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In this article, we study dissipative q-Sturm–Liouville problems with eigenvalue
parameter contained in the boundary conditions. It is shown that the analysis
of q-Sturm–Liouville problems on a finite closed interval carries over to regu-
lar problems involving the eigenvalue parameter in the boundary conditions at
one end-point. For the considered problem, we obtain asymptotic formulae for
eigenvalues and eigenfunctions.
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1. INTRODUCTION

Q-difference analysis (or quantum analysis) is a very interesting subject in
mathematics. Quantum derivative, a type of derivative in which the concept
of limit is not used, is regarded as one of the important issues of discrete
mathematics. When the limit concept is not used, the functions which are not
differentiable in the classical sense (manner) are added to the function class of
interest. The functions which are not differentiable in the classical sense can be
quantum-differentiable (the quantum derivations can be evaluated) ( [13], [36]).
There are various types of quantum analysis such as h-analysis (finite difference
analysis), q-analysis and Hahn analysis ( [19]).

It has been observed that the concept of q-derivative and q-integral de-
fined by Jackson in the early 1900’s has important applications in various
fields such as quantum mechanics, particle physics, complex analysis and hy-
pergeometric series. Specifically, q-difference equations have been widely used
in mathematical physics problems, for dynamical systems and quantum mod-
els [1], for q-analogues of mathematical physics problems including heat and
wave equations [26], for sampling theory of signal analysis [2, 3, 35]. For more
information, we refer the reader to [24].

On the other hand, parameter dependent systems are of great interest to
numerous problems in physics and engineering. Specially, such problems occur
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while solving the proper partial differential equations with boundary conditions
having a directional derivative, by the Fourier method (the separation of vari-
ables) ( [10]). There are a lot of studies about parameter dependent problems
( [6–10,20–23,25,27,34,39–43]).

In this study, we consider the two-point boundary value problem

(1.1) l (y) := −1

q
Dq−1Dqy (x) + v (x) y (x) , q ∈ (0, 1) , 0 ≤ x ≤ a < +∞

(1.2) cosα y (0) + sinα Dq−1y (0) = 0, 0 ≤ α < π,

(1.3)
−
(
β1y (a)− β2Dq−1y (a)

)
= λ

(
β′
1y (a)− β′

2Dq−1y (a)
)
, β1, β2, β

′
1, β

′
2 ∈ R,

where λ is spectral parameter, v (x) is defined on [0, a] and continuous at zero.
This problem differs from the q-Sturm-Liouville problem only in the appearance
of the eigenvalue parameter λ in the boundary condition at a. We shall assume
that

(1.4) ρ :=

∣∣∣∣β′
1 β1

β
′
2 β2

∣∣∣∣ = β
′
1β2 − β

′
2β1 > 0.

The setup of this paper is as follows: in Section 2, some preliminary
concepts and results related to our subject matter are presented for the con-
venience of the reader. In Section 3, we introduce a special inner product in
the Hilbert space and define linear operator on it. We study the properties of
this operator. In Section 4, we obtain asymptotic formulae for eigenvalues and
eigenfunctions. While proving our results, we use the machinery and methods
of [16,27,34]

2. PRELIMINARIES

Let us introduce q-notations and results which we need throughout this
paper. For a review of this topic, we direct the reader to the monographs [17],
[33]. Let 0 < q < 1, A ⊂ R, a ∈ C and y (x) be a complex-valued function on
x ∈ A.

The q-difference operator Dq is defined by

Dqy (x) =
y (qx)− y (x)

µ (x)
, for all x ∈ A.

where µ (x) = (q − 1)x. The q-derivative at zero is defined by

Dqy (0) = lim
n→∞

y (qnx)− y (0)

qnx
, x ∈ A,
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if the limit exist and does not depend on x. A right inverse to Dq, the Jackson
q-integration is given by∫ x

0
f (t) dqt = x (1− q)

∞∑
n=0

qnf (qnx) , x ∈ A,

provided that the series converges, and∫ b

a
f (t) dqt =

∫ b

0
f (t) dqt−

∫ a

0
f (t) dqt, a, b ∈ A.

