LARGE STARS WITH FEW COLORS

AMIR KHAMSEH and GHOLAMREZA OMIDI

Communicated by Ioan Tomescu

Abstract

A recent question in generalized Ramsey theory is that for fixed positive integers $s \leq t$, at least how many vertices can be covered by the vertices of no more than s monochromatic members of the family \mathcal{F} in every edge coloring of K_{n} with t colors. This is related to an old problem of Chung and Liu: for graph G and integers $1 \leq s<t$ what is the smallest positive integer $n=R_{s, t}(G)$ such that every coloring of the edges of K_{n} with t colors contains a copy of G with at most s colors. We answer this question when G is a star and s is either $t-1$ or $t-2$ generalizing the well-known result of Burr and Roberts.

AMS 2010 Subject Classification: 05C15, 05C55.
Key words: Ramsey numbers, edge coloring.

1. INTRODUCTION

Ramsey theory is an area of combinatorics which uses techniques from many branches of mathematics and is currently among the most active areas in combinatorics. Let G_{1}, \ldots, G_{c} be graphs. The Ramsey number denoted by $r\left(G_{1}, \ldots, G_{c}\right)$ is defined to be the least number p such that if the edges of the complete graph K_{p} are arbitrarily colored with c colors, then for some i the spanning subgraph whose edges are colored with the i-th color contains G_{i}. More information about the Ramsey numbers of known graphs can be found in the survey [13].

There are various types of Ramsey numbers that are important in the study of classical Ramsey numbers and also hypergraph Ramsey numbers. A question recently proposed by Gyárfás et al. in [6] is that for fixed positive integers $s \leq t$, at least how many vertices can be covered by the vertices of no more than s monochromatic members of the family \mathcal{F} in every edge coloring of K_{n} with t colors. This is related to an old problem of Chung and Liu [4]: for a given graph G and for fixed $1 \leq s<t$, find the smallest $n=R_{s, t}(G)$ such that in every t-coloring of the edges of K_{n} there is a copy of G colored with at most s colors. Note that for $s=1$ this is the same Ramsey number $r_{t}(G)$. Several

This research was in part supported by a grant from IPM (No. 94030059).
problems and interesting conjectures was presented in [6]. A basic problem here is to find the largest s-colored element of \mathcal{F} that can be found in every t-coloring of K_{n}. The answer for matchings when $s=t-1$ was given in [6]; every t-coloring of K_{n} contains a $(t-1)$-colored matching of size k provided that $n \geq 2 k+\left[\frac{k-1}{2^{t-1}-1}\right]$. One can say more; we can guarantee the existence of a $(t-1)$-colored path on $2 k$ vertices instead of a matching of size k. This was proved for $t=2,3,4,5$ in [5], [12], [10], [9], respectively and in general in [1]. The paper [8] contains similar results for linear forests. For complete graphs the problem was partially answered in [4] and [7]. Naturally, for these graphs the answer is very few known and there are many open problems. For stars, when $s=1$ it is the well-know result of Burr and Roberts [2], and when $s=t-1=2$ it was determined in [3].

In this paper, we find the value of $R_{s, t}(G)$ when G is a star and s is either $t-1$ or $t-2$. This will generalize the results of [2] and [3]. The paper is organized as follows. In section 2, we give the upper bound and lower bound of $R_{t-l, t}\left(K_{1, n}\right)$ for given integer $l \geq 1$. In sections 3 and 4 , we determine the values of $R_{t-1, t}\left(K_{1, n}\right)$ and $R_{t-2, t}\left(K_{1, n}\right)$, respectively. We only concerned with undirected simple finite graphs and for the vertex v of G the set of edges adjacent to v in G is denoted by $E_{G}(v)$.

2. SOME BOUNDS

In this section, we find some bounds for $R_{t-l, t}\left(K_{1, n}\right)$. The Turán number $e x(H, p)$ is the maximum number of edges in a graph on p vertices which is H free i.e., it does not have H as a subgraph. It is easily seen that $e x\left(K_{1, n}, p\right) \leq$ $\frac{p(n-1)}{2}$. This fact yields an upper bound for $R_{t-l, t}\left(K_{1, n}\right)$ as we see in the following theorem.

Theorem 2.1. Suppose that $t^{\prime}=[t / l]$. Then $R_{t-l, t}\left(K_{1, n}\right) \leq p$ for $p>\frac{t^{\prime} n-1}{t^{\prime}-1}$.

