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We show that if X and Y are quasi-injective objects of a Grothendieck category
such that there exist monomorphisms f: X — Y and g: Y — X, then X and
Y are isomorphic. We also prove that if X and Y are pure-injective objects of a
finitely accessible additive category such that there exist pure monomorphisms
f:X —>Yandg:Y — X, then X and Y are isomorphic. In particular, if C
is either a Grothendieck category or a finitely accessible additive category, and
X and Y are objects of C such that there exist monomorphisms f : X — Y and
g:Y — X, then X and Y are isomorphic.
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1. INTRODUCTION

The classical Cantor-Bernstein-Schroder Theorem states that if A and B
are two sets such that there exist injective functions f: A - Band g : B — A,
then there exists a bijection between A and B. This can be rewritten in the
terminology of category theory as follows: if A and B are two injective objects
of the category Set of sets such that there exist monomorphisms f: A —» B
and g : B — A, then A and B are isomorphic. Note that every object of
Set which is not initial is injective. Two objects A and B of a category with
the property that there exist monomorphisms f : A - Band g : B — A
are called mono-equivalent by R. Wisbauer [15], and are said to belong to the
same monogeny class by A. Facchini [3]. Using the former terminology, the
Cantor-Bernstein-Schréoder Theorem can be reformulated as follows: injective
mono-equivalent objects of Set are isomorphic.

A natural question is whether one can obtain similar results by replacing
Set by other categories, arbitrary monomorphisms by particular ones, and
injective objects by some generalizations. A significant progress in module
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categories was made by R. T. Bumby, who proved that quasi-injective mono-
equivalent modules are isomorphic [2, Corollary 2]. Recently, J. E. Macias-
Diaz and S. Macias showed that H-injective mono-equivalent modules with
respect to a so-called algebraic class H of monomorphisms are isomorphic [10,
Theorem 4.1]. If C is a category admitting a notion of purity, then two objects
A and B of C with the property that there exist pure monomorphisms f :
A — Band g : B — A are called pure-mono-equivalent [15]. Using different
approaches, R. Wisbauer [15, 4.3] and J. E. Macias-Diaz [10, Theorem 4] proved
that pure-injective pure-mono-equivalent modules are isomorphic. Also, L. M.
Gurrola-Ramos, S. Macias and J. E. Macias-Diaz showed that injective mono-
equivalent objects of a Grothendieck category are isomorphic [8, Theorem 12].
Recently, Guil Asensio, Kalebogaz and Srivastava have obtained some new
results on the (Cantor-)Bernstein-Schréder problem for modules [7].

In the present note we generalize such results from module categories
to Grothendieck categories and finitely accessible additive categories. By us-
ing functorial techniques, we are able to give shorter and more conceptual
proofs. We show that if C is a Grothendieck category, then quasi-injective
mono-equivalent objects of C are isomorphic. We also prove that if C is a
finitely accessible additive category, then pure-injective pure-mono-equivalent
objects of C are isomorphic. Moreover, the same is true for definable full sub-
categories of a finitely accessible additive category with products. In particular,
if C is either a Grothendieck category or a finitely accessible additive category,
then injective mono-equivalent objects of C are isomorphic.

2. GROTHENDIECK CATEGORIES

We begin with a property on the transfer of quasi-injectivity between
categories.

PROPOSITION 2.1. Let (L,R) be an adjoint pair of covariant functors
L:A— Band R: B — A between arbitrary categories A and B such that L
preserves monomorphisms and R is fully faithful. Then an object M of B is
quasi-injective if and only if R(M) is quasi-injective in A.

Proof. Let ¢ : LR — 1g and n : 14 — RL be the counit and the unit
of adjunction respectively. Since R is fully faithful, ep : LR(B) — B is an
isomorphism for every object B of B.

Assume that M is quasi-injective in B. Let a : A — R(M) be a monomor-
phism and let 5 : A — R(M) be a morphism in .A. Since L preserves monomor-
phisms, eprL(«) : L(A) — M is a monomorphism. By the quasi-injectivity of
M, there exists a morphism h : M — M such that heyL(a) = epL(B).



3 On isomorphic injective objects 427

Let v = R(h) : R(M) — R(M). Since (L, R) is an adjoint pair, we have
R(e M)77R( ) = Lgr(ar) and 7 is a natural transformation. It follows that:

R(h)a = R(h)R(enm)nrona = R(h)R(en) RL(a)na
R(hepmL(a))na = R(em L(B))na = R(ep) RL(B)na
= R(em)nronB = B.

This shows that R(M) is quasi-injective in A.

