let T ∈ B(H) and φ ∈ H be such that {Tnφ}∞n=0 is
a frame for H.
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(i) There exists a countable set G ⊂ H such that {V nψ}ψ∈G,n≥0 is a tight
frame for H, where V = ∥T∥−1T .

(ii) If T is a normal operator, then there exists a countable set G ⊂ H
such that {(TT ∗)nψ}ψ∈G,n≥0 is a tight frame for H.

Proof. (i) By using of [[3], Theorems 7, 9], we have ∥T∥ ≥ 1 and (T ∗)nf →
0 for all f ∈ H as n → ∞. Since ∥V ∥ = 1 and (V ∗)nf → 0 for all f ∈ H as
n→ ∞, the result follows from [[3], Theorem 8].

In order to prove (ii), since {Tnφ}∞n=0 is a frame and T is normal, Lemma
2.12 leads us to get ∥T∥ = 1, and then ∥TT ∗∥ = 1. On the other hand, we have
∥(TT ∗)nf∥ = ∥Tn(T ∗)nf∥ ≤ ∥T∥n∥(T ∗)nf∥ = ∥(T ∗)nf∥ → 0, for all f ∈ H as
n→ ∞. Therefore, the result follows from [[3], Theorem 8].

Remark 2.14. Consider a linearly independent frame sequence {fk}k∈Z
in a Hilbert space H which spans an infinite dimensional subspace. By using
[[7], Proposition 2.1] and [[8], Proposition 2.3], there exists a linear invertible
operator T : span{fk}k∈Z → span{fk}k∈Z such that Tfk = fk+1. However, if
{fk}k∈Z is a frame sequence and the operator T is bounded, it has a unique
extension to a bounded operator T̃ : span{fk}k∈Z → span{fk}k∈Z such that

T̃
(∑
k∈Z

ckfk

)
=

∑
k∈Z

ckfk+1, {ck}k∈Z ∈ ℓ2(Z).

By using previous remark and operator representation of dual frames, we
can construct a frame in terms of its frame operator:

Proposition 2.15. Let {fk}k∈Z = {T kf0}k∈Z be a frame for H for some
bounded, invertible and self-adjoint operator T : H → H with the frame opera-
tor S. Assume that V ∈ B(H) and {V kfm}k∈Z is a dual frame of {fk}k∈Z for
some m ∈ Z. Then {Skf0}k∈Z is a frame for H, whenever T is an isometry.

Proof. We let V kfm = gk for all k ∈ Z. It is clear that Tfk = fk+1 =
T k+1f0 for all k ∈ Z and Tf =

∑
k∈Z⟨f, gk⟩fk+1 for all f ∈ H. On the

other hand, by [[7], Lemma 3.3], V = (T ∗)−1. Since T is self-adjoint, we have
Tf =

∑
k∈Z⟨f, T−kfm⟩T k+1f0, for all f ∈ H. If T is an isometry, i.e., T ∗T = I,

then T = T−1, and therefore we get

Tf =
∑
k∈Z

⟨f, T k+mf0⟩T k+1f0 = Tm+1
∑
k∈Z

⟨f, T kf0⟩T kf0 = Tm+1Sf,

for all f ∈ H. Hence, Tm = S, and we infer that {Skf0}k∈Z is a frame for
H.
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It can be an interesting question whether the converse of Proposition 2.15
holds. We know that if {Skf0}k∈Z is a tight frame for H, [[7], Corollary 2.7]
shows that the frame operator S is an isometry. It is still an open question
whether T is an isometry or not.

Suppose that T is a bounded bijective operator on H, and f0 ∈ H such
that {Tnf0}n∈Z is a frame for H. We get that TST ∗ = S, where S is the frame
operator for {Tnf0}n∈Z. Indeed,

TST ∗f =
∑
n∈Z

⟨T ∗f, Tnf0⟩Tn+1f0 =
∑
n∈Z

⟨f, Tn+1f0⟩Tn+1f0 = Sf

In particular, T is similar to a unitary operator.

Proposition 2.16. Let T ∈ GL(H) and φ ∈ H such that {Tnφ}n∈Z
is a frame for H with frame bounds A,B and frame operator S. Let U :=
S−1/2TS1/2 and ψ = S−1/2φ. Then {Unψ}n∈Z is a frame for H with bounds
AB−1 and BA−1.