Proof. Consider an edge coloring of K_{p} with t colors. Divide these t colors into $t^{\prime}=[t / l]$ classes each of which contains l colors except the last one which may contains more colors. There exist l colors with at most $\left[\frac{1}{t^{\prime}}\binom{p}{2}\right]$ edges.
 existence of $K_{1, n}$ with these $t-l$ colors is guaranteed if

$$
\binom{p}{2}-\left[\frac{1}{t^{\prime}}\binom{p}{2}\right]>\frac{p(n-1)}{2} .
$$

So if $p>\frac{t^{\prime} n-1}{t^{\prime}-1}$, the above inequality is fulfilled and there exists a $K_{1, n}$ with at most $t-l$ colors.

The next theorem gives a lower bound for $R_{t-l, t}\left(K_{1, n}\right)$.
ThEOREM 2.2. Let $y=\left[\frac{t(n-l+1)-l}{t-l}\right]$. Then $R_{t-l, t}\left(K_{1, n}\right)>y-\epsilon$ where $\epsilon=1$ if y is odd and $\epsilon=0$, otherwise.

Proof. Let $p=y-\epsilon$. It is sufficient to give an edge coloring of K_{p} such that the set of colors appearing on the edges of every $K_{1, n}$ contains at least $t-l+1$ colors. By Vizing's theorem, there exists a proper edge coloring of K_{p} with $p-1$ colors. Let $p-1=q t+r, 0 \leq r \leq t-1$. We partition the above $p-1$ colors into t classes each of which contains $q=\left[\frac{p-1}{t}\right]$ colors except the last one which may contains $(p-1)-q(t-1)$ colors. Every $K_{1, n}$ contains at least $t-l+1$ colors if

$$
n>(t-l-1) q+p-1-(t-1) q=(p-1)-l q .
$$

The above inequality holds if $\frac{p-1}{t} \geq \frac{p-n-1}{l}+1$ or equivalently, $p \leq \frac{t(n-l+1)-l}{t-l}$ as asserted in Theorem 2.2. So there is no $K_{1, n}$ with at most $t-l$ colors, that is, $R_{t-l, t}\left(K_{1, n}\right)>p$.

Combining Theorems 2.1 and 2.2, we have an approximation of the value of $R_{t-l, t}\left(K_{1, n}\right)$. For the small values of l this approximation is closer to the exact value. In particular, for $l=1,2$, we have the following corollaries.

Corrolary 2.3. Let $x=\left[\frac{n t-1}{t-1}\right]$. Then

$$
x \leq R_{t-1, t}\left(K_{1, n}\right) \leq x+1
$$

In particular, when x is even, $R_{t-1, t}\left(K_{1, n}\right)=x+1$.
Corrolary 2.4. Let $t \geq 4, t^{\prime}=[t / 2]$ and $x=\left[\frac{n t^{\prime}-1}{t^{\prime}-1}\right]$. Then

$$
x-2 \leq R_{t-2, t}\left(K_{1, n}\right) \leq x+1
$$

In particular, when $\left[\frac{t(n-1)-2}{t-2}\right]$ is even, $x-1 \leq R_{t-2, t}\left(K_{1, n}\right) \leq x+1$.
Remark. Let x be odd. Consider the complete graph K_{x} with its vertices v_{1}, \ldots, v_{x} respectively placed on a circle. For v_{x}, there exists corresponding matching $M_{v_{x}}$ containing $(x-1) / 2$ parallel edges

$$
v_{1} v_{x-1}, v_{2} v_{x-2}, \ldots, v_{(x-1) / 2} v_{(x+1) / 2}
$$

Order these edges as above. Similarly, for each vertex $v_{i}, 1 \leq i \leq x-1$, there exists the matching $M_{v_{i}}$ containing $(x-1) / 2$ ordered edges. These matchings are used to construct certain edge colorings of K_{x}, for example in the proof of following lemmas.

Lemma 2.5. Suppose that q is even and $x-1=t q$. There exists an edge coloring of K_{x} with t colors such that the set of all neighbors of every vertex contains q edges of any color.

Proof. Partition the vertices of K_{x} as a single vertex v_{x} plus q classes T_{1}, \ldots, T_{q} where T_{i} contains t vertices say $v_{i_{1}}, \ldots, v_{i_{t}}$. Set $q / 2$ classes $T_{1}, \ldots, T_{q / 2}$ on one side of v_{x} and $q / 2$ classes $T_{q / 2+1}, \ldots, T_{q}$ on the other side of v_{x} (see (a) of figure 1). For each vertex $v_{i_{j}}, 1 \leq j \leq t$ and $1 \leq i \leq q$, color all $(x-1) / 2$ parallel edges in $M_{v_{i j}}$ with color j. Moreover, for vertex v_{x}, color the edge $v_{i_{j}} v_{(q+1-i)_{j}}$ in $M_{v_{x}}$ with j. The result is a coloring of K_{x} with the property that the set of all neighbors of every vertex contains q edges of any color, as desired.