Let L2
q (0, a) be the space of all complex-valued functions defined on [0, a] such

that

∥f∥ :=

(∫ a

0
|f (x)| dqx

)1/2

< ∞.

The space L2
q (0, a) is a separable Hilbert space with the inner product

(f, g) :=

∫ a

0
f (x) g (x)dqx, f, g ∈ L2

q(0, a).

For every y, z ∈ D we have q-Lagrange’s identity (see [14], [25], [12] )

(2.1) (ly, z)− (y, lz) = [y, z] (a)− [y, z] (0)

where [y, z] (x) := y (x)Dq−1z (x)−Dq−1y (x) z (x).
For n ∈ N = {0, 1, 2, ...} , α, a1, .., an ∈ C, the q-shifted factorial, the

multiple q-shifted factorial and q-binomial coefficients are defined to be

(a; q)0 = 1, (a; q)n =

n−1∏
k=0

(
1− aqk

)
, (a; q)∞ =

∞∏
k=0

(
1− aqk

)
,

(a1, a2, ..., ak : q) =

k∏
j=1

(aj ; q)n

and respectively ( [16], [37]). The generalized q-shifted factorial is defined by

(a; q)ν =
(a; q)∞
(aqν ; q)∞

, ν ∈ R.

The q-Gamma function is defined by

Γq (z) =
(q; q)∞
(qz; q)∞

(1− q)1−z , z ∈ C, |q| < 1 ( [28], [32]).

The third type of the q-Bessel functions of Jackson of order v, v > −1, is
defined to be

Jv (z; q) = zv
(
qv+1; q

)
∞

(q; q)∞

∞∑
n=0

(−1)n qn(n+1)/2

(q; q)n (q
v+1; q)n

, z ∈ C ( [30], [31]).
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cos (z; q) and sin (z; q) are defined by

cos (z; q) =

∞∑
n=0

(−1)n
qn

2
(z (1− q))2n

(q; q)2n

=

(
q2; q2

)
∞

(q; q2)∞

(
zq−1/2 (1− q)

)1/2
J−1/2

(
z (1− q) /

√
q; q2

)
,

sin (z; q) =
∞∑
n=0

(−1)n
qn(n+1) (z (1− q))2n+1

(q; q)2n+1

=

(
q2; q2

)
∞

(q; q2)∞

(
z (1− q)1/2

)
J1/2

(
z (1− q) ; q2

)
( [4]).

Let w
(v)
m , v > −1, denote the positive zeros of Jv

(
.; q2

)
in an increasing order

of m and

xm = w(−1/2)
m

√
q

1− q
, ym = w(−1/2)

m

1

1− q

denote the positive zeros of cos (z; q) and sin (z; q) respectively ( [15]). For
sufficiently large m, we have

xm =
q−m+1/2

1− q
(1 +O (qm)) ,

ym =
q−m

1− q
(1 +O (qm)) ( [15]).

Let A denote the linear operator acting in the Hilbert space H with the
domain Dom (A). We know that a complex number λ0 is called an eigenvalue
of an operator A if there exists a non-zero vector z0 ∈ Dom (A) satisfying
the equation Az0 = λ0z0; here, z0 is called an eigenvector of A for λ0. The
eigenvectors for λ0 span a subspace of Dom (A), called the eigenspace for λ0

and the geometric multiplicity of λ0 is the dimension of its eigenspace. The
vectors z1, z2, ..., zk are called the associated vectors of the eigenvector z0 if
they belong to Dom (A) and Azi = λ0zi+ zi−1, i = 1, 2, ..., k. The element z ∈
Dom (A) , z ̸= 0 is called a root vector of the operator A corresponding to the
eigenvalue λ0, if all powers of A are defined on this element and (A− λ0I)