Proof. It is clear that TST ∗ = S and U is unitary (see [[9], Lemma
4.4]). Since Un = S−1/2TnS1/2 for all n ∈ Z, we have

∑
n∈Z |⟨f, Unψ⟩|2 =∑

n∈Z |⟨S−1/2f, Tnφ⟩|2. Then
A

B
∥f∥2 ≤ A∥S−1/2f∥2 ≤

∑
n∈Z

|⟨f, Unψ⟩|2 ≤ B∥S−1/2f∥2 ≤ B

A
∥f∥2, f ∈ H.

As a minor modification in [[9], Corollary 4.5], we also obtain the following
result:

Proposition 2.17. Let T ∈ GL(H) and φ ∈ H such that {Tnφ}n∈Z is a
frame for H with frame bounds A,B. Then√
A

B
∥f∥ ≤ ∥Tnf∥ ≤

√
B

A
∥f∥,

√
A

B
∥f∥ ≤ ∥(T ∗)nf∥ ≤

√
B

A
∥f∥, n ∈ Z, f ∈ H.

In particular, if {Tnφ}n∈Z is a tight frame, then Tn and (T ∗)n are iso-
metric for all n ∈ Z.

Proof. Let S denote the frame operator of {Tnφ}n∈Z and let

U := S−1/2TS1/2.

Since T is invertible, we infer that U is unitary. Hence, for f ∈ H and
n ∈ Z we have

1√
B
∥f∥ ≤ ∥UnS−1/2f∥ ≤ 1√

A
∥f∥.
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Therefore√
A

B
∥f∥ ≤ ∥S1/2UnS−1/2f∥ = ∥Tnf∥ = ∥S1/2UnS−1/2f∥ ≤

√
B

A
∥f∥.

A similar calculation applies to ∥(T ∗)nf∥.

Let T ∈ GL(H). Similarly as in [9], we define the set

VZ(T ):=
{
f ∈ H : {Tnf}n∈Z is a frame for H

}
.

Proposition 4.11 of [9] shows that from one vector φ ∈ VZ(T ) (if it exists) we
obtain all vectors in VZ(T ). Indeed,

VZ(T ) =
{
V φ : V ∈ GL(H) and V T = TV

}
.

Proposition 2.18. Assume that T ∈ GL(H), φ ∈ VZ(T ) and V is a
unitary operator such that V T = TV . Let S and S̃ be the frame operators for
{Tnφ}n∈Z and {TnV φ}n∈Z, respectively. Then {(S̃)nf}n∈Z is a frame for H if
and only if {SnV ∗f} is a frame for H. In other words, f ∈ VZ(S̃) if and only
if V ∗f ∈ VZ(S).

Proof. For each f ∈ H, we have

S̃f =
∑
n∈Z

⟨f, TnV φ⟩TnV φ =
∑
n∈Z

⟨f, V Tnφ⟩V Tnφ

= V
∑
n∈Z

⟨V ∗f, Tnφ⟩Tnφ = V SV ∗f.

As V is unitary, we get (S̃)n = V SnV ∗ and V ∗(S̃)n = SnV ∗ which
immediately yields the desired conclusion.

3. FRAME REPRESENTATION OF THE FORM {ANTNφ}∞N=0

In this section, we generalize some results in the recent papers [8, 10]
which have been proved by Christensen et al. We consider frames of the form

{fk}∞k=1 = {anTnf1}∞n=0 for some scalars an ̸= 0 with supn

∣∣∣ an
an+1

∣∣∣ < ∞ and

a bounded linear operator T : span{fk}∞k=1 → H. Using [10], we define Tω :

ℓ2(N0) → ℓ2(N0) by Tω{ci}∞i=0 =
(
0, a0a1 c0,

a1
a2
c1, · · ·

)
. The following theorem

was proved in [10]:
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Theorem 3.1. Let {an}∞n=0 be a sequence of non-zero scalars with

supn

∣∣∣ an
an+1

∣∣∣ < ∞, and let {fk}∞k=1 = {anTnf1}∞n=0 be a linearly independent

frame for an infinite-dimensional Hilbert space H, where T : span{fk}∞k=1 → H
is a linear operator. Then T is bounded if and only if NU is invariant under
Tω.

The condition supn

∣∣∣ an
an+1

∣∣∣ <∞ is indeed necessary for frames of the form

{anTnφ}∞n=0 when T ∈ B(H).

Proposition 3.2. Assume that T ∈ B(H) such that {anTnφ}∞n=0 is a
frame for some φ ∈ H and some non-zero scalars {an}∞n=0. Then

sup
n

∣∣∣ an
an+1

∣∣∣ <∞.

