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We show that if X and Y are quasi-injective objects of a Grothendieck category
such that there exist monomorphisms f : X → Y and g : Y → X, then X and
Y are isomorphic. We also prove that if X and Y are pure-injective objects of a
finitely accessible additive category such that there exist pure monomorphisms
f : X → Y and g : Y → X, then X and Y are isomorphic. In particular, if C
is either a Grothendieck category or a finitely accessible additive category, and
X and Y are objects of C such that there exist monomorphisms f : X → Y and
g : Y → X, then X and Y are isomorphic.
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1. INTRODUCTION

The classical Cantor-Bernstein-Schröder Theorem states that if A and B
are two sets such that there exist injective functions f : A → B and g : B → A,
then there exists a bijection between A and B. This can be rewritten in the
terminology of category theory as follows: if A and B are two injective objects
of the category Set of sets such that there exist monomorphisms f : A → B
and g : B → A, then A and B are isomorphic. Note that every object of
Set which is not initial is injective. Two objects A and B of a category with
the property that there exist monomorphisms f : A → B and g : B → A
are called mono-equivalent by R. Wisbauer [15], and are said to belong to the
same monogeny class by A. Facchini [3]. Using the former terminology, the
Cantor-Bernstein-Schröder Theorem can be reformulated as follows: injective
mono-equivalent objects of Set are isomorphic.

A natural question is whether one can obtain similar results by replacing
Set by other categories, arbitrary monomorphisms by particular ones, and
injective objects by some generalizations. A significant progress in module
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categories was made by R. T. Bumby, who proved that quasi-injective mono-
equivalent modules are isomorphic [2, Corollary 2]. Recently, J. E. Maćıas-
Dı́az and S. Maćıas showed that H-injective mono-equivalent modules with
respect to a so-called algebraic class H of monomorphisms are isomorphic [10,
Theorem 4.1]. If C is a category admitting a notion of purity, then two objects
A and B of C with the property that there exist pure monomorphisms f :
A → B and g : B → A are called pure-mono-equivalent [15]. Using different
approaches, R. Wisbauer [15, 4.3] and J. E. Maćıas-Dı́az [10, Theorem 4] proved
that pure-injective pure-mono-equivalent modules are isomorphic. Also, L. M.
Gurrola-Ramos, S. Maćıas and J. E. Maćıas-Dı́az showed that injective mono-
equivalent objects of a Grothendieck category are isomorphic [8, Theorem 12].
Recently, Guil Asensio, Kalebog̃az and Srivastava have obtained some new
results on the (Cantor-)Bernstein-Schröder problem for modules [7].

In the present note we generalize such results from module categories
to Grothendieck categories and finitely accessible additive categories. By us-
ing functorial techniques, we are able to give shorter and more conceptual
proofs. We show that if C is a Grothendieck category, then quasi-injective
mono-equivalent objects of C are isomorphic. We also prove that if C is a
finitely accessible additive category, then pure-injective pure-mono-equivalent
objects of C are isomorphic. Moreover, the same is true for definable full sub-
categories of a finitely accessible additive category with products. In particular,
if C is either a Grothendieck category or a finitely accessible additive category,
then injective mono-equivalent objects of C are isomorphic.

2. GROTHENDIECK CATEGORIES

We begin with a property on the transfer of quasi-injectivity between
categories.

Proposition 2.1. Let (L,R) be an adjoint pair of covariant functors
L : A → B and R : B → A between arbitrary categories A and B such that L
preserves monomorphisms and R is fully faithful. Then an object M of B is
quasi-injective if and only if R(M) is quasi-injective in A.

Proof. Let ε : LR → 1B and η : 1A → RL be the counit and the unit
of adjunction respectively. Since R is fully faithful, εB : LR(B) → B is an
isomorphism for every object B of B.

Assume thatM is quasi-injective in B. Let α : A → R(M) be a monomor-
phism and let β : A → R(M) be a morphism in A. Since L preserves monomor-
phisms, εML(α) : L(A) → M is a monomorphism. By the quasi-injectivity of
M , there exists a morphism h : M → M such that hεML(α) = εML(β).
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Let γ = R(h) : R(M) → R(M). Since (L,R) is an adjoint pair, we have
R(εM )ηR(M) = 1R(M) and η is a natural transformation. It follows that:

γα = R(h)α = R(h)R(εM )ηR(M)α = R(h)R(εM )RL(α)ηA

= R(hεML(α))ηA = R(εML(β))ηA = R(εM )RL(β)ηA

= R(εM )ηR(M)β = β.

This shows that R(M) is quasi-injective in A.

Conversely, assume that R(M) is quasi-injective in A. Let α : B → M be
a monomorphism and let β : B → M be a morphism in B. Since R preserves
monomorphisms as a right adjoint, R(α) : R(B) → R(M) is a monomorphism.
By the quasi-injectivity of R(M), there exists a morphism h : R(M) → R(M)
such that hR(α) = R(β). Let γ = εML(h)ε−1

M : M → M . Since ε is a natural
transformation, it follows that:

γα = γαεBε
−1
B = εML(h)ε−1

M αεBε
−1
B = εML(h)ε−1

M εMLR(α)ε−1
B

= εML(hR(α))ε−1
B = εMLR(β)ε−1

B = βεBε
−1
B = β.

