THE CONNECTIVITY OF THE PRIME INDEX GRAPH OF NON-ABELIAN FINITE SIMPLE GROUPS

MILAD AHANJIDEH and ALI IRANMANESH*

Communicated by Constantin Năstăsescu

Let G be a group. The prime index graph of G, denoted by $\Pi(G)$, is an undirected graph whose vertices are all subgroups of G and two distinct comparable subgroups H and K are adjacent if and only if $[H: K$] or $[K: H$] is prime. In this paper among other results, it is shown that the prime index graph of a finite simple group G is connected if and only if G is isomorphic to $A_{5}, P S L_{2}(11), P S L_{3}(2), P S L_{3}(3)$ or $P S L_{2}\left(2^{2^{n}}\right)$, where $n \leq 4$.

AMS 2020 Subject Classification: 05C25, 05C40, 20D05, 20D06, 20D08.
Key words: Prime index graph, connectivity of graph, simple group.

1. INTRODUCTION

Throughout this paper all groups are assumed to be finite. The notation and terminology used along the paper are standard in Group Theory, can be found in [9], for instance.

We denote the complete graph of order n by K_{n}. A star graph S_{k} is the complete bipartite graph $K_{1, k}$. We use $G F(q)$ to denote a finite field of order q, where for a prime number p and a natural number $m, q=p^{m}$. Semidirect product of groups G and H are denoted by $G \rtimes H$.

The investigation of graphs associated to algebraic structures and the study of the properties of algebraic structures using graphs are two interesting areas in the algebraic graph theory. In the last two decades, many authors worked in this field. (See, for instance, [1, 2, 4].)

In [4] it is studied a graph called subgroup graph of a group, as a graph whose vertices are all subgroups of the group and two subgroups H_{1} and H_{2} are adjacent if and only if $H_{1} \leqslant H_{2}$ and there is no subgroup K such that $H_{1} \lesseqgtr K \lesseqgtr H_{2}$. They view the subgroup lattice of a group as a graph and investigate the planarity of this graph.

Recently, Akbari et al. [3] introduced a new graph called prime index graph.
*Corresponding author.

Let G be a group. The prime index graph of G, denoted by $\Pi(G)$, is an undirected graph whose vertices are all subgroups of G and two distinct comparable subgroups H and K are adjacent, $H \sim K$, if and only if [$H: K$] or $[K: H]$ is prime.

In fact, the prime index graph is a subgraph of the subgroup graph. So it is interesting to study the properties of this graph.

In [3], the authors proved that for every group $G, \Pi(G)$ is a bipartite graph and the girth of $\Pi(G)$ is either 4 or ∞. Also, they showed that $\Pi(G)$ is a complete graph if and only if G is a cyclic group of prime order or $|G|=r s$, for some primes r and s.

About the connectivity of the prime index graph, it has been proved that the prime index graph of a solvable group is connected and moreover, the prime index graph of the symmetric group of degree n is connected if and only if $n \leq 5$ (see [3]). In this paper, we investigate the connectivity of prime index graphs on the simple groups. As a corollary, we examine the non-solvable groups whose prime index graphs are disconnected.

2. LEMMAS

First we state some lemmas without proof and use them in our proofs.
Lemma 2.1 ([3, Theorem 8]). Let G be a group and N be a normal subgroup of G. If $\Pi(G)$ is a connected graph, then $\Pi(N)$ and $\Pi(G / N)$ are connected graphs.

Lemma 2.2 ([3, Theorem 7]). Let G be a finite solvable group. Then $\Pi(G)$ is connected.

The following lemmas are due to Dickson [6].
Lemma 2.3. Let $q=2^{f} \geq 4$. Then the maximal subgroups of $P S L_{2}(q)$ are:

1) The semidirect product of \mathbb{Z}_{2}^{f} and \mathbb{Z}_{q-1}, that is, the stabilizer of a point of the projective line;
2) $D_{2(q-1)}$;
3) $D_{2(q+1)}$;
4) $P S L_{2}\left(q_{0}\right)$, where $q=q_{0}^{r}$ for some prime r and $q_{0} \neq 2$.

