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Let G be a group. The prime index graph of G, denoted by Π(G), is an undi-
rected graph whose vertices are all subgroups of G and two distinct compa-
rable subgroups H and K are adjacent if and only if [H : K] or [K : H] is
prime. In this paper among other results, it is shown that the prime index
graph of a finite simple group G is connected if and only if G is isomorphic to
A5, PSL2(11), PSL3(2), PSL3(3) or PSL2(2

2n), where n ≤ 4.
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1. INTRODUCTION

Throughout this paper all groups are assumed to be finite. The notation
and terminology used along the paper are standard in Group Theory, can be
found in [9], for instance.

We denote the complete graph of order n by Kn. A star graph Sk is the
complete bipartite graph K1,k. We use GF (q) to denote a finite field of order
q, where for a prime number p and a natural number m, q = pm. Semidirect
product of groups G and H are denoted by G⋊H.

The investigation of graphs associated to algebraic structures and the
study of the properties of algebraic structures using graphs are two interesting
areas in the algebraic graph theory. In the last two decades, many authors
worked in this field. (See, for instance, [1, 2, 4].)

In [4] it is studied a graph called subgroup graph of a group, as a graph
whose vertices are all subgroups of the group and two subgroups H1 and H2

are adjacent if and only if H1 ⩽ H2 and there is no subgroup K such that
H1 ≨ K ≨ H2. They view the subgroup lattice of a group as a graph and
investigate the planarity of this graph.

Recently, Akbari et al. [3] introduced a new graph called prime index
graph.
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Let G be a group. The prime index graph of G, denoted by Π(G), is
an undirected graph whose vertices are all subgroups of G and two distinct
comparable subgroups H and K are adjacent, H ∼ K, if and only if [H : K]
or [K : H] is prime.

In fact, the prime index graph is a subgraph of the subgroup graph. So
it is interesting to study the properties of this graph.

In [3], the authors proved that for every group G, Π(G) is a bipartite
graph and the girth of Π(G) is either 4 or ∞. Also, they showed that Π(G) is
a complete graph if and only if G is a cyclic group of prime order or |G| = rs,
for some primes r and s.

About the connectivity of the prime index graph, it has been proved
that the prime index graph of a solvable group is connected and moreover,
the prime index graph of the symmetric group of degree n is connected if and
only if n ≤ 5 (see [3]). In this paper, we investigate the connectivity of prime
index graphs on the simple groups. As a corollary, we examine the non-solvable
groups whose prime index graphs are disconnected.

2. LEMMAS

First we state some lemmas without proof and use them in our proofs.

Lemma 2.1 ([3, Theorem 8]). Let G be a group and N be a normal sub-
group of G. If Π(G) is a connected graph, then Π(N) and Π(G/N) are con-
nected graphs.

Lemma 2.2 ([3, Theorem 7]). Let G be a finite solvable group. Then
Π(G) is connected.

The following lemmas are due to Dickson [6].

Lemma 2.3. Let q = 2f ≥ 4. Then the maximal subgroups of PSL2(q)
are:

1) The semidirect product of Zf
2 and Zq−1, that is, the stabilizer of a point

of the projective line;

2) D2(q−1);

3) D2(q+1);

4) PSL2(q0), where q = qr0 for some prime r and q0 ̸= 2.

Lemma 2.4. Let p be a prime number. Then the maximal subgroups of
PSL2(p) are:
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1) The Frobenius group of order p(p− 1)/2;

2) Dp−1;

3) Dp+1;

4) A4, where p ≡ 3, 13, 27, 3 (mod 40), Sym(4), where p ≡ ±1 (mod 8) or
A5, where p ≡ ±1 (mod 10).

Lemma 2.5 ([7, Theorem 1]). Let G be a non-abelian finite simple group
with H ≤ G and [G : H] = ra, where r is a prime number. One of the following
holds:

a) G = An and H ∼= An−1 with n = ra;

b) G = PSLn(q) and H is the stabilizer of a line or hyperplane. Then

[G : H] =
qn − 1

q − 1
= ra (Note that n must be prime);

c) G = PSL2(11) and H ∼= A5;

d) G = M23 and H ∼= M22 or G = M11 and H ∼= M10;

e) G = PSU4(2) ∼= PSp4(3) ∼= B4(3) and H is the parabolic subgroup of
index 27.

Remark 2.1. Assume that for every maximal subgroupM of a finite group
G, Π(M) is connected and also there exists a maximal subgroup M ′ such that
[G : M ′] is prime. For every H1, H2 < G, there exist the maximal subgroups
M1,M2 of G such that H1 ≤ M1 and H2 ≤ M2. Since Π(M1) and Π(M2) are
connected, there exist a path between H1 and {e}, and a path between H2 and
{e}. So there exists a path between H1 and H2. Therefore, Π(G) is connected.