Proof. Let A and B be frames bounds of {fk}∞k=1 = {anTnφ}∞n=0. Using
that

√
A ≤ ∥fk∥ ≤

√
B for all k ∈ N, we get

∥fk∥∥T∥ ≥ ∥Tfk∥ =
∥∥∥ak−1

ak
fk+1

∥∥∥ ≥
∣∣∣ak−1

ak

∣∣∣√A ≥
∣∣∣ak−1

ak

∣∣∣√A

B
∥fk∥.

Then supn

∣∣∣ an
an+1

∣∣∣ ≤ √
B

A
∥T∥ as desired.

If T : H → H is a linear operator and {fk}∞k=1 = {anTnφ}∞n=0 is a frame
(with frame bounds A and B) for some φ ∈ H and some non-zero scalars

{an}∞n=0 with supn

∣∣∣ an
an+1

∣∣∣ <∞, then we have

∥Tfk∥ =
∥∥∥ak−1

ak
fk+1

∥∥∥ ≤
∣∣∣ak−1

ak

∣∣∣√B ≤
√
B

A
∥fk∥, k ∈ N.

In this case T may be unbouded (see Proposition 3.5). Using [[8],Proposition
2.5], we can obtain the following result for a frame in the form {anTnφ}∞n=0.

Proposition 3.3. Assume that T ∈ B(H) such that {anTnφ}∞n=0 is a
frame for some φ ∈ H and some non-zero scalars {an}∞n=0. Then T has closed
range and RT = span{anTn+1φ}∞n=0.

Proof. Using [[4], Theorem 5.5.1], the synthesis operator

U : ℓ2(N0) → H, U(c0, c1, c2, ...) =
∞∑
i=0

ciaiT
iφ
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is surjective. Letting x ∈ H there exists (c0, c1, c2, ...) ∈ ℓ2(N0) such that
x =

∑∞
i=0 ciaiT

iφ. Therefore

Tx =
∞∑
i=0

ciaiT
i+1φ ∈ span{aiT i+1φ}∞i=0.

ThereforeRT ⊆ K := span{aiT i+1φ}∞i=0. On the other hand, {aiT i+1φ}∞i=0 is a
frame for K, and then its synthesis operator is surjective. Letting x ∈ K, there
is (c0, c1, c2, ...) ∈ ℓ2(N0) such that x =

∑∞
i=0 ciaiT

i+1φ = T
∑∞

i=0 ciaiT
iφ ∈

RT . Therefore RT = span{anTn+1φ}∞n=0, i.e., T has closed range.

The following proposition generalize a result in [5, 6], where we charac-
terize the availability of the representation {fk}∞k=1 = {anTnf1}∞n=0.

Proposition 3.4. Let {fk}∞k=1 and {gk}∞k=1 be sequences in H such that
each f ∈ H has the convergent expansion

(3.1) f =
∞∑
k=1

⟨f, gk⟩fk.

Suppose that {an}∞n=0 is a sequence of non-zero scalars such that for any f ∈ H
the series

∑∞
k=1⟨f, gk⟩

ak−1

ak
fk+1 converges. Then {fk}∞k=1 = {anTnf1}∞n=0 for

some T ∈ B(H) if and only if

(3.2) fj+1 =
aj
aj−1

∞∑
k=1

⟨fj , gk⟩
ak−1

ak
fk+1, j ∈ N.

Proof. Assume that {fk}∞k=1 can be represented as {anTnf1}∞n=0 for some

T ∈ B(H). Then Tfk =
ak−1

ak
fk+1 for all k ∈ N. By applying T on (3.1), we

get

Tf =

∞∑
k=1

⟨f, gk⟩Tfk =
∞∑
k=1

⟨f, gk⟩
ak−1

ak
fk+1, f ∈ H.

Letting f = fj in the above expression, it follows that
aj−1

aj
fj+1 =∑∞

k=1⟨fj , gk⟩
ak−1

ak
fk+1, and we get (3.2).

For the opposite implication, suppose that (3.2) holds. Define the linear
operator

T : H → H, Tf =

∞∑
k=1

⟨f, gk⟩
ak−1

ak
fk+1, f ∈ H.

By uniform boundedness principle, T is bounded. Then by (3.2) we con-

clude that Tfj =
∑∞

k=1⟨fj , gk⟩
ak−1

ak
fk+1 =

aj−1

aj
fj+1 for all j ∈ N. Therefore

{fk}∞k=1 = {anTnf1}∞n=0.
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Motivated by Proposition 2.6 in [8] and with a small change in its proof,
we can obtain the following result which generalizes it.

