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A recent question in generalized Ramsey theory is that for fixed positive integers
s ≤ t, at least how many vertices can be covered by the vertices of no more than
s monochromatic members of the family F in every edge coloring of Kn with t
colors. This is related to an old problem of Chung and Liu: for graph G and
integers 1 ≤ s < t what is the smallest positive integer n = Rs,t(G) such that
every coloring of the edges of Kn with t colors contains a copy of G with at most
s colors. We answer this question when G is a star and s is either t− 1 or t− 2
generalizing the well-known result of Burr and Roberts.
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1. INTRODUCTION

Ramsey theory is an area of combinatorics which uses techniques from
many branches of mathematics and is currently among the most active areas
in combinatorics. Let G1, . . . , Gc be graphs. The Ramsey number denoted by
r(G1, . . . , Gc) is defined to be the least number p such that if the edges of the
complete graph Kp are arbitrarily colored with c colors, then for some i the
spanning subgraph whose edges are colored with the i-th color contains Gi.
More information about the Ramsey numbers of known graphs can be found
in the survey [13].

There are various types of Ramsey numbers that are important in the
study of classical Ramsey numbers and also hypergraph Ramsey numbers. A
question recently proposed by Gyárfás et al. in [6] is that for fixed positive
integers s ≤ t, at least how many vertices can be covered by the vertices of no
more than s monochromatic members of the family F in every edge coloring of
Kn with t colors. This is related to an old problem of Chung and Liu [4]: for a
given graph G and for fixed 1 ≤ s < t, find the smallest n = Rs,t(G) such that
in every t-coloring of the edges of Kn there is a copy of G colored with at most
s colors. Note that for s = 1 this is the same Ramsey number rt(G). Several
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problems and interesting conjectures was presented in [6]. A basic problem
here is to find the largest s-colored element of F that can be found in every
t-coloring of Kn. The answer for matchings when s = t − 1 was given in [6];
every t-coloring of Kn contains a (t − 1)-colored matching of size k provided
that n ≥ 2k + [ k−1

2t−1−1
]. One can say more; we can guarantee the existence

of a (t − 1)-colored path on 2k vertices instead of a matching of size k. This
was proved for t = 2, 3, 4, 5 in [5], [12], [10], [9], respectively and in general
in [1]. The paper [8] contains similar results for linear forests. For complete
graphs the problem was partially answered in [4] and [7]. Naturally, for these
graphs the answer is very few known and there are many open problems. For
stars, when s = 1 it is the well-know result of Burr and Roberts [2], and when
s = t− 1 = 2 it was determined in [3].

In this paper, we find the value of Rs,t(G) when G is a star and s is either
t − 1 or t − 2. This will generalize the results of [2] and [3]. The paper is
organized as follows. In section 2, we give the upper bound and lower bound
of Rt−l,t(K1,n) for given integer l ≥ 1. In sections 3 and 4, we determine
the values of Rt−1,t(K1,n) and Rt−2,t(K1,n), respectively. We only concerned
with undirected simple finite graphs and for the vertex v of G the set of edges
adjacent to v in G is denoted by EG(v).

2. SOME BOUNDS

In this section, we find some bounds for Rt−l,t(K1,n). The Turán number
ex(H, p) is the maximum number of edges in a graph on p vertices which is H-
free i.e., it does not have H as a subgraph. It is easily seen that ex(K1,n, p) ≤
p(n−1)

2 . This fact yields an upper bound for Rt−l,t(K1,n) as we see in the
following theorem.

Theorem 2.1. Suppose that t′ = [t/l]. Then Rt−l,t(K1,n) ≤ p for

p > t′n−1
t′−1 .

Proof. Consider an edge coloring ofKp with t colors. Divide these t colors
into t′ = [t/l] classes each of which contains l colors except the last one which
may contains more colors. There exist l colors with at most

[
1
t′

(
p
2

)]
edges.

Thus the remaining t− l colors appear on at least
(
p
2

)
−

[
1
t′

(
p
2

)]
edges and the

existence of K1,n with these t− l colors is guaranteed if(
p

2

)
−
[
1

t′

(
p

2

)]
>

p(n− 1)

2
.