Lemma 2.4. Let p be a prime number. Then the maximal subgroups of $P S L_{2}(p)$ are:

1) The Frobenius group of order $p(p-1) / 2$;
2) D_{p-1};
3) D_{p+1};
4) A_{4}, where $p \equiv 3,13,27,3(\bmod 40)$, Sym (4), where $p \equiv \pm 1(\bmod 8)$ or A_{5}, where $p \equiv \pm 1(\bmod 10)$.

Lemma 2.5 ([7, Theorem 1]). Let G be a non-abelian finite simple group with $H \leq G$ and $[G: H]=r^{a}$, where r is a prime number. One of the following holds:
a) $G=A_{n}$ and $H \cong A_{n-1}$ with $n=r^{a}$;
b) $G=P S L_{n}(q)$ and H is the stabilizer of a line or hyperplane. Then $[G: H]=\frac{q^{n}-1}{q-1}=r^{a}$ (Note that n must be prime);
c) $G=P S L_{2}(11)$ and $H \cong A_{5}$;
d) $G=M_{23}$ and $H \cong M_{22}$ or $G=M_{11}$ and $H \cong M_{10}$;
e) $G=\operatorname{PSU}_{4}(2) \cong \operatorname{PSp}_{4}(3) \cong B_{4}(3)$ and H is the parabolic subgroup of index 27.

Remark 2.1. Assume that for every maximal subgroup M of a finite group $G, \Pi(M)$ is connected and also there exists a maximal subgroup M^{\prime} such that [$G: M^{\prime}$] is prime. For every $H_{1}, H_{2}<G$, there exist the maximal subgroups M_{1}, M_{2} of G such that $H_{1} \leq M_{1}$ and $H_{2} \leq M_{2}$. Since $\Pi\left(M_{1}\right)$ and $\Pi\left(M_{2}\right)$ are connected, there exist a path between H_{1} and $\{e\}$, and a path between H_{2} and $\{e\}$. So there exists a path between H_{1} and H_{2}. Therefore, $\Pi(G)$ is connected.

Lemma 2.6 ([13], Zsigmondy's Theorem). Let a and n be integers greater than 1. Then there exists a prime divisor r of $a^{n}-1$ such that r does not divide $a^{j}-1$ for all $j, 0<j<n$, except in the following cases:
a) $n=2, a=2^{s}-1$, where $s>0$;
b) $n=6, a=2$.

Such a prime divisor is called a primitive prime divisor of $a^{n}-1$.
Remark 2.2. Let t be an odd prime number. Since $\operatorname{gcd}(2, t)=1$ one has $t \mid 2^{t-1}-1$. If for a given natural number a, t divides $2^{t^{a}}-1$, then it is easy to see that t divides $2^{\operatorname{gcd}\left(t^{a}, t-1\right)}-1$ and hence $t \mid 1$, a contradiction. Therefore $\operatorname{gcd}\left(t, 2^{t^{a}}-1\right)=1$.

Lemma 2.7. Let $n>2$ be an integer and $q>3$ be a prime power. If $S L_{n}(q)$ contains a maximal subgroup of a prime index, then both $\frac{q^{n}-1}{q-1}$ and n are prime numbers.

Proof. Assume that $N \leq S L_{n}(q)$ is a maximal subgroup of a prime index. If $Z=Z\left(S L_{n}(q)\right) \not \leq N$, then since N is a maximal subgroup of G, we have $Z N=S L_{n}(q)$ and hence, $N \unlhd S L_{n}(q)$. It is well known that for any $N \triangleleft S L_{n}(q)$, we have $N \leq Z$. So by the above fact, we can conclude that $Z\left(S L_{n}(q)\right)=$ $S L_{n}(q)$, which is a contradiction. Thus $Z \leq N$ and $N / Z \leq P S L_{n}(q)$. So $\left[S L_{n}(q): N\right]$ is prime if and only if $\left[P S L_{n}(q): N / Z\right]$ is prime. Thus Lemma 2.5 shows that if $\left[S L_{n}(q): N\right]$ is prime, then both $\frac{q^{n}-1}{q-1}$ and n are prime numbers, as desired.