Lemma 2.6 ([13], Zsigmondy’s Theorem). Let a and n be integers greater
than 1. Then there exists a prime divisor r of an−1 such that r does not divide
aj − 1 for all j, 0 < j < n, except in the following cases:

a) n = 2, a = 2s − 1, where s > 0;

b) n = 6, a = 2.

Such a prime divisor is called a primitive prime divisor of an − 1.

Remark 2.2. Let t be an odd prime number. Since gcd(2, t) = 1 one has
t | 2t−1 − 1. If for a given natural number a, t divides 2t

a − 1, then it is easy
to see that t divides 2gcd(t

a,t−1) − 1 and hence t | 1, a contradiction. Therefore
gcd(t, 2t

a − 1) = 1.
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Lemma 2.7. Let n > 2 be an integer and q > 3 be a prime power. If

SLn(q) contains a maximal subgroup of a prime index, then both
qn − 1

q − 1
and

n are prime numbers.

Proof. Assume that N ≤ SLn(q) is a maximal subgroup of a prime index.
If Z = Z(SLn(q)) ≰ N , then since N is a maximal subgroup of G, we have
ZN = SLn(q) and hence, N⊴SLn(q). It is well known that for anyN◁SLn(q),
we have N ≤ Z. So by the above fact, we can conclude that Z(SLn(q)) =
SLn(q), which is a contradiction. Thus Z ≤ N and N/Z ≤ PSLn(q). So
[SLn(q) : N ] is prime if and only if [PSLn(q) : N/Z] is prime. Thus Lemma

2.5 shows that if [SLn(q) : N ] is prime, then both
qn − 1

q − 1
and n are prime

numbers, as desired.

In the following, let

T1 =

{(
1 t
0 I

)
: t ∈ (GF (q))n−1

}
,

T2 =

{(
det(A)−1 0

0 A

)
: A ∈ GLn−1(q)

}
and T3 =

{(
1 0
0 B

)
: B ∈ SLn−1(q)

}
. It is obvious that T1

∼= (GF (q))n−1,

T2
∼= GLn−1(q) and T3

∼= SLn−1(q).

Remark 2.3. Assume that gcd(n, q − 1) = 1. Under our assumptions, it
is known that PSLn(q) = SLn(q) acts on P(V ) = {[v] : v ∈ (GF (q))n}, where
for every v ∈ (GF (q))n, [v] = {av : a ∈ GF (q) − {0}}. Since M = T1 ⋊ T2 =
(SLn(q))[v1] and SLn(q) acts primitively on P(V ), we conclude that SLn(q)
contains a maximal subgroup which is isomorphic to M ∼= (GF (q))n−1 ⋊
GLn−1(q).

Lemma 2.8. Let n > 2 be a prime number and N be a maximal subgroup
of M = T1 ⋊ T2 of the prime index.

1) Let n > 3 and q = pm, where p is a prime number and m ∈ N. Then
T1, T3 ≤ N .

2) Let m = 3α, n = 3 and q = 2m. Then T3 ≤ N and T1 ≤ N .

Proof. (1) Suppose, contrary to our claim, that T1 ≰ N . Then T1N = M
and hence, N

T1∩N
∼= M

T1

∼= GLn−1(q). Thus N contains an element of order

qn−1 − 1, namely x. We can see at once that ⟨x⟩ acts fixed point freely on
T1∩N by conjugation. Consequently, we have O(x) divides |T1∩N |−1 = pa−1
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and hence, m(n − 1) | a. On the other hand, [M : N ] = [T1N : N ] = [T1 :
T1 ∩ N ] ̸= 1. Hence |T1 ∩ N | = pa < pm(n−1), which is a contradiction. The
result is T1 ≤ N .

Now, to obtain a contradiction, suppose that T3 ≰ N . Then since T1 ⋊
T3 ⊴ M , we have N(T1 ⋊ T3) = M . Therefore, [M : N ] = [N(T1 ⋊ T3) : N ] =
[T1 ⋊ T3 : (T1 ⋊ T3) ∩ N ] and hence, by Dedekind’s modular law (see [11, p.

15]), we get [M : N ] = [T1 ⋊ T3 : T1 ⋊ (T3 ∩ N)] =
|SLn−1(q)|
|T3 ∩N |

. Thus since

n − 1 is not prime, Lemma 2.7 shows that [M : N ] is not prime, which is a
contradiction. So T3 ≤ N .