So if p > t′n−1
t′−1 , the above inequality is fulfilled and there exists a K1,n with at

most t− l colors.
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The next theorem gives a lower bound for Rt−l,t(K1,n).

Theorem 2.2. Let y =
[
t(n−l+1)−l

t−l

]
. Then Rt−l,t(K1,n) > y − ϵ where

ϵ = 1 if y is odd and ϵ = 0, otherwise.

Proof. Let p = y − ϵ. It is sufficient to give an edge coloring of Kp such
that the set of colors appearing on the edges of every K1,n contains at least
t− l+1 colors. By Vizing’s theorem, there exists a proper edge coloring of Kp

with p − 1 colors. Let p − 1 = qt + r, 0 ≤ r ≤ t − 1. We partition the above

p − 1 colors into t classes each of which contains q =
[
p−1
t

]
colors except the

last one which may contains (p− 1)− q(t− 1) colors. Every K1,n contains at
least t− l + 1 colors if

n > (t− l − 1)q + p− 1− (t− 1)q = (p− 1)− lq.

The above inequality holds if p−1
t ≥ p−n−1

l + 1 or equivalently, p ≤ t(n−l+1)−l
t−l

as asserted in Theorem 2.2. So there is no K1,n with at most t− l colors, that
is, Rt−l,t(K1,n) > p.

Combining Theorems 2.1 and 2.2, we have an approximation of the value
of Rt−l,t(K1,n). For the small values of l this approximation is closer to the
exact value. In particular, for l = 1, 2, we have the following corollaries.

Corrolary 2.3. Let x =
[
nt−1
t−1

]
. Then

x ≤ Rt−1,t(K1,n) ≤ x+ 1.

In particular, when x is even, Rt−1,t(K1,n) = x+ 1.

Corrolary 2.4. Let t ≥ 4, t′ = [t/2] and x =
[
nt′−1
t′−1

]
. Then

x− 2 ≤ Rt−2,t(K1,n) ≤ x+ 1.

In particular, when
[
t(n−1)−2

t−2

]
is even, x− 1 ≤ Rt−2,t(K1,n) ≤ x+ 1.

Remark. Let x be odd. Consider the complete graph Kx with its vertices
v1, . . . , vx respectively placed on a circle. For vx, there exists corresponding
matching Mvx containing (x− 1)/2 parallel edges

v1vx−1, v2vx−2, . . . , v(x−1)/2v(x+1)/2.

Order these edges as above. Similarly, for each vertex vi, 1 ≤ i ≤ x− 1, there
exists the matching Mvi containing (x− 1)/2 ordered edges. These matchings
are used to construct certain edge colorings of Kx, for example in the proof of
following lemmas.
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Lemma 2.5. Suppose that q is even and x− 1 = tq. There exists an edge
coloring of Kx with t colors such that the set of all neighbors of every vertex
contains q edges of any color.

Proof. Partition the vertices of Kx as a single vertex vx plus q classes
T1, . . . , Tq where Ti contains t vertices say vi1 , . . . , vit . Set q/2 classes T1, . . . , Tq/2

on one side of vx and q/2 classes Tq/2+1, . . . , Tq on the other side of vx (see (a)
of figure 1). For each vertex vij , 1 ≤ j ≤ t and 1 ≤ i ≤ q, color all (x − 1)/2
parallel edges in Mvij with color j. Moreover, for vertex vx, color the edge
vijv(q+1−i)j in Mvx with j. The result is a coloring of Kx with the property
that the set of all neighbors of every vertex contains q edges of any color, as
desired.
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Fig. 1 – Partitions of the vertices of Kx

Lemma 2.6. Suppose that x = tq + r is odd and 2 ≤ r ≤ t − 1. There
exists an edge coloring of Kx with t colors such that the set of all neighbors of
every vertex contains at least q edges of any color.

Proof. Partition the vertices ofKx as v1, v2, . . . , vr plus q classes T1, . . . , Tq

where Ti, 1 ≤ i ≤ q, contains t vertices say vi1 , . . . , vit (see (b) of figure 1). For
each vertex vij color all (x − 1)/2 parallel edges in Mvij

with color j. More-

over, for vertex vr (also v1) color the parallel edges in Mvr (also in Mv1) with
1, 2, . . . , t alternatively (also t, t− 1, . . . , 1 alternatively). Color the remaining
edges i.e., parallel edges corresponding to v2, . . . , vr−1 arbitrarily. The result is
a coloring of the edges of Kx with the property that for any vertex, each color
appears on at least q edges, as desired.
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3. THE VALUE OF R t−1,t(K1,n)

In this section, using Corollary 2.3, we determine the exact value of
Rt−1,t(K1,n).