In the following, let

$$
\begin{gathered}
T_{1}=\left\{\left(\begin{array}{cc}
1 & t \\
0 & I
\end{array}\right): t \in(G F(q))^{n-1}\right\}, \\
T_{2}=\left\{\left(\begin{array}{cc}
\operatorname{det}(A)^{-1} & 0 \\
0 & A
\end{array}\right): A \in G L_{n-1}(q)\right\}
\end{gathered}
$$

and $T_{3}=\left\{\left(\begin{array}{cc}1 & 0 \\ 0 & B\end{array}\right): B \in S L_{n-1}(q)\right\}$. It is obvious that $T_{1} \cong(G F(q))^{n-1}$, $T_{2} \cong G L_{n-1}(q)$ and $T_{3} \cong S L_{n-1}(q)$.

Remark 2.3. Assume that $\operatorname{gcd}(n, q-1)=1$. Under our assumptions, it is known that $P S L_{n}(q)=S L_{n}(q)$ acts on $P(V)=\left\{[v]: v \in(G F(q))^{n}\right\}$, where for every $v \in(G F(q))^{n},[v]=\{a v: a \in G F(q)-\{0\}\}$. Since $M=T_{1} \rtimes T_{2}=$ $\left(S L_{n}(q)\right)_{\left[v_{1}\right]}$ and $S L_{n}(q)$ acts primitively on $P(V)$, we conclude that $S L_{n}(q)$ contains a maximal subgroup which is isomorphic to $M \cong(G F(q))^{n-1} \rtimes$ $G L_{n-1}(q)$.

Lemma 2.8. Let $n>2$ be a prime number and N be a maximal subgroup of $M=T_{1} \rtimes T_{2}$ of the prime index.

1) Let $n>3$ and $q=p^{m}$, where p is a prime number and $m \in \mathbb{N}$. Then $T_{1}, T_{3} \leq N$.
2) Let $m=3^{\alpha}, n=3$ and $q=2^{m}$. Then $T_{3} \leq N$ and $T_{1} \leq N$.

Proof. (1) Suppose, contrary to our claim, that $T_{1} \not \leq N$. Then $T_{1} N=M$ and hence, $\frac{N}{T_{1} \cap N} \cong \frac{M}{T_{1}} \cong G L_{n-1}(q)$. Thus N contains an element of order $q^{n-1}-1$, namely x. We can see at once that $\langle x\rangle$ acts fixed point freely on $T_{1} \cap N$ by conjugation. Consequently, we have $O(x)$ divides $\left|T_{1} \cap N\right|-1=p^{a}-1$
and hence, $m(n-1) \mid a$. On the other hand, $[M: N]=\left[T_{1} N: N\right]=\left[T_{1}:\right.$ $\left.T_{1} \cap N\right] \neq 1$. Hence $\left|T_{1} \cap N\right|=p^{a}<p^{m(n-1)}$, which is a contradiction. The result is $T_{1} \leq N$.

Now, to obtain a contradiction, suppose that $T_{3} \not \leq N$. Then since $T_{1} \rtimes$ $T_{3} \unlhd M$, we have $N\left(T_{1} \rtimes T_{3}\right)=M$. Therefore, $[M: N]=\left[N\left(T_{1} \rtimes T_{3}\right): N\right]=$ $\left[T_{1} \rtimes T_{3}:\left(T_{1} \rtimes T_{3}\right) \cap N\right]$ and hence, by Dedekind's modular law (see [11, p. 15]), we get $[M: N]=\left[T_{1} \rtimes T_{3}: T_{1} \rtimes\left(T_{3} \cap N\right)\right]=\frac{\left|S L_{n-1}(q)\right|}{\left|T_{3} \cap N\right|}$. Thus since $n-1$ is not prime, Lemma 2.7 shows that $[M: N]$ is not prime, which is a contradiction. So $T_{3} \leq N$.
(2) The same reasoning as (1) shows that $T_{1} \leq N$. Now suppose, contrary to our claim, that $T_{3} \not \leq N$. Since $T_{1} \rtimes T_{3} \unlhd M$, we have $N\left(T_{1} \rtimes T_{3}\right)=M$. Thus $[M: N]=\left[T_{1} \rtimes T_{3}: T_{1} \rtimes\left(T_{3} \cap N\right)\right]=\frac{\left|S L_{n-1}(q)\right|}{\left|T_{3} \cap N\right|}$ is prime. From this, we get that $\frac{\left(2^{3^{\alpha}}\right)^{2}-1}{2^{3^{\alpha}}-1}$ is prime by Lemma 2.7. But $2+1 \mid 2^{3^{\alpha}}+1$. So $2^{3^{\alpha}}+1=3$ and hence $2^{3^{\alpha}}=2$, a contradiction.