Conversely, assume that R(M) is quasi-injective in A. Let a: B — M be
a monomorphism and let 8 : B —+ M be a morphism in B. Since R preserves
monomorphisms as a right adjoint, R(«) : R(B) — R(M) is a monomorphism.
By the quasi-injectivity of R(M), there exists a morphism h : R(M) — R(M)
such that hR(a) = R(B). Let v = eprL(h)ey, : M — M. Since ¢ is a natural
transformation, it follows that:

yoo = 7@&36731 = EML(h)EX/[laa‘ngl = EML(h)sz/[laMLR(oa)sgl

= enmL(hR(a))ep' = emLR(B)ey' = Bepey' = B.
This shows that M is quasi-injective in B. 0O

A Grothendieck category is an abelian category with coproducts, exact
direct limits and a generator. Examples of such categories include module
categories and categories o[M] of modules subgenerated by a module M.

Grothendieck categories are related to module categories by the following
famous theorem.

THEOREM 2.2 (Gabriel-Popescu [5]). Let C be a Grothendieck category
with a generator U, let R = End¢(U) be the endomorphism ring of U and let
Mod(R) be the category of unitary right R-modules. Then the functor H =
Home (U, —) : C — Mod(R) is fully faithful and has an exact left adjoint.

The following theorem generalizes [8, Theorem 12] from injectivity to
quasi-injectivity.

THEOREM 2.3. Let C be a Grothendieck category. Then quasi-injective
mono-equivalent objects of C are isomorphic.

Proof. Let X and Y be quasi-injective mono-equivalent objects of C. We
use the notation and the conclusion of the Gabriel-Popescu Theorem 2.2. The
functor H preserves quasi-injective objects by Proposition 2.1. Since H is left
exact, it follows that H(X) and H(Y") are quasi-injective mono-equivalent right
R-modules. Then H(X) and H(Y') are isomorphic by [2, Corollary 2]. Since
H is fully faithful, it follows that X and Y are isomorphic. [
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Since every object of a Grothendieck category has an injective envelope
and a quasi-injective envelope, we immediately have the following corollary.

COROLLARY 2.4. Let C be a Grothendieck category. Then mono-equivalent
objects of C have isomorphic injective envelopes and isomorphic quasi-injective
envelopes.

3. FINITELY ACCESSIBLE ADDITIVE CATEGORIES

We recall, mainly from [12], some terminology on finitely accessible addi-
tive categories, which are suitable frameworks for defining purity. An additive
category C is called finitely accessible if it has direct limits, the class of finitely
presented objects is skeletally small, and every object is a direct limit of finitely
presented objects. Some typical examples of finitely accessible additive cate-
gories are the category of modules over a ring with enough idempotents and
the category of torsion-free abelian groups. The former is a Grothendieck cat-
egory, while in general the latter is not even abelian [6]. Also, note that there
are Grothendieck categories which are not finitely accessible, e.g. a category of
the form o[M] having no non-zero finitely presented object [13, Example 1.7].

Let C be a finitely accessible additive category. By a sequence

0oxhv%z 0

in C we mean a pair of composable morphisms f: X — Y andg:Y — Z
such that gf = 0. The above sequence in C is called pure ezxact if it induces an
exact sequence of abelian groups

0 — Home (P, X) — Home(P,Y) — Home (P, Z) — 0

for every finitely presented object P of C. Then f and g form a kernel-cokernel
pair, f is called a pure monomorphism and g a pure epimorphism. The pure-
injective objects of C are those objects which are injective with respect to every
pure exact sequence in C.

To every finitely accessible additive category C one may associate a ring R
with enough idempotents, called the functor ring of C [4]. Denote by Mod(R)
the category of unitary right R-modules. Note that Mod(R) is equivalent to
the functor category (fp(C)°P, Ab) of all contravariant additive functors from
the full subcategory fp(C) of finitely presented objects of C to the category Ab
of abelian groups.

Recall that a module C is called cotorsion if ExtL(F,C) = 0 for every flat
module F' [14, Definition 3.1.1]. A homomorphism f : M — C from a module
M to a cotorsion module C' is called a cotorsion envelope if for every cotorsion
module C’ the induced homomorphism Hompg(C,C’) — Hompg(M,C") is an
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epimorphism, and if g : C' — C is an endomorphism such that gf = f, then
g is an automorphism [14, Definition 1.2.1]. Every module M has a cotorsion
envelope M — C(M), which is a pure monomorphism [1].

THEOREM 3.1 ([12, Theorem 3.4], [9, Lemma 3]). Let C be a finitely acces-
sible additive category, let (U;)ier be a representative set of finitely presented
objects of C and let R be the functor ring of C. Then the (Yoneda) functor
H : C — Mod(R), given on objects by H(X) = @,.; Home(U;, X), is fully
faithful.

