A CONGRUENCE FOR THE SQUARE OF THE FERMAT QUOTIENT

S. KHONGSIT, A. M. BUHPHANG*, and P. K. SAIKIA

Communicated by Alexandru Zaharescu

For a prime $p>3$, it has been known for the last hundred years that the Fermat quotient $q_{p}(2)=\frac{2^{p-1}-1}{p}$ satisfies the congruence

$$
q_{p}(2) \equiv-\frac{1}{2} \sum_{k=1}^{p-1} \frac{2^{k}}{k} \quad(\bmod p)
$$

In 2004, A. Granville proved the following extension

$$
q_{p}(2)^{2} \equiv-\sum_{k=1}^{p-1} \frac{2^{k}}{k^{2}} \quad(\bmod p)
$$

of the congruence. We shall present an elementary proof of Granville's congruence.

AMS 2010 Subject Classification: Primary 11A07, Secondary 11A41.
Key words: prime, Fermat quotient, congruence.

1. INTRODUCTION

For an odd prime p and an integer a such that $p \nmid a$, the Fermat quotient $q_{p}(a)$ is defined as $q_{p}(a)=\left(a^{p-1}-1\right) / p$, which is an integer, by Fermat's little theorem.

For a prime $p>3$, Glaisher [2], in 1901, proved that,

$$
\begin{equation*}
q_{p}(2) \equiv-\frac{1}{2} \sum_{k=1}^{p-1} \frac{2^{k}}{k} \quad(\bmod p) \tag{1}
\end{equation*}
$$

Remarkably, after a hundred years the following striking extension

$$
\begin{equation*}
q_{p}(2)^{2} \equiv-\sum_{k=1}^{p-1} \frac{2^{k}}{k^{2}} \quad(\bmod p) \tag{2}
\end{equation*}
$$

[^0]of Glaisher's congruence was conjectured by L. Skula and later proved by A. Granville [3] in 2004.

In this paper we present an elementary proof of Granville's congruence. While Granville employed anti-derivatives involving Mirimanoff polynomials, our proof is based on the identity

$$
\begin{equation*}
\sum_{k=1}^{n} \frac{(1-x)^{k}}{k}=\sum_{k=1}^{n}\binom{n}{k} \frac{(-1)^{k}}{k}\left(x^{k}-1\right) \tag{3}
\end{equation*}
$$

which holds for any positive integer n and any real number x. The identity was also used in [5] to prove the following generalization of Glaisher's congruence modulo p^{3} :

$$
\sum_{k=1}^{p-1} \frac{2^{k}}{k}+2 q_{p}(2) \equiv-\frac{7}{12} p^{2} B_{p-3} \quad\left(\bmod p^{3}\right)
$$

which was earlier proved by Z. H. Sun in [8]. Note that the above congruence modulo p^{2} yields

$$
\begin{equation*}
q_{p}(2) \equiv-\frac{1}{2} \sum_{k=1}^{p-1} \frac{2^{k}}{k} \quad\left(\bmod p^{2}\right) \tag{4}
\end{equation*}
$$

We begin with few preliminary results which we shall need for our proof of the main result.

2. PRELIMINARY RESULTS

Lemma 2.1. For a prime $p>3$ and for any integer $k=1,2, \ldots, p-1$,

$$
\begin{equation*}
\binom{2 p}{k} \equiv(-1)^{k-1} \frac{2 p}{k} \quad\left(\bmod p^{2}\right) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\binom{2 p}{p+k} \equiv(-1)^{k-1} \frac{2 p}{k} \quad\left(\bmod p^{2}\right) . \tag{6}
\end{equation*}
$$

Proof. Since $2 p-j \equiv-j(\bmod p)$, it follows that

$$
\begin{aligned}
\binom{2 p}{k} & =\frac{2 p}{k} \frac{\prod_{j=1}^{k-1}(2 p-j)}{(k-1)!} \\
& \equiv(-1)^{k-1} \frac{2 p}{k} \quad\left(\bmod p^{2}\right)
\end{aligned}
$$

As the binomial coefficient $\binom{2 p}{p+k}=\binom{2 p}{p-k}$, a similar calculation establishes the next congruence.

