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For a prime p > 3, it has been known for the last hundred years that the Fermat
2P—1

quotient ¢,(2) = satisfies the congruence

(mod p).

In 2004, A. Granville proved the following extension

p—1 ok

B(2)P ==Y 5 (modp).

k=1

of the congruence. We shall present an elementary proof of Granville’s congru-
ence.
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1. INTRODUCTION

For an odd prime p and an integer a such that p { a, the Fermat quotient
qp(a) is defined as g,(a) = (aP~! — 1)/p, which is an integer, by Fermat’s little
theorem.

For a prime p > 3, Glaisher [2], in 1901, proved that ,

(1) )= — ;;2]{: (mod p).

Remarkably, after a hundred years the following striking extension

) W =3 5

(mod p).

??‘
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of Glaisher’s congruence was conjectured by L. Skula and later proved by A.
Granville [3] in 2004.

In this paper we present an elementary proof of Granville’s congruence.
While Granville employed anti-derivatives involving Mirimanoff polynomials,
our proof is based on the identity

n k

— T -~ n —1)k
(3) Z(lk)zz<k>( kl) (F 1),

k=1 k=1

which holds for any positive integer n and any real number x. The identity was
also used in [5] to prove the following generalization of Glaisher’s congruence
modulo p?:

12

which was earlier proved by Z. H. Sun in [8]. Note that the above congruence
modulo p? yields

ok 7, ;
Z = +2¢p(2) = ——=p°Bp—3 (mod p°)
k=1

151 2k
(4) »(2) = ~3 Z = (mod p?).

k=1
We begin with few preliminary results which we shall need for our proof
of the main result.

2. PRELIMINARY RESULTS
LEMMA 2.1. For a prime p > 3 and for any integer k =1,2,....,p— 1,

<5> (%)

D2 (mod p?)

k
and
2p —12p
©) (,7,) =02 anod ).
Proof. Since 2p — j = —j (mod p), it follows that
2p\  2pllj5i(2p )
k ok (B—1)
2
= (—1)1“1% (mod p?).

As the binomial coefficient (p%fk’) = (pz_pk), a similar calculation establishes the
next congruence. [
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We shall also need the following version of the well-known Wolstenholme’s

theorem (see Theorem 2 in [1]):

(7)

p

<2p> =2 (mod p?).

We now provide a short proof of this congruence. Note that

p—1 p—1 1 p—1 1
[Ta-2p/5) = 1-2p> —+@p)* > ==
j=1 =17 1<j<i<p1’
(8) = 1 (mod p?)
since
p—1
1 1
7 = —3Pp Bp—3 (mOd pg)
k 3
k=1
= 0 (mod p?)
and
1 D) (=) &=
2 2 - ; P Z )
. J — J - —J
1<j<k<p—1 j=1 j=1 7=1
= 0 (mod p)
See Lemma 2 in [5] for the proof of the two previous congruences.
It then follows that
p—1 p—1 p—1
[Ter—i=1]-i0-2p/5) = V)P -0 -2p/9)
j=1 j=1 j=1
= (p—1)! (modp’)
Therefore

<2p) _ L))

p p (p—1)
_1\p—1(y _

= 2< 1)(p _(11))! b! (mod p3)
= 2 (mod p?),

which establishes (7).

We begin our proof of the main result by first expressing pg,(2)? in terms

of certain sums.
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LEMMA 2.2. For a prime p > 3,
p—1 Qk p—1
O 2Tt o7
k=1 k=1
Proof. Since (1 + p/k) (1 —p/k) =1 (mod p?), it follows that
op+k ok k
= 2p = 2]77(
p+k k(1+p/k) k

Now, as by definition, 2pgy,(2) = 2P — 2 and 2 = 2 (mod p) by Fermat’s little
theorem, we see that

op+k

= —4pgy(2)* — 6g,(2 2pz (mod p?).

1 —p/k) (mod p°)

T2 = SR nT L )
—ptk N — k2
Llok Bolok
= (2pqp(2)+2);k2p;kz (mod p?)

Using Glaisher’s congruence (4) and the preceeding congruence, one then
has

p—1 2k p—1 op+k

k:lk k1p+k

(p(2) +3)(-20,20) =203 =

= —4pgy(2)® — 6gp(2 ZPZ (mod p?).
This completes the proof. [

We now come to the proof of our main result.

3. MAIN RESULT

THEOREM 3.1. For a prime p > 3,
p—1 ok
qp(2)2 = —  (mod p).

k2
k=1

Proof. Putting x = —1 and n = 2p in the identity

e

k=1 k=1
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one obtains

Z ok ZZP <2p> 71)k _ 1) -9 k§2p: <2k:p)]1
=1
Uk

Splitting up the sums on both sides of the equation, we then have

p p—1

2k 2p+k <2p>1 2p 1

S ey Xy (V)i (7))

e e \k)k = \pt+k)p+k
2%k 2|k

which we rewrite by grouping together the terms containing p in the denomi-
nators as follows:

p=lok  Pol optk 2
2 2P 2r 2% 2p\ 1
—+ ++—2< )
— k zzl +k o p 2 pJ)p
p

p— 1
1 2 1
) N AHD AN
— k p+k)p+k’
?k 2\k
Note that
2P 2% -2 2 (2?-2)2 222 4
—+=— = +-+ +4 + —
P 2p p P 2p 2p 2p

= 2¢p(2) + 2pgp(2)° + 44p(2) +

(- () 20 i

and

by the congruence in (7). Thus equation (10), by using Lemma 2.2, as well as
the congruences (5) and (6), can be simpliﬁed as follows

p—1 ok
S G = 252
k=1

m
p—1
2p _
(11) 2;M(—1)k L' (mod p?).
2|k

However, since the right hand side of (11) is congruent modulo p? to

p—1 1 p—1 1
4]92? —4]02 52

= k=
2k 20k
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it vanishes mod p? (see Theorem 1 in [5]).
Therefore the congruence in (11) reduces to

p—1 ok
qp(2)2 = - Z 2 (mod p)
k=1

which is Granville’s congruence. [
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