Lemma 2.9. Let $n>3$ be a prime number or $n=3$ and $q=2^{3^{\alpha}}$. Then $T_{1} \rtimes T_{3}$ doesn't contain any maximal subgroup of a prime index.

Proof. On the contrary, suppose that there exists the maximal subgroup N of $T_{1} \rtimes T_{3}$ of a prime index. If $T_{1} \leq N$, then $\left[\frac{T_{1} \rtimes T_{3}}{T_{1}}: \frac{N}{T_{1}}\right]=\left[T_{1} \rtimes T_{3}: N\right]$ is prime and $\frac{N}{T_{1}} \leq \frac{T_{1} \rtimes T_{3}}{T_{1}} \cong S L_{n-1}(q)$. But by Lemma 2.7, $S L_{n-1}(q)$ doesn't contain any maximal subgroup of a prime index, a contradiction. So $T_{1} \not \leq N$. As in the proof of Lemma 2.8, we get a contradiction. These contradictions complete the proof.

3. MAIN RESULTS

Theorem 3.1. Let G be a non-abelian finite simple group. The prime index graph of G is connected if and only if G is isomorphic to

$$
A_{5}, P S L_{2}(11), P S L_{3}(2), P S L_{3}(3)
$$

or $P S L_{2}\left(2^{2^{n}}\right)$, where $n \leq 4$.
Proof. If $\Pi(G)$ is connected, then G contains a subgroup M of a prime index. So M is a maximal subgroup of G and hence, it is sufficient to analyze the groups listed in Lemma 2.5. We consider these possibilities in the following cases:
(I) By $[3$, p. 7$], \Pi\left(A_{n}\right)$ is connected if and only if $n \leq 5$.
(II) Let $G=P S L_{n}(q)$, where both $\frac{q^{n}-1}{q-1}$ and n are primes. The proof has been divided into several cases:

Case 1. Assume that $n q$ is odd and $n=2 l+1>3$ is prime, where $l \in \mathbb{N}$. By [9, p. 70], $S O_{n}(q)$ is a maximal subgroup of $P S L_{n}(q)$. By comparing the orders of $S O_{n}(q)$ and $P S L_{n}(q)$, we have $\left[P S L_{n}(q): S O_{n}(q)\right]$ is not prime. Thus they are not adjacent in $\Pi\left(P S L_{n}(q)\right)$. It is well known that $\left(S O_{n}(q)\right)^{\prime}=B_{l}(q)$ is a simple group and $\left[S O_{n}(q): B_{l}(q)\right]=2$. Now, let $N \leq S O_{n}(q)$ be a maximal subgroup of $S O_{n}(q)$ such that $N \neq B_{l}(q)$. Then it is easy to see that $N B_{l}(q)=S O_{n}(q)$ and hence, $\left[S O_{n}(q): N\right]=\left[B_{l}(q): N \cap B_{l}(q)\right]$ is not prime, by Lemma 2.5. Thus $S O_{n}(q) \sim B_{l}(q)$ is a connected component of $\Pi\left(S O_{n}(q)\right)$. Therefore, considering the orders of maximal subgroups of $P S L_{n}(q)$ (see [9]) shows that $S O_{n}(q) \sim B_{l}(q)$ forms a connected component of $\Pi\left(P S L_{n}(q)\right)$. From this, $\Pi\left(P S L_{n}(q)\right)$ is disconnected.

If $n=3$ and $q \neq 3$, then $S O_{3}(q) \cong P G L_{2}(q)$ is a maximal subgroup of $P S L_{3}(q)$ by [5, p. 378]. Since $\frac{11^{3}-1}{10}=133$ is not prime, $\Pi\left(P S L_{3}(11)\right)$ is disconnected. So, let $q \neq 11$. It is easy to see that $P G L_{2}(q)$ has a normal subgroup H such that $H \cong P S L_{2}(q)$ and H is adjacent to $P G L_{2}(q)$. By Lemma 2.5, there is no subgroup of $P S L_{2}(q)$ that is adjacent to $P S L_{2}(q)$. Also, according to Mitchell's results [8] and by comparing the orders of subgroups of $P S L_{3}(q)$ and the order of $P S L_{2}(q)$, we can get that $P S L_{3}(q)$ does not contain any subgroup except $P G L_{2}(q)$ which is adjacent to $P S L_{2}(q)$ and hence $\Pi\left(P S L_{3}(q)\right)$, where $q \neq 3$, is disconnected.