(2) The same reasoning as (1) shows that T1 ≤ N . Now suppose, contrary
to our claim, that T3 ≰ N . Since T1 ⋊ T3 ⊴ M , we have N(T1 ⋊ T3) = M .

Thus [M : N ] = [T1⋊T3 : T1⋊ (T3∩N)] =
|SLn−1(q)|
|T3 ∩N |

is prime. From this, we

get that
(23

α
)2 − 1

23α − 1
is prime by Lemma 2.7. But 2+1 | 23α +1. So 23

α
+1 = 3

and hence 23
α
= 2, a contradiction.

Lemma 2.9. Let n > 3 be a prime number or n = 3 and q = 23
α
. Then

T1 ⋊ T3 doesn’t contain any maximal subgroup of a prime index.

Proof. On the contrary, suppose that there exists the maximal subgroup

N of T1 ⋊ T3 of a prime index. If T1 ≤ N , then [
T1 ⋊ T3

T1
:
N

T1
] = [T1 ⋊ T3 : N ]

is prime and
N

T1
≤ T1 ⋊ T3

T1

∼= SLn−1(q). But by Lemma 2.7, SLn−1(q) doesn’t

contain any maximal subgroup of a prime index, a contradiction. So T1 ≰ N .
As in the proof of Lemma 2.8, we get a contradiction. These contradictions
complete the proof.

3. MAIN RESULTS

Theorem 3.1. Let G be a non-abelian finite simple group. The prime
index graph of G is connected if and only if G is isomorphic to

A5, PSL2(11), PSL3(2), PSL3(3)

or PSL2(2
2n), where n ≤ 4.

Proof. If Π(G) is connected, then G contains a subgroup M of a prime
index. So M is a maximal subgroup of G and hence, it is sufficient to analyze
the groups listed in Lemma 2.5. We consider these possibilities in the following
cases:
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(I) By [3, p. 7], Π(An) is connected if and only if n ≤ 5.

(II) Let G = PSLn(q), where both qn−1
q−1 and n are primes. The proof

has been divided into several cases:

Case 1. Assume that nq is odd and n = 2l+1 > 3 is prime, where l ∈ N.
By [9, p. 70], SOn(q) is a maximal subgroup of PSLn(q). By comparing the
orders of SOn(q) and PSLn(q), we have [PSLn(q) : SOn(q)] is not prime. Thus
they are not adjacent in Π(PSLn(q)). It is well known that (SOn(q))

′ = Bl(q)
is a simple group and [SOn(q) : Bl(q)] = 2. Now, let N ≤ SOn(q) be a
maximal subgroup of SOn(q) such that N ̸= Bl(q). Then it is easy to see that
NBl(q) = SOn(q) and hence, [SOn(q) : N ] = [Bl(q) : N ∩ Bl(q)] is not prime,
by Lemma 2.5. Thus SOn(q) ∼ Bl(q) is a connected component of Π(SOn(q)).
Therefore, considering the orders of maximal subgroups of PSLn(q) (see [9])
shows that SOn(q) ∼ Bl(q) forms a connected component of Π(PSLn(q)).
From this, Π(PSLn(q)) is disconnected.

If n = 3 and q ̸= 3, then SO3(q) ∼= PGL2(q) is a maximal subgroup of

PSL3(q) by [5, p. 378]. Since
113 − 1

10
= 133 is not prime, Π(PSL3(11)) is

disconnected. So, let q ̸= 11. It is easy to see that PGL2(q) has a normal
subgroup H such that H ∼= PSL2(q) and H is adjacent to PGL2(q). By
Lemma 2.5, there is no subgroup of PSL2(q) that is adjacent to PSL2(q). Also,
according to Mitchell’s results [8] and by comparing the orders of subgroups
of PSL3(q) and the order of PSL2(q), we can get that PSL3(q) does not
contain any subgroup except PGL2(q) which is adjacent to PSL2(q) and hence
Π(PSL3(q)), where q ̸= 3, is disconnected.

If n = 3 and q = 3, then by [12], the maximal subgroups of PSL3(3)
are isomorphic to Sym(4) or solvable groups of orders 39 and 432. Therefore,
Remark 2.1 shows that Π(PSL3(3)) is connected.