Fig. 1 - Partitions of the vertices of K_{x}

Lemma 2.6. Suppose that $x=t q+r$ is odd and $2 \leq r \leq t-1$. There exists an edge coloring of K_{x} with t colors such that the set of all neighbors of every vertex contains at least q edges of any color.

Proof. Partition the vertices of K_{x} as $v_{1}, v_{2}, \ldots, v_{r}$ plus q classes T_{1}, \ldots, T_{q} where $T_{i}, 1 \leq i \leq q$, contains t vertices say $v_{i_{1}}, \ldots, v_{i_{t}}$ (see (b) of figure 1). For each vertex $v_{i_{j}}$ color all $(x-1) / 2$ parallel edges in $M_{v_{i_{j}}}$ with color j. Moreover, for vertex v_{r} (also v_{1}) color the parallel edges in $M_{v_{r}}$ (also in $M_{v_{1}}$) with $1,2, \ldots, t$ alternatively (also $t, t-1, \ldots, 1$ alternatively). Color the remaining edges i.e., parallel edges corresponding to v_{2}, \ldots, v_{r-1} arbitrarily. The result is a coloring of the edges of K_{x} with the property that for any vertex, each color appears on at least q edges, as desired.

3. THE VALUE OF $\boldsymbol{R}_{\boldsymbol{t - 1 , t}}\left(\boldsymbol{K}_{1, n}\right)$

In this section, using Corollary 2.3, we determine the exact value of $R_{t-1, t}\left(K_{1, n}\right)$.

Theorem 3.1. Suppose that $x=\left[\frac{n t-1}{t-1}\right]$ and $q=\left[\frac{x}{t}\right]$. Then

$$
R_{t-1, t}\left(K_{1, n}\right)=\left\{\begin{array}{cc}
x & \text { if } x=t q+1 \text { for } x, q \text { odd } \\
x+1 & \text { otherwise }
\end{array}\right.
$$

Proof. First note that since $x=\left[\frac{n t-1}{t-1}\right]$, then $\frac{n t-1}{t-1}-1<x \leq \frac{n t-1}{t-1}$, or equivalently $x-x / t+1 / t \leq n<x-x / t+1$ and so $n=x-[x / t]=x-q$. If x is even, then by Corollary $2.3, R_{t-1, t}\left(K_{1, n}\right)=x+1$. So we may assume that x is odd. We consider three cases as follows.

Case 1. $x=t q+1$, where q is odd.
Consider an edge coloring of K_{x} with t colors. Suppose first that any color appears on q edges adjacent to every vertex. Consider a color c, then the subgraph induced by the edges with color c is q-regular and so the sum of degrees of its vertices is equal to the odd number $x q$, a contradiction. Thus there exists a vertex v and a color c with the property that c appears on at most $q-1$ edges adjacent to v. Then there are at least $x-1-(q-1)=x-q=n$ edges adjacent to v such that c does not appear on these edges. Hence there exists a subgraph $K_{1, n}$ without color c in K_{x} i.e., $R_{t-1, t}\left(K_{1, n}\right) \leq x$ and so by Corollary 2.3, $R_{t-1, t}\left(K_{1, n}\right)=x$.

Case 2. $x=t q+1$, where q is even.
In the coloring of K_{x} given by Lemma 2.5, every $K_{1, n}$ contains all t colors i.e., $R_{t-1, t}\left(K_{1, n}\right)>x$ and so by Corollary $2.3, R_{t-1, t}\left(K_{1, n}\right)=x+1$.

Case 3. $x=t q+r$, where $2 \leq r \leq t-1$.
In the coloring of K_{x} given by Lemma 2.6, every $K_{1, n}$ contains all t colors i.e., $R_{t-1, t}\left(K_{1, n}\right)>x$ and so by Corollary $2.3, R_{t-1, t}\left(K_{1, n}\right)=x+1$.

As a corollary, we have the value of standard Ramsey number $r_{2}\left(K_{1, n}\right)$ (see [13]).

Corrolary 3.2. $r_{2}\left(K_{1, n}\right)=2 n-\epsilon$ where $\epsilon=1$ if n is even and $\epsilon=0$, otherwise.

4. THE VALUE OF $\boldsymbol{R}_{\boldsymbol{t - 2 , t}}\left(\boldsymbol{K}_{1, n}\right)$

In this section, we determine $R_{t-2, t}\left(K_{1, n}\right)$. Corollary 2.4 gives a lower bound and an upper bound for $R_{t-2, t}\left(K_{1, n}\right)$ for $t \geq 4$. Let us first settle the case $t=3$. It is also a special case of multi-color Ramsey numbers for stars obtained in [2].