n z =
0 for some integer n. The set of all root vectors of A corresponding to the same
eigenvalue λ0 with the vector z = 0 forms a linear set Nλ0 and is called the
root lineal. The dimension of the lineal Nλ0 is called the algebraic multiplicity
of the eigenvalue λ0 ( [11], [12]). Let P (z) denote a polynomial. Suppose
that α is a zero of order h. Then we can write P (z) = (z − a)h Ph (z) with
Ph (α) ̸= 0. A zero of order 1 is called a simple zero and is characterized by the
conditions P (α) = 0, P ′ (α) ̸= 0 ( [5]).
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3. AN OPERATOR-THEORETIC FORMULATION IN THE
CONVENIENT HILBERT SPACE

Now, we introduce a special inner product in the Hilbert space H = L2
q

(0, a)⊕ C and define linear operator A in it to remove the spectral parameter
in the boundary condition and to use the tools of operator theory. We define
a Hilbert space H with inner product

⟨F,G⟩ : =

∫ a

0
F1 (x)G1 (x)dqx+

1

ρ
F2G2,

F =

(
F1 (x)
F2

)
, G =

(
G1 (x)
G2

)
∈ H,

where the constant ρ is defined above.
For convenience, we assume

Ra (y) = β1y (a)− β2Dq−1y (a) ,

R′
a (y) = β′

1y (a)− β′
2Dq−1y (a) ,

N0 (y) = cosα y (0) + sinα Dq−1y (0) , 0 ≤ α < π.

We construct the operator A : H → H with domain

D (A) =

{
F ∈ H | F1, Dq−1F1 are continuous in [0, a], lF1 ∈ L2

q(0, a),

N0 (y) = 0, F2 = R′
a (F1)

}
as

A (F ) =

(
lF1

−Ra (F1)

)
.

Then, we can pose the problem (1.1)-(1.3) in H as AF = λF, F ∈ D (A) , i.e.,
the problem (1.1)-(1.3) can be considered as the eigenvalue problem for the
operator A. It follows that A is densely defined, symmetric and self-adjoint.

Theorem 1. The operator A is symmetric.

Proof. Let F,G ∈ D (A) . Using q-Lagrange’s identity (2.1) , we obtain

⟨AF,G⟩ − ⟨F,AG⟩ = [F1, G1] (a)− [F1, G1] (0)(3.1)

+
1

ρ

[(
−Ra (F1) (R′

a (G1))
)
−R′

a (F1) (−Ra (G1))
]
.

Furthermore,

1

ρ

[(
R′

a (F1) (Ra (G1))−Ra (F1) (R′
a (G1))

)]
=

1

ρ

[ (
β′
1F1 (a)− β′

2Dq−1F1 (a)
) (

β1G1 (a)− β2Dq−1G1 (a)
)

−
(
β1F1 (a)− β2Dq−1F1 (a)

) (
β′
1G1 (a)− β′

2Dq−1G1 (a)
) ]
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=
1

ρ

(
β′
1β2 − β1β

′
2

) [
F1 (a)Dq−1G1 (a)−Dq−1F1 (a)G1 (a)

]
(3.2) = [F1, G1] (a) .

The short calculation gives

(3.3) [F1, G1] (0) = 0.

Finally, substituting (3.2) and (3.3) in (3.1) yield the required equality.

⟨AF,G⟩ − ⟨F,AG⟩ = 0, F,G ∈ D (A) .

Corollary 1. The eigenvalues of problem (1.1)–(1.3) are real.

The q-Wronskian of y (x) , z (x) is defined to be

Wq (y, z) (x) := y (x)Dqz (x)− z (x)Dqy (x) , x ∈ [0, a].

Theorem 2. The Wronskian of any solution of Equation (1.1) is inde-
pendent of x.