If $n=3$ and $q=3$, then by [12], the maximal subgroups of $P S L_{3}(3)$ are isomorphic to $\operatorname{Sym}(4)$ or solvable groups of orders 39 and 432. Therefore, Remark 2.1 shows that $\Pi\left(P S L_{3}(3)\right)$ is connected.

Case 2. If $n=2$, then $\left[P S L_{2}(q): M\right]=\frac{q^{2}-1}{q-1}=q+1$ is a prime number, namely p. This forces $q=2^{s}$, where $s=2^{m}, m \in \mathbb{N}$. So, p is a Fermat prime. Suppose that $\Pi\left(P S L_{2}(q)\right)$ is connected. According to Lemma 2.3 and [11], all maximal subgroups of $P S L_{2}\left(2^{2^{m}}\right)$ except $P S L_{2}\left(2^{2^{m-1}}\right.$) (if $m \geq 2$) are solvable and hence their prime index graphs are connected by Lemma 2.2. Also, $P S L_{2}\left(2^{2^{m}}\right)$ and $P S L_{2}\left(2^{2^{m-1}}\right)$ are not adjacent in $\Pi\left(P S L_{2}\left(2^{2^{m}}\right)\right)$. Let $m>4$. If $2^{2^{m-1}}+1$ is not prime, then Lemma 2.5 allows us to deduce that $P S L_{2}\left(2^{2^{m-1}}\right)$ is an isolated vertex and hence, $\Pi\left(P S L_{2}\left(2^{2^{m}}\right)\right)$ is disconnected. Now assume that $2^{2^{m-1}}+1$ is prime. Then again $P S L_{2}\left(2^{2^{m-2}}\right)$ is a maximal subgroup of $P S L_{2}\left(2^{2^{m-1}}\right)$. Since the other maximal subgroups of $P S L_{2}\left(2^{2^{m}}\right)$ are solvable and $P S L_{2}\left(2^{2^{m-2}}\right)$ is non-solvable, we deduce that if $P S L_{2}\left(2^{2^{m}}\right)$ contains a maximal subgroup L such that $P S L_{2}\left(2^{2^{m-2}}\right) \lesssim L$. Then $L \lesssim P S L_{2}\left(2^{2^{m-1}}\right)$.

Now, applying the above argument guarantees that either $P S L_{2}\left(2^{2^{m-2}}\right)$ is an isolated vertex in $\Pi\left(P S L_{2}\left(2^{2^{m}}\right)\right)$ or $2^{2^{m-2}}+1$ is prime. We continue the above process about the maximal subgroups $P S L_{2}\left(2^{2^{i-1}}\right)$ of $P S L_{2}\left(2^{2^{i}}\right)$, where $i \leq m$. Since $2^{2^{5}}+1$ is not a prime number, we obtain that $P S L_{2}\left(2^{2^{5}}\right)$ is an isolated vertex. If $m>4$, then $\Pi\left(P S L_{2}\left(2^{2^{m}}\right)\right)$ is disconnected. Also, if $m \leq 4$, then repeating the above argument shows that $\Pi\left(P S L_{2}\left(2^{2^{m}}\right)\right)$ is connected.