Theorem 3.1. Suppose that x =
[
nt−1
t−1

]
and q = [xt ]. Then

Rt−1,t(K1,n) =

{
x if x = tq + 1 for x, q odd,

x+ 1 otherwise.

Proof. First note that since x = [nt−1
t−1 ], then nt−1

t−1 − 1 < x ≤ nt−1
t−1 , or

equivalently x− x/t+1/t ≤ n < x− x/t+1 and so n = x− [x/t] = x− q. If x
is even, then by Corollary 2.3, Rt−1,t(K1,n) = x + 1. So we may assume that
x is odd. We consider three cases as follows.

Case 1. x = tq + 1, where q is odd.

Consider an edge coloring of Kx with t colors. Suppose first that any
color appears on q edges adjacent to every vertex. Consider a color c, then
the subgraph induced by the edges with color c is q-regular and so the sum of
degrees of its vertices is equal to the odd number xq, a contradiction. Thus
there exists a vertex v and a color c with the property that c appears on at
most q−1 edges adjacent to v. Then there are at least x−1−(q−1) = x−q = n
edges adjacent to v such that c does not appear on these edges. Hence there
exists a subgraph K1,n without color c in Kx i.e., Rt−1,t(K1,n) ≤ x and so by
Corollary 2.3, Rt−1,t(K1,n) = x.

Case 2. x = tq + 1, where q is even.

In the coloring of Kx given by Lemma 2.5, every K1,n contains all t colors
i.e., Rt−1,t(K1,n) > x and so by Corollary 2.3, Rt−1,t(K1,n) = x+ 1.

Case 3. x = tq + r, where 2 ≤ r ≤ t− 1.

In the coloring of Kx given by Lemma 2.6, every K1,n contains all t colors
i.e., Rt−1,t(K1,n) > x and so by Corollary 2.3, Rt−1,t(K1,n) = x+ 1.

As a corollary, we have the value of standard Ramsey number r2(K1,n)
(see [13]).

Corrolary 3.2. r2(K1,n) = 2n − ϵ where ϵ = 1 if n is even and ϵ = 0,
otherwise.
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4. THE VALUE OF Rt−2,t(K1,n)

In this section, we determine Rt−2,t(K1,n). Corollary 2.4 gives a lower
bound and an upper bound for Rt−2,t(K1,n) for t ≥ 4. Let us first settle the
case t = 3. It is also a special case of multi-color Ramsey numbers for stars
obtained in [2].

Lemma 4.1. There exists an edge coloring of K3n−2 with 3 colors such
that every vertex contains exactly n− 1 edges from each color.

Proof. If 3n − 2 is even, then Vizing’s Theorem gives a proper edge col-
oring of K3n−2 with 3n− 3 colors. Divide these 3n− 3 colors into 3 new color
classes each of which contains n− 1 colors to get the desired coloring of K3n−2

with 3 colors. Thus we may assume that 3n−2 is odd. Then K3n−2 has 3n−2
matchings each of which contains (3n− 3)/2 parallel edges. For every vertex,
color the corresponding parallel edges with 1, 2 and 3 respectively to get the
desired coloring.

Theorem 4.2. It holds R1,3(K1,n) = 3n− 1.

Proof. Consider an arbitrary edge coloring of K3n−1 with 3 colors 1, 2,
3 and a vertex v. Suppose that 3 is a color with maximum number of edges
adjacent to v. So two colors 1 and 2 appear on at most 2[3n−2

3 ] edges adjacent
to v. It is easily seen that 3n − 2 − 2[3n−2

3 ] ≥ n and so we have a K1,n with
color 3, i.e. R1,3(K1,n) ≤ 3n− 1. To prove R1,3(K1,n) ≥ 3n− 1, apply Lemma
4.1. In this coloring of K3n−2 every K1,n contains at least 2 colors and so
R1,3(K1,n) > 3n− 2.