Lemma 4.1. There exists an edge coloring of $K_{3 n-2}$ with 3 colors such that every vertex contains exactly $n-1$ edges from each color.

Proof. If $3 n-2$ is even, then Vizing's Theorem gives a proper edge coloring of $K_{3 n-2}$ with $3 n-3$ colors. Divide these $3 n-3$ colors into 3 new color classes each of which contains $n-1$ colors to get the desired coloring of $K_{3 n-2}$ with 3 colors. Thus we may assume that $3 n-2$ is odd. Then $K_{3 n-2}$ has $3 n-2$ matchings each of which contains $(3 n-3) / 2$ parallel edges. For every vertex, color the corresponding parallel edges with 1,2 and 3 respectively to get the desired coloring.

Theorem 4.2. It holds $R_{1,3}\left(K_{1, n}\right)=3 n-1$.

Proof. Consider an arbitrary edge coloring of $K_{3 n-1}$ with 3 colors 1, 2, 3 and a vertex v. Suppose that 3 is a color with maximum number of edges adjacent to v. So two colors 1 and 2 appear on at most $2\left[\frac{3 n-2}{3}\right]$ edges adjacent to v. It is easily seen that $3 n-2-2\left[\frac{3 n-2}{3}\right] \geq n$ and so we have a $K_{1, n}$ with color 3, i.e. $R_{1,3}\left(K_{1, n}\right) \leq 3 n-1$. To prove $R_{1,3}\left(K_{1, n}\right) \geq 3 n-1$, apply Lemma 4.1. In this coloring of $K_{3 n-2}$ every $K_{1, n}$ contains at least 2 colors and so $R_{1,3}\left(K_{1, n}\right)>3 n-2$.

For general case $t \geq 4$, we let R stands for $R_{t-2, t}\left(K_{1, n}\right), t^{\prime}=[t / 2]$ and $x=\left[\frac{n t^{\prime}-1}{t^{\prime}-1}\right]$.

Lemma 4.3. Suppose that $x-2=t q+r$ where $0 \leq r \leq t-1$ and l is a natural number. Then $x-l-2 q<n$ iff $t>(2 r+4) / l$ when t is even and $t>1+(2 q+2 r+4) / l$, otherwise.

Proof. Since $n=x-\left[\frac{x}{t^{\prime}}\right]$, we have $x-l-2 q<n$ iff $\left[\frac{x}{t^{\prime}}\right]<2 q+l$ or equivalently, $\frac{x}{t^{\prime}}<2 q+l$. So $x-l-2 q<n$ iff $t>(2 r+4) / l$ when t is even and $t>1+(2 q+2 r+4) / l$, otherwise.

Theorem 4.4, states the necessary and sufficient conditions for R being $x+1$.

Theorem 4.4. Suppose that $x-2=t q+r$ where $0 \leq r \leq t-1$. Then $R=x+1$ iff one the following conditions holds.
(a) $r=t-1>2 q+4$ and x is even.
(b) $r=t-1>2 q+4$ and x and t are odd.
(c) $r=t-1, x$ is odd and t and $q+1$ are even.
(d) $r<t-2$ and $t>2 r+4$ is even.
(e) $r<t-2$ and $t>2 q+2 r+5$ is odd.

Proof. We first suppose that x is even and we consider three cases as follows.

Case 1.1. $r=t-1$.
Note that since $x-1=t(q+1)$ is odd, t can't be even. Let $t>2 q+5$. To prove $R=x+1$, using Corollary 2.4, it is enough to give a coloring of K_{x} with t colors such that every $K_{1, n}$ contains at least $t-1$ colors. By Vizing's Theorem, there exists a proper edge coloring of K_{x} with $x-1$ colors. We partition these $x-1$ colors into t color classes each of which contains $q+1$ colors to get a coloring of K_{x} with t colors. Then every $K_{1, n}$ contains at least $t-1$ colors iff $x-1-2(q+1)<n$ which holds by the assertion and Lemma 4.3 for $l=3$. Now let $t \leq 2 q+5$. Suppose that an arbitrary edge coloring of K_{x} with t colors is given. For each vertex v, there are least two colors that appear on at most $2(q+1)$ edges of $E_{G}(v)$, since $x-1=t(q+1)$. Using Lemma 4.3 for $l=3$, at least n edges of $E_{G}(v)$ are colored with the remaining $t-2$ colors, that is, $R \leq x$.