Case 3. Assume that $n=u$ is an odd prime, $q=2^{m}>2$ and $\frac{2^{m u}-1}{2^{m}-1}$ is prime. Let $m=u^{\alpha} t$, where $\alpha \geq 0$ and $\operatorname{gcd}(u, t)=1$. By Lemma 2.6, there exists a primitive prime divisor r of $2^{u^{\alpha+1}}-1$. Since $2^{u^{\alpha+1}}-1$ divides $2^{m u}-1$, we have $r \mid 2^{m u}-1$. Also, since $\operatorname{gcd}\left(m, u^{\alpha+1}\right)=u^{\alpha}$, we conclude that $r \nmid 2^{m}-1$. So $r \left\lvert\, \frac{2^{m u}-1}{2^{m}-1}=s\right.$, where s is a primitive prime divisor of $2^{m u}-1$. This implies that $r=s$. It follows that $m u=u^{\alpha+1}$ and hence, $m=u^{\alpha}$. Therefore, $P S L_{u}\left(2^{u^{\alpha}}\right)=S L_{u}\left(2^{u^{\alpha}}\right)$ by Remark 2.2. By Remark $2.3, M=T_{1} \rtimes T_{2}$ is a maximal subgroup of $S L_{u}\left(2^{u^{\alpha}}\right)$. Note that $\left[S L_{u}\left(2^{u^{\alpha}}\right): M\right]=p, T_{3} \unlhd T_{2}$ and $T_{2} / T_{3} \cong K$, where $K=\left\{\left(\begin{array}{ccc}a^{-1} & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & I\end{array}\right): a \in\left(G F\left(2^{m}\right)\right)-\{0\}\right\} \cong \mathbb{Z}_{2^{m}-1}$.
Since $K \cong \mathbb{Z}_{2^{m}-1}$ is cyclic, there is a normal series $K_{0}=\{e\} \unlhd K_{1} \unlhd \cdots \leq$ $K_{t-1} \unlhd K_{t}=K$ of the subgroups of K such that $\frac{\left|K_{i+1}\right|}{\left|K_{i}\right|}$ is prime. Note that $T_{3} \rtimes K \cong T_{2}$. So there is a series $T_{3}=T_{3} \rtimes K_{0} \unlhd T_{3} \rtimes K_{1} \unlhd \cdots \unlhd T_{3} \rtimes K_{t-1} \unlhd$ $T_{3} \rtimes K_{t}=T_{3} \rtimes K=T_{2}$ between T_{3} and T_{2} such that $\left[T_{3} \rtimes K_{i+1}: T_{3} \rtimes K_{i}\right]=$ $\frac{\left|T_{3}\right|\left|K_{i+1}\right|}{\left|T_{3}\right|\left|K_{i}\right|}=\frac{\left|K_{i+1}\right|}{\left|K_{i}\right|}$ is prime. Therefore,
$(*) H_{0}=T_{1} \rtimes T_{3} \sim H_{1}=T_{1} \rtimes\left(T_{3} \rtimes K_{1}\right) \sim \cdots H_{t-1}=T_{1} \rtimes\left(T_{3} \rtimes K_{t-1}\right) \sim H_{t}$

$$
=T_{1} \rtimes T_{2}
$$

is a path in $\Pi\left(S L_{u}\left(2^{m}\right)\right)$. Let

$$
B=\left\{L \mid L \leq T_{1} \rtimes T_{2} \text { and } T_{1} \rtimes T_{3} \unlhd L\right\} \cup\left\{S L_{u}\left(2^{m}\right)\right\}
$$