We shall also need the following version of the well-known Wolstenholme's theorem (see Theorem 2 in [1]):

$$
\begin{equation*}
\binom{2 p}{p} \equiv 2 \quad\left(\bmod p^{3}\right) \tag{7}
\end{equation*}
$$

We now provide a short proof of this congruence. Note that

$$
\begin{align*}
\prod_{j=1}^{p-1}(1-2 p / j) & =1-2 p \sum_{j=1}^{p-1} \frac{1}{j}+(2 p)^{2} \sum_{1 \leq j<l \leq p-1}^{p-1} \frac{1}{j l}-\ldots \\
& \equiv 1\left(\bmod p^{3}\right) \tag{8}
\end{align*}
$$

since

$$
\begin{aligned}
\sum_{k=1}^{p-1} \frac{1}{k} & \equiv-\frac{1}{3} p^{2} B_{p-3} \quad\left(\bmod p^{3}\right) \\
& \equiv 0 \quad\left(\bmod p^{3}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
2 \sum_{1 \leq j<k \leq p-1} \frac{1}{j k} & =\left(\sum_{j=1}^{p-1} \frac{1}{j}\right)\left(\sum_{j=1}^{p-1} \frac{1}{k}\right)-\sum_{j=1}^{p-1} \frac{1}{j^{2}} \\
& \equiv 0(\bmod p)
\end{aligned}
$$

See Lemma 2 in [5] for the proof of the two previous congruences. It then follows that

$$
\begin{aligned}
\prod_{j=1}^{p-1}(2 p-j)=\prod_{j=1}^{p-1}-j(1-2 p / j) & \equiv(-1)^{p-1}(p-1)!\prod_{j=1}^{p-1}(1-2 p / j) \\
& \equiv(p-1)!\left(\bmod p^{3}\right)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\binom{2 p}{p} & =\frac{2 p}{p} \frac{\prod_{j=1}^{p-1}(2 p-j)}{(p-1)!} \\
& \equiv 2 \frac{(-1)^{p-1}(p-1)!}{(p-1)!}\left(\bmod p^{3}\right) \\
& \equiv 2\left(\bmod p^{3}\right)
\end{aligned}
$$

which establishes (7).
We begin our proof of the main result by first expressing $p q_{p}(2)^{2}$ in terms of certain sums.

Lemma 2.2. For a prime $p>3$,

$$
\begin{equation*}
\sum_{k=1}^{p-1} \frac{2^{k}}{k}+\sum_{k=1}^{p-1} \frac{2^{p+k}}{p+k} \equiv-4 p q_{p}(2)^{2}-6 q_{p}(2)-2 p \sum_{k=1}^{p-1} \frac{2^{k}}{k^{2}} \quad\left(\bmod p^{2}\right) \tag{9}
\end{equation*}
$$

Proof. Since $(1+p / k)(1-p / k) \equiv 1\left(\bmod p^{2}\right)$, it follows that

$$
\frac{2^{p+k}}{p+k}=2^{p} \frac{2^{k}}{k(1+p / k)} \equiv 2^{p} \frac{2^{k}}{k}(1-p / k) \quad\left(\bmod p^{2}\right)
$$

Now, as by definition, $2 p q_{p}(2)=2^{p}-2$ and $2^{p} \equiv 2(\bmod p)$ by Fermat's little theorem, we see that

$$
\begin{aligned}
\sum_{k=1}^{p-1} \frac{2^{p+k}}{p+k} & \equiv 2^{p} \sum_{k=1}^{p-1} \frac{2^{k}}{k}-2 p \sum_{k=1}^{p-1} \frac{2^{k}}{k^{2}}\left(\bmod p^{2}\right) \\
& \equiv\left(2 p q_{p}(2)+2\right) \sum_{k=1}^{p-1} \frac{2^{k}}{k}-2 p \sum_{k=1}^{p-1} \frac{2^{k}}{k^{2}} \quad\left(\bmod p^{2}\right)
\end{aligned}
$$

Using Glaisher's congruence (4) and the preceeding congruence, one then has

$$
\begin{aligned}
\sum_{k=1}^{p-1} \frac{2^{k}}{k}+\sum_{k=1}^{p-1} \frac{2^{p+k}}{p+k} & \equiv\left(2 p q_{p}(2)+3\right)\left(-2 q_{p}(2)\right)-2 p \sum_{k=1}^{p-1} \frac{2^{k}}{k^{2}} \\
& \equiv-4 p q_{p}(2)^{2}-6 q_{p}(2)-2 p \sum_{k=1}^{p-1} \frac{2^{k}}{k^{2}}\left(\bmod p^{2}\right)
\end{aligned}
$$

This completes the proof.
We now come to the proof of our main result.

3. MAIN RESULT

Theorem 3.1. For a prime $p>3$,

$$
q_{p}(2)^{2} \equiv-\sum_{k=1}^{p-1} \frac{2^{k}}{k^{2}} \quad(\bmod p)
$$

Proof. Putting $x=-1$ and $n=2 p$ in the identity

$$
\sum_{k=1}^{n} \frac{(1-x)^{k}}{k}=\sum_{k=1}^{n}\binom{n}{k} \frac{(-1)^{k}}{k}\left(x^{k}-1\right)
$$

one obtains

$$
\sum_{k=1}^{2 p} \frac{2^{k}}{k}=\sum_{k=1}^{2 p}\binom{2 p}{k} \frac{(-1)^{k}}{k}\left((-1)^{k}-1\right)=2 \sum_{\substack{k=1 \\ 2 \nmid k}}^{2 p}\binom{2 p}{k} \frac{1}{k}
$$