Case 1.2. $r=t-2$.
We now prove $R \neq x+1$ by showing that $R \leq x$. Suppose that an arbitrary edge coloring of K_{x} with t colors is given. For each vertex v, there are two colors that appear on at most $2 q+1$ edges of $E_{G}(v)$, since $x-1=t(q+1)-1$. Using Lemma 4.3 for $l=2$, at least n edges of $E_{G}(v)$ are colored with the remaining $t-2$ colors, that is, there exists a $K_{1, n}$ with at most $t-2$ colors.

Case 1.3. $r<t-2$.
Let either $t>2 r+4$ be even or $t>2 q+2 r+5$ be odd. To prove $R=x+1$, it is enough to give a coloring of K_{x} with t colors such that every $K_{1, n}$ contains at least $t-1$ colors. By Vizing's Theorem, there is a proper edge coloring of K_{x} with $x-1$ colors. We partition these $x-1$ colors into $t-r-1$ color classes each of which contains q colors plus $r+1$ color classes each of which contains $(q+1)$ colors to get a coloring of K_{x} with t colors. Then every $K_{1, n}$ contains at least $t-1$ colors iff $x-1-2 q<n$ which holds by the assertion and Lemma 4.3 for $l=1$, that is, $R>x$.

Now suppose that either $t \leq 2 r+4$ or $t \leq 2 q+2 r+5$ is odd. Suppose that an arbitrary edge coloring of K_{x} is given. For each vertex v, there are two colors
that appear on at most $2 q$ edges of $E_{G}(v)$, since $x-1=t q+r+1<t(q+1)-1$. Hence by the assertion and Lemma 4.3 for $l=1$, at least n edges of $E_{G}(v)$ are colored with the remaining $t-2$ colors, that is, $R \leq x$.

Now suppose that x is odd. We consider three cases as follows.
Case 2.1. $r=t-1$.
Let either $t>2 q+5$ be odd or both t and $q+1$ be even. We show that $R=x+1$. Note that since $x-1=t(q+1)$ is even, if t is odd, then $q+1$ is even. By Lemma 2.5, there exists an edge coloring of K_{x} with t colors such that for each vertex $v, E_{G}(v)$ contains $q+1$ edges of any color. What is left is similar to the Case 1.1. If $t \leq 2 q+5$ is odd and $q+1$ is even, similar argument as in the Case 1.1 yields $R \leq x$. Assume that $q+1$ is odd and hence t is even. Suppose that an arbitrary edge coloring of K_{x} is given. If for each vertex v, $E_{G}(v)$ contains $q+1$ edges of any color, the induced subgraph on the edges with a fixed color is $(q+1)$-regular with x vertices, a contradiction. So there exists a vertex v and a color c such that $E_{G}(v)$ contains at most q edges with color c. So there are two colors that appear on at most $2 q+1$ edges of $E_{G}(v)$. Since $x-1-(2 q+1) \geq n$, at least n edges of $E_{G}(v)$ are colored with the remaining $t-2$ colors, that is, $R \leq x$.

Case 2.2. $r=t-2$.
By the same argument as the Case 1.2 , we get $R \leq x$.
Case 2.3. $r<t-2$.
Let either $t>2 r+4$ be even or $t>2 q+2 r+5$ be odd. By Lemma 2.6, there exists an edge coloring of K_{x} such that for each vertex $v, E_{G}(v)$ contains at least q edges of any color. What is left is similar to the Case 1.3.

Theorem 4.5, states the necessary and sufficient conditions for R being x.
Theorem 4.5. Suppose that $x-2=t q+r$ where $0 \leq r \leq t-1$. Then $R=x$ iff one the following conditions holds.
(a) $r=t-1$ and x and $q+1$ are odd.
(b) $r<t-2$ and $t \leq 2 r+4$ is even.
(c) $r<t-2$ and $q+r+3<t \leq 2 q+2 r+5$ is odd.

Proof. Let $p=x-1$, then $p-1=t q+r$. We first suppose that p is even and consider three cases as follows.

Case 1.1. $r=t-1$.
Let t be even and $q+1$ be odd. By Theorem 4.4, $R \leq x$. By Vizing's Theorem there exists a proper edge coloring of K_{p} with $p-1$ colors. We partition these $p-1$ colors into $t-1$ classes each of which contains $q+1$ colors plus a class which contains q colors to get a coloring of K_{p} with t colors. Then
every $K_{1, n}$ contains at least $t-1$ colors iff $p-1-(2 q+1)<n$ which holds by the assertion and Lemma 4.3 for $l=3$, that is, $R>p=x-1$ and so $R=x$.

If both t and $q+1$ are even then $R>x$ by Theorem 4.4. Note that the case when both t and $q+1$ are odd is impossible, since $p=t(q+1)$ is even.