Proof. Let y (x) and z (x) be two solutions of Equation (1.1). By q-
Lagrange’s identity (2.1), we have

(ly, z)− (y, lz) = [y, z] (a)− [y, z] (0) .

Since ly = λy and lz = λz, we have

(λy, z)− (y, λz) = [y, z] (a)− [y, z] (0) ,(
λ− λ

)
(y, z) = [y, z] (a)− [y, z] (0) .

Since λ ∈ R, we have [y, z] (a) = [y, z] (0) = Wq (y, z) (0) , i.e., the Wronskian
is independent of x.

Corollary 2. If y (x) and z (x) are both solutions of Equation (1.1),
then either Wq (y, z) = 0 or Wq (y, z) ̸= 0 for all x ∈ [0, a] .

Theorem 3. Any two solutions of Equation (1.1) are linearly dependent
if and only if their Wronskian is zero.

Proof. Let y (x) and z (x) be two linearly dependent solutions of Equation
(1.1). Then, there exist a constant c > 0 such that y (x) = c z (x) . Hence

Wq (y, z) =

∣∣∣∣ y (x) Dqy (x)
z (x) Dqz (x)

∣∣∣∣ = ∣∣∣∣ cz (x) cDqz (x)
z (x) Dqz (x)

∣∣∣∣ = 0.

Conversely, the Wronskian Wq (y, z) = 0 and therefore, y (x) = c z (x) , i.e.,
y (x) and z (x) are linearly dependent.
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Let ϕλ and χλ denote the solutions of Eq. (1.1) satisfying the conditions

ϕλ (0) = sinα, Dq−1ϕλ (0) = − cosα,

χλ (a) = β′
2λ+ β2, Dq−1χλ (a) = β′

1λ+ β1.

Then by Eq. (3.2), we have

W (λ) : = Wq (ϕλ, χλ) (x) = Wq (ϕλ, χλ)

(
a

q

)
= [ϕλ, χλ] (a)

= ϕλ (a)Dq−1χλ (a)− χλ (a)Dq−1ϕλ (a)

=
(
β′
2λ+ β2

)
ϕλ (a)−

(
β′
1λ+ β1

)
Dq−1ϕλ (a)

= λ
(
β′
2ϕλ (a)− β′

1Dq−1ϕλ (a)
)
+ β2ϕλ (a)− β1Dq−1ϕλ (a)

= λR′
a (ϕλ) +Ra (ϕλ)(3.4)

R′
a (χλ) = β′

2Dq−1χλ (a)− β′
1χλ (a)

= β′
2

(
β′
1λ+ β1

)
− β′

1

(
β′
2λ+ β2

)
= β′

2β1 − β′
1β2

= ρ(3.5)

where ρ is given by (1.4).

Theorem 4. The eigenvalues of the problem (1.1)-(1.3) are the zeros of
the function W (λ) .

Proof. Let W (λ0) = 0. Since Wq (ϕλ0 , χλ0) = W (λ0) = 0, the functions
ϕλ0 , χλ0 are linearly dependent, i.e., χλ0 = kϕλ0 , for some k ̸= 0. Since ϕλ0

satisfies the boundary condition (1.3), χλ0 satisfies too. Then, χλ0 is an eigen-
function of the problem corresponding to the eigenvalue λ0. Therefore each
zero of W (λ) is eigenvalue.

Let u0 (x) be any eigenfunction corresponding to eigenvalue λ0 and
W (λ0) ̸= 0. Then the functions ϕλ0 , χλ0 would be linearly independent on [0, a] .
Therefore u0 (x) may be represented in the form

u0 (x) = c1ϕλ0 (x) + c2χλ0 (x) for x ∈ [0, a] ,

where at least one of the coefficients c1 and c2 is not zero. From the boundary
condition (1.2) and (1.3), we obtain

c1(cosα ϕλ0(0)+sinα Dq−1ϕλ0(0)) + c2(cosα χλ0(0) + sinα Dq−1χλ0(0)) = 0

and

c1
[
λ0

(
β′
1ϕλ0 (a)− β′

2Dq−1ϕλ0 (a)
)
+
(
β1ϕλ0 (a) + β2Dq−1ϕλ0 (a)