and let $L_{0} \in B$. Then $H_{i} \in B$. Since $\frac{T_{1} \rtimes T_{2}}{T_{1} \rtimes T_{3}}$ is isomorphic to a cyclic group, the argument given for $(*)$ shows that B forms a connected subgraph of $\Pi\left(S L_{u}\left(2^{m}\right)\right)$, say Γ. Now, we choose a path in Γ. Without loss of generality, we choose $(*)$. Suppose that there exists a subgroup of $S L_{u}\left(2^{m}\right)$, say H, such that $H \sim H_{i}$, for some $i, 0 \leq i \leq t$.
a) If $H_{i} \leq H$ and $\left[H: H_{i}\right]$ is prime, then there exists a maximal subgroup of $S L_{u}\left(2^{m}\right)$, say W, such that $H \leq W$. Since considering the orders of maximal subgroups of $S L_{2}\left(2^{m}\right)$ shows that every maximal subgroup of $S L_{2}\left(2^{m}\right)$ contain$\operatorname{ing} T_{1} \rtimes T_{3}$ is isomorphic to M, we deduce that M and W are isomorphic. Let $\phi: M \longrightarrow W$ be a group isomorphism. Let j be a minimal value between 0 and
t such that $T_{1} \rtimes T_{3} \leq \phi\left(H_{j}\right)$. If $j \neq 0$, then $T_{1} \rtimes T_{3} \not \leq \phi\left(H_{j-1}\right)$. From the above argument, we know that $\phi\left(H_{j-1}\right) \unlhd \phi\left(H_{j}\right)$ and hence $\left(T_{1} \rtimes T_{3}\right) \phi\left(H_{j-1}\right)=\phi\left(H_{j}\right)$. So $\left[T_{1} \rtimes T_{3}: \phi\left(H_{j-1}\right) \cap\left(T_{1} \rtimes T_{3}\right)\right]=\left[\phi\left(H_{j}\right): \phi\left(H_{j-1}\right)\right]$ is prime, contrary to Lemma 2.9. So, we thus have $j=0$ that is $T_{1} \rtimes T_{3} \leq \phi\left(H_{0}\right)$. Moreover, $T_{1} \rtimes T_{3} \leq \phi\left(H_{0}\right)=\phi\left(T_{1} \rtimes T_{3}\right) \unlhd \phi(M)=W$ and hence $T_{1} \rtimes T_{3}=\phi\left(T_{1} \rtimes T_{3}\right)$. Thus $T_{1} \rtimes T_{3} \unlhd H \leq W \leq N_{S L_{u}\left(2^{m}\right)}\left(T_{1} \rtimes T_{3}\right)=M$. So $H \leq M$. This gives $H \in B$.
b) Let $H \leq H_{i}$ and $\left[H_{i}: H\right.$] be prime. Clearly, $T_{1} \unlhd T_{1} \rtimes T_{2}, T_{1} \unlhd H_{i}$. If $T_{1} \not \leq H$, then $T_{1} H=H_{i}$ and this yields that $\left[T_{1}: T_{1} \cap H\right]=\left[H_{i}: H\right]=2$. Thus $H \unlhd H_{i}$. If $T_{3} \not \leq H$, then $T_{3} H=H_{i}$. Therefore $\left[T_{3}: T_{3} \cap H\right]=\left[H_{i}: H\right]$ is prime, which is a contradiction with Lemma 2.7. So $T_{3} \leq H$ and hence applying the argument as the proof of Lemma 2.8 leads us to a contradiction. Thus $T_{1} \leq H$. If $T_{3} \leq H$, then $H \in B$. Therefore the theorem follows by applying the same method as the above. If $T_{3} \not \leq H$, then $H\left(T_{1} \rtimes T_{3}\right)=H_{i}$. Consequently, $\left[H_{i}: H\right]=\left[\left(T_{1} \rtimes T_{3}\right):\left(T_{1} \rtimes T_{3}\right) \cap H\right]=\left[T_{3}: T_{3} \cap H\right]$. It follows that $\left[T_{3}: T_{3} \cap H\right]$ is prime, which is a contradiction with Lemma 2.7. Thus $H \in B$.

These show that Γ and their conjugates form a connected component and hence $\Pi\left(S L_{u}\left(2^{m}\right)\right)$ is disconnected.

Case 4. Assume that $q=2, n \neq 2,3$. Then the proof runs as Case 3. Note that $P S L_{2}(2) \cong \operatorname{Sym}(3)$ is not simple. Also according to [12], we can see that the maximal subgroups of $P S L_{3}(2)$ are isomorphic to $\operatorname{Sym}(4)$ or a solvable group of order 21 and $\left[P S L_{3}(2): S y m(4)\right]=7$. Hence Lemma 2.2 and Remark 2.1 show that $\Pi\left(P S L_{3}(2)\right)$ is connected.
(III) Let $G=P S L_{2}(11)$. Then $M \cong A_{5}$. Since $\left[P S L_{2}(11): A_{5}\right]$ is prime, $P S L_{2}(11)$ and A_{5} are adjacent. By Lemmas 2.4, all maximal subgroups of $P S L_{2}(11)$ except A_{5} are solvable. So Lemma 2.2 forces the prime index graphs of all maximal subgroups of $P S L_{2}(11)$ to be connected. Therefore, Remark 2.1 shows that $\Pi\left(P S L_{2}(11)\right)$ is connected.
(IV) Let $G=M_{23}$. Then the maximal subgroup M of M_{23} is adjacent to M_{23} if and only if $M \cong M_{22}$. But M_{22} is a simple group, so we can conclude by Lemma 2.5 that M_{22} contains no maximal subgroup of a prime index. Therefore, all maximal subgroups of M_{23} which are isomorphic to M_{22} and M_{23} form a connected component of $\Pi\left(M_{23}\right)$, that is a star graph S_{k} for some natural number k. This forces $\Pi\left(M_{23}\right)$ to be disconnected.
(\mathbf{V}) Let $G=M_{11}$. Then a maximal subgroup M of M_{11} is adjacent to M_{11} if and only if $M \cong M_{10}$. We know that the derived subgroup of M_{10} is the simple group A_{6}. Also, $\left[M_{10}: A_{6}\right]=2$. For every maximal subgroup L of $M_{10},|L| \in\{16,20,72,360\}$ and for every maximal subgroup N of M_{11}, either
$N \cong M_{10}$ or $|N| \in\{48,120,144,660\}$, see [12]. Thus Lemma 2.5 guarantees that there is no path between M_{11} and $\{e\}$ in $\Pi\left(M_{11}\right)$. Therefore, $\Pi\left(M_{11}\right)$ is disconnected.