Assume that t is odd and $q+1$ is even. If $t>2 q+5$, then $R \neq x$ by Theorem 4.4. Let $t \leq 2 q+5$ be odd and $q+1$ be even. Suppose that an arbitrary edge coloring of $G=K_{p}$ with t colors is given. For each vertex v, there are two colors that appear on at most $2 q+1$ edges of $E_{G}(v)$, since $p-1=t(q+1)-1$. Hence by Lemma 4.3 for $l=3$, at least n edges of $E_{G}(v)$ are colored with the remaining $t-2$ colors, that is, $R \leq p=x-1$.

Case 1.2. $r=t-2$.
Suppose that an arbitrary edge coloring of $G=K_{p}$ with t colors is given. For each vertex v, there are two colors that appear on at most $2 q$ edges of $E_{G}(v)$, since $p-1=t(q+1)-2$. Hence by Lemma 4.3 for $l=2$, at least n edges of $E_{G}(v)$ are colored with the remaining $t-2$ colors, that is, $R \leq p=x-1$.

Case 1.3. $r<t-2$.
Let either $t \leq 2 r+4$ be even or $q+r+3<t \leq 2 q+2 r+5$ be odd. By Theorem 4.4, $R \leq x$. By Vizing's Theorem, there exists a proper edge coloring of K_{p} with $p-1$ colors. We partition these $p-1$ colors into $t-r$ color classes each of which contains q colors plus r color classes each of which contains $q+1$ colors to get a coloring of K_{p} with t colors. Then every $K_{1, n}$ contains at least $t-1$ colors iff $p-1-2 q<n$ which holds by the assertion and Lemma 4.3 for $l=2$, that is, $R>p=x-1$ and so $R=x$.

If either $t>2 r+4$ is even or $t>2 q+2 r+5$ is odd, then $R \neq x$ by Theorem 4.4. Assume that $t \leq q+r+3$ is odd. Suppose that an arbitrary edge coloring of $G=K_{p}$ with t colors is given. For each vertex v, there are two colors that appear on at most $2 q$ edges of $E_{G}(v)$, since $p-1<t(q+1)-2$. Hence by the assertion and Lemma 4.3 for $l=2$, at least n edges of $E_{G}(v)$ are colored with the remaining $t-2$ colors, that is, $R \leq p=x-1$.

Now suppose that p is odd. We consider three cases as follows.
Case 2.1. $r=t-1$.
So t and $q+1$ are odd. If $t>2 q+5$, then by Theorem $4.4, R=x+1$. Now let $t \leq 2 q+5$ be odd. Suppose that an arbitrary edge coloring of $G=K_{p}$ with t colors is given. For each vertex v, there are two colors that appear on at most $2 q+1$ edges of $E_{G}(v)$, since $p-1=t(q+1)-1$. Hence by Lemma 4.3 for $l=3$, at least n edges of $E_{G}(v)$ are colored with the remaining $t-2$ colors, that is, $R \leq p=x-1$.

Case 2.2. $r=t-2$.
By the same arguments as the Case 1.2 , we get $R \leq p=x-1$.

Case 2.3. $r<t-2$.

Let either $t \leq 2 r+4$ be even or $q+r+3<t \leq 2 q+2 r+5$ be odd. If $r=0$ and t is even, then $t=4$ and so $x=\left[\frac{n t^{\prime}-1}{t^{\prime}-1}\right]=2 n-1$, which is impossible. By Lemmas 2.5 and 2.6, there exists an edge coloring of $G=K_{p}$ with t colors such that for each vertex $v, E_{G}(v)$ contains at least q edges of any color. What is left is similar to Case 1.3.

Theorem 4.6, states the necessary and sufficient conditions for R being $x-1$.

Theorem 4.6. Suppose that $x-2=t q+r$ where $0 \leq r \leq t-1$. Then $R=x-1$ iff one the following conditions holds.
(a) $r=1, \frac{2 q+9}{3}<t \leq q+4$ is odd and x is even.
(b) $r=1, \frac{2 q+9}{3}<t \leq q+4$ is odd and x is odd.
(c) $1<r<t-2$ and $\frac{2 q+2 r+7}{3}<t \leq q+r+3$ is odd.
(d) $r=t-2$ and either t is even or $t>\frac{2 q+2 r+7}{3}$ is odd.

Proof. Let $p=x-2$, then $p=t q+r$. We first suppose that x is even and consider five cases as follows.