)]
+c2

[
λ0

(
β′
1χλ0 (a)− β′

2Dq−1χλ0 (a)
)
+
(
β1χλ0 (a) + β2Dq−1χλ0 (a)

)]
= 0.
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Using the definitions of ϕλ and χλ, we have

cosαχλ0 (0) + sinα Dq−1χλ0 (0) = −Dq−1ϕλ0 (0)χλ0 (0) + ϕλ0 (0)Dq−1χλ0 (0)

= [χλ0 , ϕλ0 ] (0) = Wq (χλ0 , ϕλ0) (0)

and similarly

λ0

(
β′
1ϕλ0 (a)− β′

2Dq−1ϕλ0 (a)
)
+ β1ϕλ0 (a) + β2Dq−1ϕλ0 (a) = W (λ0) .

Hence the determinant of this system is∣∣∣∣ 0 Wq (χλ0 , ϕλ0) (0)
W (λ0) W (λ0)

∣∣∣∣ = −Wq (χλ0 , ϕλ0) (0)W (λ0) ̸= 0.

Since W (λ0) ̸= 0 and Wq (χλ0 , ϕλ0) (0) ̸= 0, we have c1 = c2 = 0, i.e., this
system has only the trivial solution. Thus, we have contradiction.

Lemma 1. All eigenvalues λn are simple zeros of W (λ) .

Proof. From q-Lagrange’s identity (2.1), we have

(3.6) (λn − λ)

∫ a

0
ϕλ (x)ϕλn (x) dqx = [ϕλn , ϕλ] (a) .

Recall that, for each zero of W (λ) ,

(3.7) χλn (x) = knϕλn (x) , x ∈ [0, a] ,

where kn ̸= 0 are real constants. Using this equality, we have

[ϕλ, ϕλn ] (a) = − 1

kn
[χλn , ϕλ] (a)

= − 1

kn

[
λnR

′
a (ϕλ) +Ra (ϕλ)

]
= − 1

kn

[
λnR

′
a (ϕλ) + λR′

a (ϕλ)− λR′
a (ϕλ) +Ra (ϕλ)

]
= − 1

kn

[
W (λ) + (λn − λ)R′

a (ϕλ)
]

=
λ− λn

kn

[
W (λ)

λ− λn
−R′

a (ϕλ)

]
.(3.8)

Letting λ → λn

(3.9)

∫ a

0
(ϕλn (x))

2 dqx =
1

kn

[
W ′ (λn)−R′

a (ϕλn)
]
.

Putting

(3.10) R′
a (ϕλn) =

ρ

kn
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in (3.9) , we get

W ′ (λn) = kn

∫ a

0
(ϕλn (x))

2 dqx+
ρ

kn
̸= 0.

Now, if we solve the operator equation

(3.11) (λI −A) y = F, F ∈ H,

we get

(3.12) y = Rλ (A)F =

(
⟨G̃x,λ, F ⟩

R′
a

[
⟨G̃x,λ, F ⟩

] ) ,

where

(3.13) G̃x,λ =

(
G (x, y, λ)

R′
a [G (x, y, λ)]

)
and

(3.14) G (x, y, λ) =

{
1

W (λ)χλ (x)ϕλ (y) , 0 ≤ y ≤ x ≤ a
1

W (λ)ϕλ (x)χλ (y) , 0 ≤ x ≤ y ≤ a
.