Corollary 3.1. If G is a non-solvable finite group with at least a nonabelian composition factor K / H such that

$$
K / H \nsubseteq A_{5}, P S L_{2}(11), P S L_{3}(2), P S L_{3}(3)
$$

and $P S L_{2}\left(2^{2^{n}}\right)$, where $n \leq 4$, then $\Pi(G)$ is disconnected.
Proof. It is straightforward from Theorem 3.1 and Lemma 2.1.

Acknowledgments. The authors wish to thank to referee for reading the paper carefully and making the useful suggestions.

REFERENCES

[1] A. Abdollahi, S. Akbari, and H.R. Maimani, Non-commuting graph of a group. J. Algebra 298 (2006), 468-492.
[2] M. Ahanjideh, More on the subconstituents of symplectic graphs. Bol. Soc. Parana. Mat. 33 (2015), 17-30.
[3] S. Akbari, A. Ashtab, F. Heydari, M. Rezaee, and F. Sherafati, The prime index graph of a group. Preprint ArXiv:1508.01133, 2015.
[4] J.P. Bohanon and L. Reid, Finite groups with planar subgroup lattices. J. Algebraic Combin. 23 (2006), 207-223.
[5] J.N. Bray, D.F. Holt, and C.M. Roney-Dougal, The maximal subgroups of the lowdimensional finite classical groups. London Math. Soc. Lecture Note Ser. 407, Cambridge Univ. Press, Cambridge, 2013.
[6] L.E. Dickson, Linear groups: with an exposition of the Galois field theory. Dover Publications, New York, 1958.
[7] R.M. Guralnick, Subgroups of prime power index in a simple group. J. Algebra 80 (1983), 304-311.
[8] O.H. King, The subgroup structure of finite classical groups in terms of geometric configurations. In : Surveys in combinatorics, pp. 29-56. London Math. Soc. Lecture Note Ser. 327, Cambridge Univ. Press, Cambridge, 2005.
[9] P. Kleidman and M. Liebeck, The subgroup structure of the finite classical groups. Cambridge Univ. Press, Cambridge, 1990.
[10] A.S. Kondrat'ev, On prime graph components of finite simple groups. (Russian) Mat. Sb. 180 (1989), 787-797; translation in Math. USSR-Sb. 67 (1990), 235-247.
[11] D.J.S. Robinson, A course in the theory of groups. Springer-Verlag, New York, 1993.
[12] R. Wilson, P. Walsh, J. Tripp, I. Suleiman, R. Parker, S. Norton, S. Nickerson, S. Linton, J. Bray, and R. Abbott, Atlas of finite group representations - Version 3. Available at http://brauer.maths.qmul.ac.uk/Atlas/v3
[13] K. Zsigmondy, Zur theorie der potenzreste. Monatsh. Math. Phys. 3 (1892), 265-284.

Received April 4, 2018

Milad Ahanjideh
Tarbiat Modares University
Faculty of Mathematical Sciences
Department of Mathematics
Tehran, Iran
ahanjidm@gmail.com
Ali Iranmanesh
Tarbiat Modares University
Faculty of Mathematical Sciences
Department of Mathematics
Tehran, Iran
iranmanesh@modares.ac.ir