Case 1.1. $r=0$.
If either t is even or $t>2 q+5$ is odd, then $R \neq x-1$ by Theorems 4.4 and 4.5. If $q+3<t \leq 2 q+5$ is odd, then $R \neq x-1$, by Theorem 4.5. Now let $t \leq q+3$ be odd. Note that q is even in this case. Suppose that an arbitrary edge coloring of $G=K_{p}$ with t colors is given. For each vertex v, there are two colors that appear on at most $2 q-1$ edges of $E_{G}(v)$, since $p-1=x-3=t q-1$. Hence by the assertion and Lemma 4.3 for $l=2$, at least n edges of $E_{G}(v)$ are colored with the remaining $t-2$ colors, that is, $R \leq p=x-2$ and so by Corollary $2.4, R=x-2$.

Case 1.2. $r=1$.
Let $\frac{2 q+9}{3}<t \leq q+4$ be odd. Since $t \leq q+4$, by Theorems 4.4 and 4.5, $R \leq x-1$. By Vizing's Theorem, there exists a proper edge coloring of K_{p} with $p-1$ colors. We partition these $p-1$ colors into t color classes each of which contains q colors to get a coloring of K_{p} with t colors. Then every $K_{1, n}$ contains at least $t-1$ colors iff $x-3-2 q=p-1-2 q<n$ which holds by the assertion and Lemma 4.3 for $l=3$, that is, $R>p=x-2$ and hence $R=x-1$. If either $t>q+4$ is odd or t is even, then $R \neq x-1$, by Theorems 4.4 and 4.5. Now let $t \leq \frac{2 q+9}{3}$ be odd. Suppose that an arbitrary edge coloring of $G=K_{p}$ with t colors is given. For each vertex v, there are two colors that appear on at most $2 q$ edges of $E_{G}(v)$, since $p-1=x-3=t q$. Hence by the assertion and Lemma 4.3 for $l=3$, at least n edges of $E_{G}(v)$ are colored with the remaining $t-2$ colors, that is, $R \leq p=x-2$.

Case 1.3. $1<r<t-2$.
Let $\frac{2 q+2 r+7}{3}<t \leq q+r+3$ be odd. Since $t \leq q+r+3$, by Theorems 4.4 and $4.5, R \leq x-1$. By Vizing's Theorem, there exists a proper edge coloring of K_{p} with $p-1$ colors. We partition these $p-1$ colors into $t-r+1$ color classes each of which contains q colors plus $r-1$ color classes each of which contains $q+1$ colors to get a coloring of K_{p} with t colors. Then every $K_{1, n}$ contains at least $t-1$ colors iff $x-3-2 q=p-1-2 q<n$ which holds by the assertion and Lemma 4.3 for $l=3$, that is, $R>p=x-2$ and so $R=x-1$.

If either $t>q+r+3$ is odd or t is even, then $R \neq x-1$ by Theorems 4.4 and 4.5. Now let $t \leq \frac{2 q+2 r+7}{3}$ be odd. Suppose that an arbitrary edge coloring of $G=K_{p}$ with t colors is given. For each vertex v, there are two colors that appear on at most $2 q$ edges of $E_{G}(v)$, since $p-1=x-3=t q+r-1<t(q+1)-3$. Hence by the assertion and Lemma 4.3 for $l=3$, at least n edges of $E_{G}(v)$ are colored with the remaining $t-2$ colors, that is, $R \leq p=x-2$.

Case 1.4. $r=t-2$.
Let either t be even or $t>\frac{2 q+2 r+7}{3}$ be odd. By Theorems 4.4 and 4.5, $R \leq x-1$. By Vizing's Theorem, there exists a proper edge coloring of K_{p} with $p-1$ colors. We partition these $p-1$ colors into $t-3$ color classes each of which contains $q+1$ colors plus 3 color classes each of which contains q colors to get a coloring of K_{p} with t colors. Then every $K_{1, n}$ contains at least $t-1$ colors iff $x-3-2 q=p-1-2 q<n$ which holds by the assertion and Lemma 4.3 for $l=3$, that is, $R>p=x-2$. Therefore $R=x-1$.

Now let $t \leq \frac{2 q+2 r+7}{3}$ be odd. Suppose that an arbitrary edge coloring of $G=K_{p}$ with t colors is given. For each vertex v, there are two colors that appear on at most $2 q$ edges of $E_{G}(v)$, since $p-1=x-3=t(q+1)-3$. Hence by the assertion and Lemma 4.3 for $l=3$, at least n edges of $E_{G}(v)$ are colored with the remaining $t-2$ colors, that is, $R \leq p=x-2$.