By (3.12)-(3.14), we obtain the following facts.
i) G (x, y, λ) satisfies the boundary conditions (1.2)-(1.3) for fixed x ∈

[0, a] .
ii) If λ is not a zero of W (λ) , then

(3.15) Rλ (A)F ∈ D (A) .

iii)

(3.16) Rλ (A) (λI −A)F = F for F ∈ D (A) .

iv)

(3.17) ∥Rλ (A)F∥ ≤ 1

|v|
∥F∥ , F ∈ H, v = Imλ ̸= 0.

v) Rλ (A)F is a meromorphic function in λ.
From (3.11), (3.12) and (3.15) with λ = ±i, it may be concluded that A is a
self-adjoint operator.

Using (3.7), (3.10) and (3.12) we have

res
λ=λn

Rλ (A)F = cnΦn,

where

cn := ⟨F,Φn⟩, Φn =
1∥∥∥∥( ϕλn (x)

R′
a (ϕλn)

)∥∥∥∥
(

ϕλn (x)
R′

a (ϕλn)

)
.
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Similarly,
res
λ=λn

⟨Rλ (A)F, F ⟩ = |cn|2 .
Now, we will prove the following eigenfunction expansion theorem.

Theorem 5. i)∫ a

0
|F (x)|2 dqx =

∞∑
n=0

|cn|2 , F ∈ H.

ii) If F ∈ D (A) , then

F (x) =

∞∑
n=0

cnΦn (x)

absolutely and uniformly convergent for x ∈ [0, a] .

Proof. i) If we apply the argument of [ [18], Theorem 5.12] and using
(3.16), we get the desired result.

ii) Using (i) and applying the argument of [ [18], Theorem 5.15], we obtain
the proof.

4. ASYMPTOTIC FORMULAE FOR EIGENVALUES AND
EIGENFUNCTIONS

In this section, we shall obtain asymptotic formulae for eigenvalues and
eigenfunctions of the problem (1.1)-(1.3).

Theorem 6. Let λ = s2. Then the characteristic function W (λ) has the
following asymptotic representations:

Case I. β′
2 ̸= 0, α ̸= 0

W (λ) =β′
2s

3√q sin
(
sq−1/2a; q

)
sinα

+O

(
|s|2 exp

(
−
(
log |s| aq−1/2 (1− q)

)2
log q

))
,

(4.1)

Case II. β′
2 ̸= 0, α = 0

(4.2)

W (λ) = β′
2s

2 cos
(
sq−1/2a; q

)
+O

(
|s| exp

(
−
(
log |s| aq−1/2 (1− q)

)2
log q

))
,

Case III. β′
2 = 0, α ̸= 0

(4.3) W (λ) = β′
1s

2 cos (sa; q) sinα+O

(
|s| exp

(
−(log |s| a (1− q))2

log q

))
,
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Case VI. β′
2 = 0, α = 0

(4.4) W (λ) = −β′
1s sin (sa; q) +O

(
exp

(
−(log |s| a (1− q))2

log q

))
,

Proof. Let ϕλ (x) be the solution of Eq. (1.1). Then the following integral
equation hold ( [14]):

ϕλ (x) = sinα cos (sx; q)− cosα

s
sin (sx; q)

+
q

s

∫ x

0
[cos (sx; q) sin (sqt; q)− sin (sx; q) cos (sqt; q)] v (qt)ϕ (qt, λ) dqt.

If sinα ̸= 0, then we have

(4.5) ϕλ (x) = sinα cos (sx; q) +O

(
|s|−1 exp

(
−(log |s|x (1− q))2

log q

))
.

If sinα = 0, then we have

(4.6) ϕλ (x) = −cosα

s
sin (sx; q) +O

(
|s|−2 exp

(
−(log |s|x (1− q))2

log q

))
.

Putting this equalities in the representation

W (λ) = λ
[
R′

a (ϕλ) +Ra (ϕλ)
]
,

we obtain the desired results. The other cases may be considered analogically.

Corollary 3. The eigenvalues of the problem (1.1)–(1.3) are bounded
below.

Proof. Putting s = it (t > 0) in the above formulae, we have that
W
(
−t2
)
→ ∞ as t → ∞. Hence W (λ) ̸= 0 for λ negative and sufficiently

large.