This shows that M is quasi-injective in B.

A Grothendieck category is an abelian category with coproducts, exact
direct limits and a generator. Examples of such categories include module
categories and categories σ[M ] of modules subgenerated by a module M .

Grothendieck categories are related to module categories by the following
famous theorem.

Theorem 2.2 (Gabriel-Popescu [5]). Let C be a Grothendieck category
with a generator U , let R = EndC(U) be the endomorphism ring of U and let
Mod(R) be the category of unitary right R-modules. Then the functor H =
HomC(U,−) : C → Mod(R) is fully faithful and has an exact left adjoint.

The following theorem generalizes [8, Theorem 12] from injectivity to
quasi-injectivity.

Theorem 2.3. Let C be a Grothendieck category. Then quasi-injective
mono-equivalent objects of C are isomorphic.

Proof. Let X and Y be quasi-injective mono-equivalent objects of C. We
use the notation and the conclusion of the Gabriel-Popescu Theorem 2.2. The
functor H preserves quasi-injective objects by Proposition 2.1. Since H is left
exact, it follows that H(X) and H(Y ) are quasi-injective mono-equivalent right
R-modules. Then H(X) and H(Y ) are isomorphic by [2, Corollary 2]. Since
H is fully faithful, it follows that X and Y are isomorphic.
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Since every object of a Grothendieck category has an injective envelope
and a quasi-injective envelope, we immediately have the following corollary.

Corollary 2.4. Let C be a Grothendieck category. Then mono-equivalent
objects of C have isomorphic injective envelopes and isomorphic quasi-injective
envelopes.

3. FINITELY ACCESSIBLE ADDITIVE CATEGORIES

We recall, mainly from [12], some terminology on finitely accessible addi-
tive categories, which are suitable frameworks for defining purity. An additive
category C is called finitely accessible if it has direct limits, the class of finitely
presented objects is skeletally small, and every object is a direct limit of finitely
presented objects. Some typical examples of finitely accessible additive cate-
gories are the category of modules over a ring with enough idempotents and
the category of torsion-free abelian groups. The former is a Grothendieck cat-
egory, while in general the latter is not even abelian [6]. Also, note that there
are Grothendieck categories which are not finitely accessible, e.g. a category of
the form σ[M ] having no non-zero finitely presented object [13, Example 1.7].

Let C be a finitely accessible additive category. By a sequence

0 → X
f→ Y

g→ Z → 0

in C we mean a pair of composable morphisms f : X → Y and g : Y → Z
such that gf = 0. The above sequence in C is called pure exact if it induces an
exact sequence of abelian groups

0 → HomC(P,X) → HomC(P, Y ) → HomC(P,Z) → 0

for every finitely presented object P of C. Then f and g form a kernel-cokernel
pair, f is called a pure monomorphism and g a pure epimorphism. The pure-
injective objects of C are those objects which are injective with respect to every
pure exact sequence in C.

To every finitely accessible additive category C one may associate a ring R
with enough idempotents, called the functor ring of C [4]. Denote by Mod(R)
the category of unitary right R-modules. Note that Mod(R) is equivalent to
the functor category (fp(C)op,Ab) of all contravariant additive functors from
the full subcategory fp(C) of finitely presented objects of C to the category Ab
of abelian groups.

Recall that a module C is called cotorsion if Ext1R(F,C) = 0 for every flat
module F [14, Definition 3.1.1]. A homomorphism f : M → C from a module
M to a cotorsion module C is called a cotorsion envelope if for every cotorsion
module C ′ the induced homomorphism HomR(C,C

′) → HomR(M,C ′) is an
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epimorphism, and if g : C → C is an endomorphism such that gf = f , then
g is an automorphism [14, Definition 1.2.1]. Every module M has a cotorsion
envelope M → C(M), which is a pure monomorphism [1].

Theorem 3.1 ([12, Theorem 3.4], [9, Lemma 3]). Let C be a finitely acces-
sible additive category, let (Ui)i∈I be a representative set of finitely presented
objects of C and let R be the functor ring of C. Then the (Yoneda) functor
H : C → Mod(R), given on objects by H(X) =

⊕
i∈I HomC(Ui, X), is fully

faithful.

It preserves pure exact sequences, and induces an equivalence between C
and the category of flat unitary right R-modules. The equivalence restricts
to one between pure-injective objects of C and flat cotorsion unitary right R-
modules.

In view of Theorem 3.1, in order to obtain properties on pure-injective
objects of finitely accessible additive categories we first need to give some
results on flat cotorsion modules over a ring with enough idempotents, which
will be denoted by R in the following results.

Lemma 3.2. Let M be a flat cotorsion right R-module and let K be a
pure submodule of M . Then C(K) is isomorphic to a direct summand of M .