Case 1.5. $r=t-1$.
Hence t is odd. If $t>2 q+5$, then by Theorem $4.4, R \neq x-1$. Now let $t \leq 2 q+5$ be odd. Using Lemma 4.3 for $l=3$, we have $x-3-2 q \geq n$ and so for each edge coloring of $G=K_{p}$ with t colors, n edges of $E_{G}(v)$ are colored with at most $t-2$ colors, that is $R \leq p=x-2$.

Now suppose that x is odd. We consider five cases as follows.
Case 2.1. $r=0$.
The proof is similar to the Case 1.1. Note that when t is odd, q can't be even.

Case 2.2. $r=1$.
Let $\frac{2 q+9}{3}<t \leq q+4$ be odd and q be even. By Lemma 2.5, there exists an edge coloring of K_{p} with t colors such that for every vertex $v, E_{G}(v)$ contains
q edges of any color. What is left is similar to Case 1.2. Note that the case when both t and $q+1$ are odd is impossible.

Case 2.3. $1<r<t-2$.
Let $\frac{2 q+2 r+7}{3}<t \leq q+r+3$ be odd. By Lemma 2.6, there exists an edge coloring of K_{p} with t colors such that for every vertex $v, E_{G}(v)$ contains q edges of any color. What is left is similar to Case 1.3.

Case 2.4. $r=t-2$.
Let either t be even or $t>\frac{2 q+2 r+7}{3}$ be odd. By Lemma 2.6, there exists an edge coloring of K_{p} with t colors such that for every vertex $v, E_{G}(v)$ contains q edges of any color. What is left is similar to Case 1.4.

Case 2.5. $r=t-1$.
If either t is even or $t>2 q+5$ is odd, then $R \neq x-1$ by Theorems 4.4 and 4.5. What is left is similar to the Case 1.5.

Corrolary 4.7. $R=x-2$ if and only if none of the conditions stated in Theorems 4.4, 4.5 and 4.6 holds.

Acknowledgments. The authors would like to thank the anonymous reviewer for his/her valuable comments.

REFERENCES

[1] M. Bucić and A. Khamseh, The ($t-1$)-chromatic Ramsey number for paths. Manusript, 2021.
[2] S.A. Burr and J.A. Roberts, On Ramsey numbers for stars. Util. Math. 4 (1973), 217-220.
[3] K.M. Chung, M.L. Chung, and C.L. Liu, A generalization of Ramsey theory for graphswith stars and complete graphs as forbidden subgraphs. Congr. Numer. 19 (1977), 155-161.
[4] K.M. Chung and C.L. Liu, A generalization of Ramsey theory for graphs. Discrete Math. 2 (1978), 117-127.
[5] L. Gerencsér and A. Gyárfás, On Ramsey-type problems. Ann. Univ. Sci. Budapest. Eötvös. Sect. Math. 10 (1967), 167-170.
[6] A. Gyárfás, G.N. Sárközy, and S. Selkow, Coverings by few monochromatic pieces: a transition between two Ramsey problems. Graphs Combin. 31 (2015), 131-140.
[7] H. Harborth and M. Möller, Weakened Ramsey numbers. Discrete Appl. Math. 95 (1999), 279-284.
[8] A. Khamseh, A note on (t-1)-chromatic Ramsey number of linear forests. Int. J. Comput. Math. Comput. Syst. Theory 5 (2020), 92-97.
[9] A. Khamseh, $O n(t-1)$-colored paths in t-colored complete graphs. Bull. Belg. Math. Soc. Simon Stevin 25 (2018), 197-207.
[10] A. Khamseh and G.R. Omidi, A generalization of Ramsey theory for linear forests. Int. J. Comput. Math. 89 (2012), 1303-1310.
[11] A. Khamseh and G.R. Omidi, A generalization of Ramsey theory for stars and one matching. Math. Rep. 19 (2017), 85-92.
[12] R. Meenakshi and P.S. Sundararaghavan, Generalized Ramsey numbers for paths in 2-chromatic graphs. Int. J. Math. Math. Sci. 9 (1986), 273-276.
[13] S.P. Radziszowski, Small Ramsey numbers. Electron. J. Combin. 1 (1994), Dynamic Surveys 1.16 - January 15, 2021.

Received March 13, 2018
Amir Khamseh
Kharazmi University, Department of Mathematics 15719-14911 Tehran, Iran and
Institute for Research in Fundamental Sciences (IPM)
School of Mathematics, PO Box 19395-5746 Tehran, Iran
khamseh@khu.ac.ir
Gholamreza Omidi
Isfahan University of Technology
Department of Mathematical Sciences
Isfahan, 84156-83111, Iran and
Institute for Research in Fundamental Sciences (IPM)
School of Mathematics, PO Box 19395-5746 Tehran, Iran romidi@cc.iut.ac.ir