For general case t ≥ 4, we let R stands for Rt−2,t(K1,n), t
′ = [t/2] and

x = [nt
′−1

t′−1 ].

Lemma 4.3. Suppose that x − 2 = tq + r where 0 ≤ r ≤ t − 1 and l is
a natural number. Then x − l − 2q < n iff t > (2r + 4)/l when t is even and
t > 1 + (2q + 2r + 4)/l, otherwise.

Proof. Since n = x − [ xt′ ], we have x − l − 2q < n iff [ xt′ ] < 2q + l or
equivalently, x

t′ < 2q+ l. So x− l− 2q < n iff t > (2r+4)/l when t is even and
t > 1 + (2q + 2r + 4)/l, otherwise.

Theorem 4.4, states the necessary and sufficient conditions for R being
x+ 1.
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Theorem 4.4. Suppose that x − 2 = tq + r where 0 ≤ r ≤ t − 1. Then
R = x+ 1 iff one the following conditions holds.

(a) r = t− 1 > 2q + 4 and x is even.
(b) r = t− 1 > 2q + 4 and x and t are odd.
(c) r = t− 1, x is odd and t and q + 1 are even.
(d) r < t− 2 and t > 2r + 4 is even.
(e) r < t− 2 and t > 2q + 2r + 5 is odd.

Proof. We first suppose that x is even and we consider three cases as
follows.

Case 1.1. r = t− 1.
Note that since x − 1 = t(q + 1) is odd, t can’t be even. Let t > 2q + 5.

To prove R = x+ 1, using Corollary 2.4, it is enough to give a coloring of Kx

with t colors such that every K1,n contains at least t − 1 colors. By Vizing’s
Theorem, there exists a proper edge coloring of Kx with x − 1 colors. We
partition these x − 1 colors into t color classes each of which contains q + 1
colors to get a coloring of Kx with t colors. Then every K1,n contains at least
t−1 colors iff x−1−2(q+1) < n which holds by the assertion and Lemma 4.3
for l = 3. Now let t ≤ 2q + 5. Suppose that an arbitrary edge coloring of Kx

with t colors is given. For each vertex v, there are least two colors that appear
on at most 2(q + 1) edges of EG(v), since x− 1 = t(q + 1). Using Lemma 4.3
for l = 3, at least n edges of EG(v) are colored with the remaining t− 2 colors,
that is, R ≤ x.

Case 1.2. r = t− 2.
We now prove R ̸= x + 1 by showing that R ≤ x. Suppose that an

arbitrary edge coloring of Kx with t colors is given. For each vertex v, there are
two colors that appear on at most 2q+1 edges of EG(v), since x−1 = t(q+1)−1.
Using Lemma 4.3 for l = 2, at least n edges of EG(v) are colored with the
remaining t− 2 colors, that is, there exists a K1,n with at most t− 2 colors.

Case 1.3. r < t− 2.
Let either t > 2r+4 be even or t > 2q+2r+5 be odd. To prove R = x+1,

it is enough to give a coloring of Kx with t colors such that every K1,n contains
at least t − 1 colors. By Vizing’s Theorem, there is a proper edge coloring of
Kx with x−1 colors. We partition these x−1 colors into t− r−1 color classes
each of which contains q colors plus r + 1 color classes each of which contains
(q + 1) colors to get a coloring of Kx with t colors. Then every K1,n contains
at least t− 1 colors iff x− 1− 2q < n which holds by the assertion and Lemma
4.3 for l = 1, that is, R > x.

Now suppose that either t ≤ 2r+4 or t ≤ 2q+2r+5 is odd. Suppose that
an arbitrary edge coloring ofKx is given. For each vertex v, there are two colors
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that appear on at most 2q edges of EG(v), since x−1 = tq+r+1 < t(q+1)−1.
Hence by the assertion and Lemma 4.3 for l = 1, at least n edges of EG(v) are
colored with the remaining t− 2 colors, that is, R ≤ x.

Now suppose that x is odd. We consider three cases as follows.

Case 2.1. r = t− 1.