Proposition 3.5. Assume that the frame {fk}∞k=1 is linearly indepen-
dent, contains a Riesz basis and has finite and strictly positive excess. Let
T : H → H be a linear operator such that {fk}∞k=1 = {anTnf1}∞n=0 for some

non-zero scalars {an}∞n=0 with supn

∣∣∣ an
an+1

∣∣∣ <∞ and infn

∣∣∣ an
an+1

∣∣∣ > 0. Then T

is unbounded.

Proof. Let δ := infn

∣∣∣ an
an+1

∣∣∣ and γ := supn

∣∣∣ an
an+1

∣∣∣. By assumption there

exists m ∈ N such that {fk}∞k=m+1 is a Riesz basis for K := span{fk}∞k=m+1

and {fk}∞k=m is an overcomplete frame for K. Since 0 < δ ≤ γ < ∞, we infer

that
{ak−1

ak
fk+1

}∞

k=m
is a Riesz basis for K, and we denote its lower Riesz basis

bound by A. For each n ∈ N, let An denote the optimal lower Riesz basis bound
for the finite sequence {fk}m+n−1

k=m . Since {fk}∞k=m is a linearly independentan
and overcomplete frame, it follows An → 0 as n → ∞ by Proposition 7.2.1 in
[4]. Let n ∈ N, then there exists a non-zero sequence {ck}m+n−1

k=m such that∥∥∥m+n−1∑
k=m

ckfk

∥∥∥2 ≤ (An +
1

n
)

m+n−1∑
k=m

|ck|2.

Then ∥∥∥T m+n−1∑
k=m

ckfk

∥∥∥2 = ∥∥∥m+n−1∑
k=m

ck
ak−1

ak
fk+1

∥∥∥2
≥ A

m+n−1∑
k=m

|ck|2

≥ A

An +
1
n

∥∥∥m+n−1∑
k=m

ckfk

∥∥∥2.
If T is bounded, then it follows from the above inequlity that ∥T∥ ≥ A

An +
1
n

.

Since
A

An +
1
n

→ ∞ as n→ ∞, we obtain a contradiction.

4. SOME AUXILIARY RESULTS: PERTURBATION OF A
FRAME {TNφ}∞N=0

Motivated by some results about perturbations of frames of the form
{Tnφ}∞n=0 in [5], we give some results by restricting ourself to perturb a frame
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{Tnφ}∞n=0 with elements from a subspace on which T acts as a contraction.
We also state some stability results obtained by considering perturbations of
operators belonging to an invariant subspace.

Proposition 4.1. Assume that {Tnφ}∞n=0 is a Riesz sequence for some
T ∈ B(H) and some φ ∈ H, and let A denote a lower Riesz bound. Suppose
that V ⊂ H is invariant under T and that there exists µ ∈ [0, 1) such that
∥Tψ∥ ≤ µ∥ψ∥. Then {Tn(φ + ψ)}∞n=0 is a Riesz sequence for all ψ ∈ V for
which ∥ψ∥ < (1− µ)

√
A.

Proof. It is clear that
∑∞

n=0 ∥Tnψ∥2 < ∞ for all ψ ∈ V . By [[11], Theo-
rem 2.14] it is sufficient to show that

∑∞
n=0 ∥Tn(φ+ψ)−Tnφ∥∥S−1Tnφ∥ < 1,

where S is frame operator for {Tnφ}∞n=0. Since ∥S−1Tnφ∥ ≤ 1/
√
A, we have

∞∑
n=0

∥Tn(φ+ ψ)− Tnφ∥∥S−1Tnφ∥ ≤ ∥ψ∥√
A

∞∑
n=0

µn =
∥ψ∥

(1− µ)
√
A
< 1,

as desired.

A similar approach as in the proof of Proposition 3.3 in [5] yields the
following result.

Proposition 4.2. Let {an}∞n=0 be a bounded sequence of scalars. Assume
that {anTnφ}∞n=0 is a frame for some bounded linear operator T : H → H and
some φ ∈ H, and let A denote a lower frame bound. Suppose that V ⊂ H
is invariant under T and that there exists µ ∈ [0, 1) such that ∥Tψ∥ ≤ µ∥ψ∥.
Then the following hold:

(i) {anTn(φ+ ψ)}∞n=0 is a frame sequence for all ψ ∈ V .

(ii) {anTn(φ + ψ)}∞n=0 is a frame for all ψ ∈ V for which supn ∥anψ∥ <√
A(1− µ2).

We now provide a perturbation result which can be used to construct a
frame with representation {anTnφ}∞n=0.