Proof. Let i : K → C(K) and k : K → M be inclusion homomorphisms.
Since M/K is flat, we have Ext1R(M/K,C(K)) = 0. Hence there exists a
homomorphism α : M → C(K) such that αk = i. Since i : K → C(K) is a
cotorsion envelope, there exists a homomorphism β : C(K) → M such that
βi = k. Then αβi = i, which implies that αβ is an automorphism by the
envelope property. Hence β : C(K) → M is a split monomorphism.

Lemma 3.3 ([11, Lemma 4.1]). Let M and N be right R-modules which
are isomorphic to direct summands of each other. Then there exist sequences
(An)n∈N, (Bn)n∈N, (Mn)n∈N∗ and (Nn)n∈N∗ such that for every n ∈ N∗ =
N \ {0} we have:

1. Mn
∼= M , Nn

∼= N , An
∼= A0 and Bn

∼= B0;

2. Mn = An ⊕Nn+1 and Nn = Bn−1 ⊕Mn;

3. M =
(⊕n−1

m=0Am

)
⊕
(⊕n−1

m=0Bm

)
⊕Mn;

4. N1 = (
⊕n

m=1Am)⊕
(⊕n−1

m=0Bm

)
⊕Nn+1.
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Lemma 3.4. Let M and N be flat cotorsion pure-mono-equivalent right
R-modules. Then there exist sequences (An)n∈N, (Bn)n∈N, (Mn)n∈N∗ and
(Nn)n∈N∗ of flat cotorsion right R-modules such that the conditions (1)-(4)
from Lemma 3.3 hold for every n ∈ N∗.

Proof. By Lemma 3.2, it follows that M and N are isomorphic to flat
cotorsion direct summands of each other. The existence of the required se-
quences follows by Lemma 3.3. All their terms are direct summands of M and
N1

∼= N , and so they are flat cotorsion.

The next result has also appeared as [7, Corollary 2.5], where it has a
different proof.

Proposition 3.5. Flat cotorsion pure-mono-equivalent right R-modules
are isomorphic.

Proof. Let M and N be flat cotorsion pure-mono-equivalent right R-
modules. We follow the idea of proof of [10, Theorem 4]. By Lemma 3.4, there
exist sequences (An)n∈N, (Bn)n∈N, (Mn)n∈N∗ and (Nn)n∈N∗ of flat cotorsion
right R-modules such that for every n ∈ N∗ the conditions (1)-(4) from Lemma
3.3 hold. For every n ∈ N∗, let

Cn =

(
n⊕

m=1

Am

)
⊕

(
n−1⊕
m=0

Bm

)
.

Then (Cn)n∈N∗ is an increasing sequence of pure submodules of M and N1.
Then U =

⋃
n∈N∗ Cn is a pure submodule of M and N1, and we have:

U ∼=

(⊕
m∈N∗

Am

)
⊕

(⊕
m∈N

Bm

)
∼=

(⊕
m∈N

Am

)
⊕

(⊕
m∈N

Bm

)
∼= A0 ⊕ U.

SinceM andN1
∼= N are flat cotorsion, Lemma 3.2 implies thatM = C⊕A and

N1 = D⊕B for some submodules A and C ∼= C(U) ofM , and B andD ∼= C(U)
of N1. Since A0 is cotorsion, we have C(U) ∼= C(A0)⊕C(U) ∼= A0 ⊕C(U). It
follows that:

M ∼= M1 = A0 ⊕N1
∼= A0 ⊕ C(U)⊕B ∼= C(U)⊕B ∼= N1

∼= N,

which finishes the proof.

Now we may use the results on flat cotorsion modules in order to deduce
the following theorem.

Theorem 3.6. Let C be a finitely accessible additive category. Then pure-
injective pure-mono-equivalent objects of C are isomorphic.
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Proof. We use the notation and the conclusion of Theorem 3.1. Let X
and Y be pure-injective pure-mono-equivalent objects of C. Then H(X) and
H(Y ) are flat cotorsion pure-mono-equivalent right R-modules. Then H(X)
andH(Y ) are isomorphic by Proposition 3.5. SinceH is fully faithful, it follows
that X and Y are isomorphic.

Corollary 3.7. Let C be a finitely accessible additive category. Then
injective mono-equivalent objects of C are isomorphic.

Since every object of a finitely accessible additive category has a pure-
injective envelope, which is a pure monomorphism [9, Theorem 6], we imme-
diately have the following corollary.

Corollary 3.8. Let C be a finitely accessible additive category. Then
pure-mono-equivalent objects of C have isomorphic pure-injective envelopes.

Following [12], a full subcategory D of a finitely accessible additive cat-
egory with products is called definable if D is closed under products, direct
limits and pure subobjects. Note that definable subcategories of finitely ac-
cessible additive categories need not be finitely accessible. For instance, the
category of divisible abelian groups is a definable subcategory of the category
of abelian groups, but it is not finitely accessible [12, Example 10.3]. Since
purity and pure-injectivity in a definable subcategory are just the restriction
of purity and pure-injectivity in the larger finitely accessible additive category
(e.g., see [12, Section 5]), we immediately deduce the following corollary.

Corollary 3.9. Let D be a definable subcategory of a finitely accessi-
ble additive category with products. Then pure-injective pure-mono-equivalent
objects of D are isomorphic.
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