Let either t > 2q + 5 be odd or both t and q + 1 be even. We show that
R = x + 1. Note that since x − 1 = t(q + 1) is even, if t is odd, then q + 1
is even. By Lemma 2.5, there exists an edge coloring of Kx with t colors such
that for each vertex v, EG(v) contains q+1 edges of any color. What is left is
similar to the Case 1.1. If t ≤ 2q+5 is odd and q+1 is even, similar argument
as in the Case 1.1 yields R ≤ x. Assume that q+1 is odd and hence t is even.
Suppose that an arbitrary edge coloring of Kx is given. If for each vertex v,
EG(v) contains q + 1 edges of any color, the induced subgraph on the edges
with a fixed color is (q + 1)-regular with x vertices, a contradiction. So there
exists a vertex v and a color c such that EG(v) contains at most q edges with
color c. So there are two colors that appear on at most 2q+ 1 edges of EG(v).
Since x − 1 − (2q + 1) ≥ n, at least n edges of EG(v) are colored with the
remaining t− 2 colors, that is, R ≤ x.

Case 2.2. r = t− 2.

By the same argument as the Case 1.2, we get R ≤ x.

Case 2.3. r < t− 2.

Let either t > 2r + 4 be even or t > 2q + 2r + 5 be odd. By Lemma 2.6,
there exists an edge coloring of Kx such that for each vertex v, EG(v) contains
at least q edges of any color. What is left is similar to the Case 1.3.

Theorem 4.5, states the necessary and sufficient conditions for R being x.

Theorem 4.5. Suppose that x − 2 = tq + r where 0 ≤ r ≤ t − 1. Then
R = x iff one the following conditions holds.

(a) r = t− 1 and x and q + 1 are odd.

(b) r < t− 2 and t ≤ 2r + 4 is even.

(c) r < t− 2 and q + r + 3 < t ≤ 2q + 2r + 5 is odd.

Proof. Let p = x− 1, then p− 1 = tq+ r. We first suppose that p is even
and consider three cases as follows.

Case 1.1. r = t− 1.

Let t be even and q + 1 be odd. By Theorem 4.4, R ≤ x. By Vizing’s
Theorem there exists a proper edge coloring of Kp with p − 1 colors. We
partition these p−1 colors into t−1 classes each of which contains q+1 colors
plus a class which contains q colors to get a coloring of Kp with t colors. Then
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every K1,n contains at least t− 1 colors iff p− 1− (2q+1) < n which holds by
the assertion and Lemma 4.3 for l = 3, that is, R > p = x− 1 and so R = x.

If both t and q + 1 are even then R > x by Theorem 4.4. Note that the
case when both t and q + 1 are odd is impossible, since p = t(q + 1) is even.

Assume that t is odd and q + 1 is even. If t > 2q + 5, then R ̸= x
by Theorem 4.4. Let t ≤ 2q + 5 be odd and q + 1 be even. Suppose that
an arbitrary edge coloring of G = Kp with t colors is given. For each vertex
v, there are two colors that appear on at most 2q + 1 edges of EG(v), since
p− 1 = t(q + 1)− 1. Hence by Lemma 4.3 for l = 3, at least n edges of EG(v)
are colored with the remaining t− 2 colors, that is, R ≤ p = x− 1.

Case 1.2. r = t− 2.

Suppose that an arbitrary edge coloring of G = Kp with t colors is given.
For each vertex v, there are two colors that appear on at most 2q edges of
EG(v), since p − 1 = t(q + 1) − 2. Hence by Lemma 4.3 for l = 2, at least n
edges of EG(v) are colored with the remaining t−2 colors, that is, R ≤ p = x−1.

Case 1.3. r < t− 2.

Let either t ≤ 2r + 4 be even or q + r + 3 < t ≤ 2q + 2r + 5 be odd. By
Theorem 4.4, R ≤ x. By Vizing’s Theorem, there exists a proper edge coloring
of Kp with p− 1 colors. We partition these p− 1 colors into t− r color classes
each of which contains q colors plus r color classes each of which contains q+1
colors to get a coloring of Kp with t colors. Then every K1,n contains at least
t− 1 colors iff p− 1− 2q < n which holds by the assertion and Lemma 4.3 for
l = 2, that is, R > p = x− 1 and so R = x.