Theorem 7. The eigenvalues λn (n = 0, 1, 2, ...) of the problem (1.1)-
(1.3) have the following asymptotic representations for n → ∞ :

Case I. β′
2 ̸= 0, α ̸= 0

(4.7) sn =
q−n+1/2

a (1− q)

(
1 +O

(
qn/2

))
,

Case II. β′
2 ̸= 0, α = 0

(4.8) sn =
q−n+1

a (1− q)

(
1 +O

(
qn/2

))
,
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Case III. β′
2 = 0, α ̸= 0

(4.9) sn =
q−n+1/2

a (1− q)

(
1 +O

(
qn/2

))
,

Case VI. β′
2 = 0, α = 0

(4.10) sn =
q−n

a (1− q)

(
1 +O

(
qn/2

))
.

Proof. Let us consider the first case. Set W (s) = W1 (s) +W2 (s) where

W1 (s) = β′
2s

3√q sin
(
sq−1/2a; q

)
sinα

W2 (s) = O

(
|s| exp

(
−
(
log |s| aq−1/2 (1− q)

)2
log q

))
.

Let βn =
log yn

yn+1

log q , n ∈ Z+. Then βn → 1 as n → ∞ and β = infn∈Z+ βn > 0.

Let {cn}∞n=1 and {dn}∞n=1 be sequences defined by

cn =

{ βn+β
2 , if βn ̸= β
β
2 , if βn = β

,

and

d1 =
β

2
,

dn+1 =

{ βn−β
2 , if βn ̸= β
β
2 , if βn = β

,

where n ≥ 1. The set of annuli {As
n}

∞
n=1 is defined to be

As
n =

{
z ∈ C : ynq

dn ≤ |z| ≤ ynq
−cn
}
, n ≥ 1

dividing the region
{
z ∈ C : |z| ≥ q

β
2 y1

}
.

We recall the Rouché theorem which asserts that if f (z) and g (z) are
analytic inside and on a closed contour C, and |f (z)| < |g (z)| on C, then f (z)
and f (z)+g (z) have the same number zeros inside C, provided that each zero
is counted according to their multiplicity [5].

Now, we can apply the Rouché theorem on As
n. It is readily shown that

|W2 (s)| < |W1 (s)| on As
n in similar way as in [16].

Hence if λ0 < λ1 < λ2 < ... are the zeros of W (λ) and s2n = λn, we have

sn =
q−n+1/2

a (1− q)
+ δn
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for sufficiently large n. By substituting this in (4.1), we have δn = O
(
qn/2

)
,

which completes the proof of Case I. The other cases may be considered ana-
logically.

Recall that ϕλn (x) is an eigenvalue according to eigenvalue λn. Using
(4.7), (4.5) and (1.2), we have

ϕn (x) =

(∫ a

0
cos2

(
q−n+1/2

a (1− q)
x; q

)
dqx

)−1/2

cos

(
q−n+1/2

a (1− q)
x; q

)
(1 +O (qn))

in the first case. Proof is similar to [16].

In Case 2,

ϕn (x) =

(∫ a

0
sin2

(
q−n+1

a (1− q)
x; q

)
dqx

)−1/2

sin

(
q−n+1

a (1− q)
x; q

)
(1 +O (qn)) .

In Case 3,

ϕn (x) =

(∫ a

0
cos2

(
q−n+1/2

a (1− q)
x; q

)
dqx

)−1/2

cos

(
q−n+1/2

a (1− q)
x; q

)
(1 +O (qn)) .

In Case 4,

ϕn (x) =

(∫ a

0
sin2

(
q−n

a (1− q)
x; q

)
dqx

)−1/2

sin

(
q−n

a (1− q)
x; q

)
(1 +O (qn)) .

All this asymptotic approximations are hold uniformly on {xqn : n ∈ N} for
each x ∈ [0, a] .
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