Case 2. If n = 2, then [PSL2(q) : M ] =
q2 − 1

q − 1
= q + 1 is a prime

number, namely p. This forces q = 2s, where s = 2m, m ∈ N. So, p is a Fermat
prime. Suppose that Π(PSL2(q)) is connected. According to Lemma 2.3 and
[11], all maximal subgroups of PSL2(2

2m) except PSL2(2
2m−1

) (if m ≥ 2) are
solvable and hence their prime index graphs are connected by Lemma 2.2. Also,
PSL2(2

2m) and PSL2(2
2m−1

) are not adjacent in Π(PSL2(2
2m)). Let m > 4.

If 22
m−1

+1 is not prime, then Lemma 2.5 allows us to deduce that PSL2(2
2m−1

)
is an isolated vertex and hence, Π(PSL2(2

2m)) is disconnected. Now assume
that 22

m−1
+ 1 is prime. Then again PSL2(2

2m−2
) is a maximal subgroup of

PSL2(2
2m−1

). Since the other maximal subgroups of PSL2(2
2m) are solvable

and PSL2(2
2m−2

) is non-solvable, we deduce that if PSL2(2
2m) contains a

maximal subgroup L such that PSL2(2
2m−2

) ≲ L. Then L ≲ PSL2(2
2m−1

).
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Now, applying the above argument guarantees that either PSL2(2
2m−2

) is an
isolated vertex in Π(PSL2(2

2m)) or 22
m−2

+1 is prime. We continue the above
process about the maximal subgroups PSL2(2

2i−1
) of PSL2(2

2i), where i ≤ m.
Since 22

5
+ 1 is not a prime number, we obtain that PSL2(2

25) is an isolated
vertex. If m > 4, then Π(PSL2(2

2m)) is disconnected. Also, if m ≤ 4, then
repeating the above argument shows that Π(PSL2(2

2m)) is connected.

Case 3. Assume that n = u is an odd prime, q = 2m > 2 and
2mu − 1

2m − 1
is prime. Let m = uαt, where α ≥ 0 and gcd(u, t) = 1. By Lemma 2.6, there
exists a primitive prime divisor r of 2u

α+1−1. Since 2u
α+1−1 divides 2mu−1, we

have r | 2mu − 1. Also, since gcd(m,uα+1) = uα, we conclude that r ∤ 2m − 1.

So r | 2mu − 1

2m − 1
= s, where s is a primitive prime divisor of 2mu − 1. This

implies that r = s. It follows that mu = uα+1 and hence, m = uα. Therefore,
PSLu(2

uα
) = SLu(2

uα
) by Remark 2.2. By Remark 2.3, M = T1 ⋊ T2 is a

maximal subgroup of SLu(2
uα
). Note that [SLu(2

uα
) : M ] = p, T3 ⊴ T2 and

T2/T3
∼= K, where K =


 a−1 0 0

0 a 0
0 0 I

 : a ∈ (GF (2m))− {0}

 ∼= Z2m−1.

Since K ∼= Z2m−1 is cyclic, there is a normal series K0 = {e} ⊴ K1 ⊴ · · · ≤

Kt−1 ⊴Kt = K of the subgroups of K such that
|Ki+1|
|Ki|

is prime. Note that

T3 ⋊K ∼= T2. So there is a series T3 = T3 ⋊K0 ⊴ T3 ⋊K1 ⊴ · · ·⊴ T3 ⋊Kt−1 ⊴
T3 ⋊Kt = T3 ⋊K = T2 between T3 and T2 such that [T3 ⋊Ki+1 : T3 ⋊Ki] =
|T3||Ki+1|
|T3||Ki| = |Ki+1|

|Ki| is prime. Therefore,

(∗) H0 = T1 ⋊ T3 ∼ H1 = T1 ⋊ (T3 ⋊K1) ∼ · · ·Ht−1 = T1 ⋊ (T3 ⋊Kt−1) ∼ Ht

= T1 ⋊ T2

is a path in Π(SLu(2
m)). Let

B = {L | L ≤ T1 ⋊ T2 and T1 ⋊ T3 ⊴ L} ∪ {SLu(2
m)},

and let L0 ∈ B. Then Hi ∈ B. Since
T1 ⋊ T2

T1 ⋊ T3
is isomorphic to a cyclic

group, the argument given for (∗) shows that B forms a connected subgraph of
Π(SLu(2

m)), say Γ. Now, we choose a path in Γ. Without loss of generality,
we choose (∗). Suppose that there exists a subgroup of SLu(2

m), say H, such
that H ∼ Hi, for some i, 0 ≤ i ≤ t.