If either t > 2r + 4 is even or t > 2q + 2r + 5 is odd, then R ̸= x by
Theorem 4.4. Assume that t ≤ q + r + 3 is odd. Suppose that an arbitrary
edge coloring of G = Kp with t colors is given. For each vertex v, there are
two colors that appear on at most 2q edges of EG(v), since p−1 < t(q+1)−2.
Hence by the assertion and Lemma 4.3 for l = 2, at least n edges of EG(v) are
colored with the remaining t− 2 colors, that is, R ≤ p = x− 1.

Now suppose that p is odd. We consider three cases as follows.

Case 2.1. r = t− 1.

So t and q + 1 are odd. If t > 2q + 5, then by Theorem 4.4, R = x + 1.
Now let t ≤ 2q+5 be odd. Suppose that an arbitrary edge coloring of G = Kp

with t colors is given. For each vertex v, there are two colors that appear on
at most 2q+1 edges of EG(v), since p− 1 = t(q+1)− 1. Hence by Lemma 4.3
for l = 3, at least n edges of EG(v) are colored with the remaining t− 2 colors,
that is, R ≤ p = x− 1.

Case 2.2. r = t− 2.

By the same arguments as the Case 1.2, we get R ≤ p = x− 1.
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Case 2.3. r < t− 2.
Let either t ≤ 2r + 4 be even or q + r + 3 < t ≤ 2q + 2r + 5 be odd. If

r = 0 and t is even, then t = 4 and so x = [nt
′−1

t′−1 ] = 2n−1, which is impossible.
By Lemmas 2.5 and 2.6, there exists an edge coloring of G = Kp with t colors
such that for each vertex v, EG(v) contains at least q edges of any color. What
is left is similar to Case 1.3.

Theorem 4.6, states the necessary and sufficient conditions for R being
x− 1.

Theorem 4.6. Suppose that x − 2 = tq + r where 0 ≤ r ≤ t − 1. Then
R = x− 1 iff one the following conditions holds.

(a) r = 1, 2q+9
3 < t ≤ q + 4 is odd and x is even.

(b) r = 1, 2q+9
3 < t ≤ q + 4 is odd and x is odd.

(c) 1 < r < t− 2 and 2q+2r+7
3 < t ≤ q + r + 3 is odd.

(d) r = t− 2 and either t is even or t > 2q+2r+7
3 is odd.

Proof. Let p = x − 2, then p = tq + r. We first suppose that x is even
and consider five cases as follows.

Case 1.1. r = 0.
If either t is even or t > 2q + 5 is odd, then R ̸= x − 1 by Theorems 4.4

and 4.5. If q+3 < t ≤ 2q+5 is odd, then R ̸= x− 1, by Theorem 4.5. Now let
t ≤ q + 3 be odd. Note that q is even in this case. Suppose that an arbitrary
edge coloring of G = Kp with t colors is given. For each vertex v, there are two
colors that appear on at most 2q−1 edges of EG(v), since p−1 = x−3 = tq−1.
Hence by the assertion and Lemma 4.3 for l = 2, at least n edges of EG(v)
are colored with the remaining t − 2 colors, that is, R ≤ p = x − 2 and so by
Corollary 2.4, R = x− 2.

Case 1.2. r = 1.
Let 2q+9

3 < t ≤ q + 4 be odd. Since t ≤ q + 4, by Theorems 4.4 and 4.5,
R ≤ x − 1. By Vizing’s Theorem, there exists a proper edge coloring of Kp

with p − 1 colors. We partition these p − 1 colors into t color classes each of
which contains q colors to get a coloring of Kp with t colors. Then every K1,n

contains at least t− 1 colors iff x− 3− 2q = p− 1− 2q < n which holds by the
assertion and Lemma 4.3 for l = 3, that is, R > p = x−2 and hence R = x−1.
If either t > q+4 is odd or t is even, then R ̸= x−1, by Theorems 4.4 and 4.5.
Now let t ≤ 2q+9

3 be odd. Suppose that an arbitrary edge coloring of G = Kp

with t colors is given. For each vertex v, there are two colors that appear on at
most 2q edges of EG(v), since p− 1 = x− 3 = tq. Hence by the assertion and
Lemma 4.3 for l = 3, at least n edges of EG(v) are colored with the remaining
t− 2 colors, that is, R ≤ p = x− 2.
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Case 1.3. 1 < r < t− 2.