Proposition 4.3. Let T ∈ B(H) and φ,ψ ∈ H. Assume that {an}∞n=0 is
sequence of non-zero scalars such that {anTnφ}∞n=0 is a frame for H with lower
bound A and {an+1T

nψ}∞n=0 is a Bessel sequence for H with Bessel bound B.

If supn

∣∣∣ an
an+1

∣∣∣ <√
A

B
, then {anTn(φ+ ψ)}∞n=0 is a frame for H.
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Proof. Let {cn}∞n=0 ∈ ℓ2(N0) and α := supn

∣∣∣ an
an+1

∣∣∣. By assumption, we

have∥∥∥ ∞∑
n=0

cn(anT
nφ− anT

n(φ+ ψ))
∥∥∥2 = ∥∥∥ ∞∑

n=0

cnanT
nψ

∥∥∥2
= sup

∥f∥=1

∣∣∣〈 ∞∑
n=0

cnanT
nψ, f

〉∣∣∣2
= sup

∥f∥=1

∣∣∣ ∞∑
n=0

cn
an
an+1

⟨an+1T
nψ, f⟩

∣∣∣2
≤

∞∑
n=0

∣∣∣cn an
an+1

∣∣∣2 sup
∥f∥=1

∞∑
n=0

∣∣⟨an+1T
nψ, f⟩

∣∣2
≤ α2B

∞∑
n=0

|cn|2.

Hence, [[4], Theorem 22.1.1] implies that the desired result.

Here B denotes the set of bounded linear operators T : H → H for which
there exist λT ∈ [0, 1) and an invariant subspace VT ⊂ H under T such that
∥Tφ∥ ≤ λT ∥φ∥ for all φ ∈ VT . In the following proposition I is a countable
index set and {gj}j∈I is a sequence in H.

Proposition 4.4. Suppose that T,W ∈ B and {gj}j∈I ⊆ VW ∩ VT . Let
{Wngj}n≥0,j∈I be a Riesz sequence with frame operator S, and {Tngj}n≥0,j∈I

be a Bessel sequence for H. Assume that
∑

j∈I ∥gj∥2 <
1− λ2

2∥S−1∥
, where λ :=

max{λW , λT }. Then {Tngj}n≥0,j∈I is a Riesz sequence.

Proof. By assumptions, we have

∥Wgj∥ ≤ λ∥gj∥, ∥Tgj∥ ≤ λ∥gj∥, j ∈ I.

Then∑
j∈I

∞∑
n=0

∥Wngj −Tngj∥∥S−1Wngj∥ ≤
∑
j∈I

∞∑
n=0

∥Wngj − Tngj∥∥S−1∥∥Wngj∥

≤
∑
j∈I

∞∑
n=0

(∥Wngj∥+∥Tngj∥)∥S−1∥∥Wngj∥

≤ 2∥S−1∥
∑
j∈I

∞∑
n=0

λ2n∥gj∥2
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=
2∥S−1∥
1− λ2

∑
j∈I

∥gj∥2 < 1.

Therefore, [[11], Theorem 2.14] leads to the desired result.

Proposition 4.5. Let T,W ∈ B and φ ∈ VT ∩ VW . Suppose that
{Tnφ}∞n=0 is a frame for H with lower frame bound A and {Wnφ}∞n=0 is a
Bessel sequence for H. Let 2∥φ∥ <

√
A(1− λ2, where λ := max{λT , λW }.

Then {Wnφ}∞n=0 is a frame for H.

In the case where {Tnφ}∞n=0 is a Riesz sequence with lower bound A, then
{Tnφ+Wnφ}∞n=0 is a Riesz sequence, whenever ∥φ∥ <

√
A(1− λ2).

Proof. By assumptions, we have

∞∑
n=0

∥Tnφ−Wnφ∥2 ≤ 2
( ∞∑
n=0

∥Tnφ∥2 +
∞∑
n=0

∥Wnφ∥2
)

≤ 4∥φ∥2
∞∑
n=0

λ2n =
4∥φ∥2

1− λ2
< A.

We conclude by [[4], Corollary 22.1.5] that {Wnφ}∞n=0 is a frame for H.
If {Tnφ}∞n=0 be a Riesz sequence, then∥∥∥ ∞∑

n=0

cn(T
nφ− (Tnφ+Wnφ))

∥∥∥2 = ∥∥∥ ∞∑
n=0

cnW
nφ

∥∥∥2
≤

∞∑
n=0

|cn|2
∞∑
n=0

∥Wnφ∥2

≤ ∥φ∥2

1− λ2

∞∑
n=0

|cn|2.

Therefore, the result follows from [[4], Theorem 22.3.2].
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