Splitting up the sums on both sides of the equation, we then have

$$
\sum_{k=1}^{p} \frac{2^{k}}{k}+\sum_{k=1}^{p} \frac{2^{p+k}}{p+k}=2 \sum_{\substack{k=1 \\ 2 \nmid k}}^{p}\binom{2 p}{k} \frac{1}{k}+2 \sum_{\substack{k=1 \\ 2 \mid k}}^{p-1}\binom{2 p}{p+k} \frac{1}{p+k}
$$

which we rewrite by grouping together the terms containing p in the denominators as follows:

$$
\begin{align*}
& \sum_{k=1}^{p-1} \frac{2^{k}}{k}+\sum_{k=1}^{p-1} \frac{2^{p+k}}{p+k}+\frac{2^{p}}{p}+\frac{2^{2 p}}{2 p}-2\binom{2 p}{p} \frac{1}{p} \\
& \quad=2 \sum_{\substack{k=1 \\
2 \nmid k}}^{p-1}\binom{2 p}{k} \frac{1}{k}+2 \sum_{\substack{k=1 \\
2 \mid k}}^{p-1}\binom{2 p}{p+k} \frac{1}{p+k} . \tag{10}
\end{align*}
$$

Note that

$$
\begin{aligned}
\frac{2^{p}}{p}+\frac{2^{2 p}}{2 p} & =\frac{2^{p}-2}{p}+\frac{2}{p}+\frac{\left(2^{p}-2\right)^{2}}{2 p}+4 \frac{2^{p}-2}{2 p}+\frac{4}{2 p} \\
& =2 q_{p}(2)+2 p q_{p}(2)^{2}+4 q_{p}(2)+\frac{4}{p}
\end{aligned}
$$

and

$$
\frac{2}{p}\left(2-\left(\frac{2 p}{p}\right)\right) \equiv 0 \quad\left(\bmod p^{2}\right)
$$

by the congruence in (7). Thus equation (10), by using Lemma 2.2 , as well as the congruences (5) and (6), can be simplified as follows

$$
\begin{align*}
-2 p q_{p}(2)^{2}-2 p \sum_{k=1}^{p-1} \frac{2^{k}}{k^{2}} \equiv & 2 \sum_{\substack{k=1 \\
2 \nmid k}}^{p-1} \frac{2 p}{k^{2}}(-1)^{k-1}+ \\
& 2 \sum_{\substack{k=1 \\
2 \mid k}}^{p-1} \frac{2 p}{k(p+k)}(-1)^{k-1} \quad\left(\bmod p^{2}\right) \tag{11}
\end{align*}
$$

However, since the right hand side of (11) is congruent modulo p^{2} to

$$
4 p \sum_{\substack{k=1 \\ 2 \nmid k}}^{p-1} \frac{1}{k^{2}}-4 p \sum_{\substack{k=1 \\ 2 \mid k}}^{p-1} \frac{1}{k^{2}},
$$

it vanishes $\bmod p^{2}$ (see Theorem 1 in [5]).
Therefore the congruence in (11) reduces to

$$
q_{p}(2)^{2} \equiv-\sum_{k=1}^{p-1} \frac{2^{k}}{k^{2}} \quad(\bmod p)
$$

which is Granville's congruence.

REFERENCES

[1] D. F. Bailey, Some Binomial Coefficient Congruences. Appl. Math. Lett. 4 (1991), 4, 1-5.
[2] J. W. L. Glaisher, On the residues of the sums of the products of the first p-1 numbers and their powers to modulo p^{2} or p^{3}. Q. J. Math. 31 (1900), 321-353.
[3] A. Granville, The square of the Fermat quotient. Integers 4 (2004), A22.
[4] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory. GTM 84, Springer Verlag, New York Heidelberg Berlin.
[5] S. Khongsit and P. K. Saikia, A Congruence for the Fermat quotient modulo p ${ }^{3}$. Integers 16 (2016), A52.
[6] W. Kohnen, A simple congruence modulo p. Amer. Math. Monthly 104 (1997), 444-445.
[7] J. Riordan, Combinatorial Identities. John Wiley and Sons, Inc. New York Sydney.
[8] Z. H. Sun, Congruences involving Bernoulli and Euler numbers. J. Number Theory 128 (2008), 280-312.

Received February 22, 2018

Lady Keane College
Department of Mathematics
793001 Shillong, Meghalaya, India
shailanstar@gmail.com
North Eastern Hill University
Department of Mathematics Permanent Campus
Shillong-793022, Meghalaya, India
ardeline17@gmail.com, promode4@gmail.com

[^0]: * Corresponding author