Let 2q+2r+7
3 < t ≤ q+ r+3 be odd. Since t ≤ q+ r+3, by Theorems 4.4

and 4.5, R ≤ x− 1. By Vizing’s Theorem, there exists a proper edge coloring
of Kp with p − 1 colors. We partition these p − 1 colors into t − r + 1 color
classes each of which contains q colors plus r − 1 color classes each of which
contains q + 1 colors to get a coloring of Kp with t colors. Then every K1,n

contains at least t− 1 colors iff x− 3− 2q = p− 1− 2q < n which holds by the
assertion and Lemma 4.3 for l = 3, that is, R > p = x− 2 and so R = x− 1.

If either t > q+ r+3 is odd or t is even, then R ̸= x− 1 by Theorems 4.4
and 4.5. Now let t ≤ 2q+2r+7

3 be odd. Suppose that an arbitrary edge coloring
of G = Kp with t colors is given. For each vertex v, there are two colors that
appear on at most 2q edges of EG(v), since p−1 = x−3 = tq+r−1 < t(q+1)−3.
Hence by the assertion and Lemma 4.3 for l = 3, at least n edges of EG(v) are
colored with the remaining t− 2 colors, that is, R ≤ p = x− 2.

Case 1.4. r = t− 2.

Let either t be even or t > 2q+2r+7
3 be odd. By Theorems 4.4 and 4.5,

R ≤ x − 1. By Vizing’s Theorem, there exists a proper edge coloring of Kp

with p−1 colors. We partition these p−1 colors into t−3 color classes each of
which contains q + 1 colors plus 3 color classes each of which contains q colors
to get a coloring of Kp with t colors. Then every K1,n contains at least t − 1
colors iff x− 3− 2q = p− 1− 2q < n which holds by the assertion and Lemma
4.3 for l = 3, that is, R > p = x− 2. Therefore R = x− 1.

Now let t ≤ 2q+2r+7
3 be odd. Suppose that an arbitrary edge coloring of

G = Kp with t colors is given. For each vertex v, there are two colors that
appear on at most 2q edges of EG(v), since p− 1 = x− 3 = t(q+1)− 3. Hence
by the assertion and Lemma 4.3 for l = 3, at least n edges of EG(v) are colored
with the remaining t− 2 colors, that is, R ≤ p = x− 2.

Case 1.5. r = t− 1.

Hence t is odd. If t > 2q + 5, then by Theorem 4.4, R ̸= x− 1. Now let
t ≤ 2q + 5 be odd. Using Lemma 4.3 for l = 3, we have x− 3− 2q ≥ n and so
for each edge coloring of G = Kp with t colors, n edges of EG(v) are colored
with at most t− 2 colors, that is R ≤ p = x− 2.

Now suppose that x is odd. We consider five cases as follows.

Case 2.1. r = 0.

The proof is similar to the Case 1.1. Note that when t is odd, q can’t be
even.

Case 2.2. r = 1.

Let 2q+9
3 < t ≤ q+4 be odd and q be even. By Lemma 2.5, there exists an

edge coloring of Kp with t colors such that for every vertex v, EG(v) contains
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q edges of any color. What is left is similar to Case 1.2. Note that the case
when both t and q + 1 are odd is impossible.

Case 2.3. 1 < r < t− 2.
Let 2q+2r+7

3 < t ≤ q + r + 3 be odd. By Lemma 2.6, there exists an edge
coloring of Kp with t colors such that for every vertex v, EG(v) contains q
edges of any color. What is left is similar to Case 1.3.

Case 2.4. r = t− 2.
Let either t be even or t > 2q+2r+7

3 be odd. By Lemma 2.6, there exists an
edge coloring of Kp with t colors such that for every vertex v, EG(v) contains
q edges of any color. What is left is similar to Case 1.4.

Case 2.5. r = t− 1.
If either t is even or t > 2q + 5 is odd, then R ̸= x − 1 by Theorems 4.4

and 4.5. What is left is similar to the Case 1.5.

Corrolary 4.7. R = x − 2 if and only if none of the conditions stated
in Theorems 4.4, 4.5 and 4.6 holds.
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