a) If Hi ≤ H and [H : Hi] is prime, then there exists a maximal subgroup
of SLu(2

m), sayW , such thatH ≤ W . Since considering the orders of maximal
subgroups of SL2(2

m) shows that every maximal subgroup of SL2(2
m) contain-

ing T1⋊T3 is isomorphic to M , we deduce that M and W are isomorphic. Let
ϕ : M −→ W be a group isomorphism. Let j be a minimal value between 0 and
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t such that T1⋊T3 ≤ ϕ(Hj). If j ̸= 0, then T1⋊T3 ≰ ϕ(Hj−1). From the above
argument, we know that ϕ(Hj−1)⊴ϕ(Hj) and hence (T1⋊T3)ϕ(Hj−1) = ϕ(Hj).
So [T1 ⋊ T3 : ϕ(Hj−1) ∩ (T1 ⋊ T3)] = [ϕ(Hj) : ϕ(Hj−1)] is prime, contrary to
Lemma 2.9. So, we thus have j = 0 that is T1 ⋊ T3 ≤ ϕ(H0). Moreover,
T1 ⋊ T3 ≤ ϕ(H0) = ϕ(T1 ⋊ T3)⊴ ϕ(M) = W and hence T1 ⋊ T3 = ϕ(T1 ⋊ T3).
Thus T1 ⋊ T3 ⊴ H ≤ W ≤ NSLu(2m)(T1 ⋊ T3) = M . So H ≤ M . This gives
H ∈ B.

b) Let H ≤ Hi and [Hi : H] be prime. Clearly, T1 ⊴ T1 ⋊ T2, T1 ⊴ Hi.
If T1 ≰ H, then T1H = Hi and this yields that [T1 : T1 ∩H] = [Hi : H] = 2.
Thus H ⊴Hi. If T3 ≰ H, then T3H = Hi. Therefore [T3 : T3 ∩H] = [Hi : H]
is prime, which is a contradiction with Lemma 2.7. So T3 ≤ H and hence
applying the argument as the proof of Lemma 2.8 leads us to a contradiction.
Thus T1 ≤ H. If T3 ≤ H, then H ∈ B. Therefore the theorem follows by
applying the same method as the above. If T3 ≰ H, then H(T1 ⋊ T3) = Hi.
Consequently, [Hi : H] = [(T1 ⋊ T3) : (T1 ⋊ T3) ∩H] = [T3 : T3 ∩H]. It follows
that [T3 : T3 ∩ H] is prime, which is a contradiction with Lemma 2.7. Thus
H ∈ B.

These show that Γ and their conjugates form a connected component and
hence Π(SLu(2

m)) is disconnected.
Case 4. Assume that q = 2, n ̸= 2, 3. Then the proof runs as Case 3.

Note that PSL2(2) ∼= Sym(3) is not simple. Also according to [12], we can
see that the maximal subgroups of PSL3(2) are isomorphic to Sym(4) or a
solvable group of order 21 and [PSL3(2) : Sym(4)] = 7. Hence Lemma 2.2 and
Remark 2.1 show that Π(PSL3(2)) is connected.

(III) Let G = PSL2(11). Then M ∼= A5. Since [PSL2(11) : A5] is prime,
PSL2(11) and A5 are adjacent. By Lemmas 2.4, all maximal subgroups of
PSL2(11) except A5 are solvable. So Lemma 2.2 forces the prime index graphs
of all maximal subgroups of PSL2(11) to be connected. Therefore, Remark
2.1 shows that Π(PSL2(11)) is connected.

(IV) Let G = M23. Then the maximal subgroup M of M23 is adjacent
to M23 if and only if M ∼= M22. But M22 is a simple group, so we can
conclude by Lemma 2.5 that M22 contains no maximal subgroup of a prime
index. Therefore, all maximal subgroups of M23 which are isomorphic to M22

and M23 form a connected component of Π(M23), that is a star graph Sk for
some natural number k. This forces Π(M23) to be disconnected.

(V) Let G = M11. Then a maximal subgroup M of M11 is adjacent to
M11 if and only if M ∼= M10. We know that the derived subgroup of M10 is
the simple group A6. Also, [M10 : A6] = 2. For every maximal subgroup L of
M10, |L| ∈ {16, 20, 72, 360} and for every maximal subgroup N of M11, either
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N ∼= M10 or |N | ∈ {48, 120, 144, 660}, see [12]. Thus Lemma 2.5 guarantees
that there is no path between M11 and {e} in Π(M11). Therefore, Π(M11) is
disconnected.

Corollary 3.1. If G is a non-solvable finite group with at least a non-
abelian composition factor K/H such that

K/H ≇ A5, PSL2(11), PSL3(2), PSL3(3)

and PSL2(2
2n), where n ≤ 4, then Π(G) is disconnected.

Proof. It is straightforward from Theorem 3.1 and Lemma 2.1.
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