It preserves pure exact sequences, and induces an equivalence between C
and the category of flat unitary right R-modules. The equivalence restricts
to one between pure-injective objects of C and flat cotorsion unitary right R-
modules.

In view of Theorem 3.1, in order to obtain properties on pure-injective
objects of finitely accessible additive categories we first need to give some
results on flat cotorsion modules over a ring with enough idempotents, which
will be denoted by R in the following results.

LEMMA 3.2. Let M be a flat cotorsion right R-module and let K be a
pure submodule of M. Then C(K) is isomorphic to a direct summand of M.

Proof. Let i : K — C(K) and k : K — M be inclusion homomorphisms.
Since M/K is flat, we have Exth(M/K,C(K)) = 0. Hence there exists a
homomorphism « : M — C(K) such that ak = i. Since i : K — C(K) is a
cotorsion envelope, there exists a homomorphism g : C(K) — M such that
Bt = k. Then afi = i, which implies that af is an automorphism by the
envelope property. Hence 5 : C(K) — M is a split monomorphism. [

LEMMA 3.3 ([11, Lemma 4.1]). Let M and N be right R-modules which
are isomorphic to direct summands of each other. Then there exist sequences
(An)nen, (Bn)nen, (Mp)nen+ and (Np)nen+ such that for every n € N* =
N\ {0} we have:

1. M, =M, N, =N, A, = Ay and B, = By;

2. M, = A, & Nyiy and Ny = By_1 @ M,,;
3. M= (@;;10 Am) o (@?n;lo Bm) @ M,:

4 N1 = @y An) © (@420 B ) & N,
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LEMMA 3.4. Let M and N be flat cotorsion pure-mono-equivalent right
R-modules. Then there exist sequences (Ap)neN, (Bn)nen, (Mp)nen+ and
(Nn)nen+ of flat cotorsion right R-modules such that the conditions (1)-(4)
from Lemma 3.8 hold for every n € N*,

Proof. By Lemma 3.2, it follows that M and N are isomorphic to flat
cotorsion direct summands of each other. The existence of the required se-
quences follows by Lemma 3.3. All their terms are direct summands of M and
N1 =2 N, and so they are flat cotorsion. [

The next result has also appeared as [7, Corollary 2.5], where it has a
different proof.

PROPOSITION 3.5. Flat cotorsion pure-mono-equivalent right R-modules
are isomorphic.

Proof. Let M and N be flat cotorsion pure-mono-equivalent right R-
modules. We follow the idea of proof of [10, Theorem 4]. By Lemma 3.4, there
exist sequences (An)nen, (Bn)neN, (Mp)nen+ and (Nyp)pen+ of flat cotorsion
right R-modules such that for every n € N* the conditions (1)-(4) from Lemma
3.3 hold. For every n € N*, let

(6)- (@)

Then (Cp,)nen+ is an increasing sequence of pure submodules of M and Nj.
Then U = UneN* C), is a pure submodule of M and N7, and we have:

v (@ Am>@<@Bm> « (@Am>@<@Bm> ~ Ao,

meN* meN meN meN
Since M and N1 = N are flat cotorsion, Lemma 3.2 implies that M = C® A and
N; = D@ B for some submodules A and C = C(U) of M, and B and D = C(U)
of Ni. Since Ag is cotorsion, we have C(U) = C(Ap) @ C(U) = Ao C(U). It
follows that:
MngzAg@Nlng@C(U)@BgC(U)@BgngN,

which finishes the proof. [

Now we may use the results on flat cotorsion modules in order to deduce
the following theorem.

THEOREM 3.6. Let C be a finitely accessible additive category. Then pure-
injective pure-mono-equivalent objects of C are isomorphic.
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Proof. We use the notation and the conclusion of Theorem 3.1. Let X
and Y be pure-injective pure-mono-equivalent objects of C. Then H(X) and
H(Y) are flat cotorsion pure-mono-equivalent right R-modules. Then H(X)
and H(Y') are isomorphic by Proposition 3.5. Since H is fully faithful, it follows
that X and Y are isomorphic. [

COROLLARY 3.7. Let C be a finitely accessible additive category. Then
injective mono-equivalent objects of C are isomorphic.

Since every object of a finitely accessible additive category has a pure-
injective envelope, which is a pure monomorphism [9, Theorem 6], we imme-
diately have the following corollary.

COROLLARY 3.8. Let C be a finitely accessible additive category. Then
pure-mono-equivalent objects of C have isomorphic pure-injective envelopes.

Following [12], a full subcategory D of a finitely accessible additive cat-
egory with products is called definable if D is closed under products, direct
limits and pure subobjects. Note that definable subcategories of finitely ac-
cessible additive categories need not be finitely accessible. For instance, the
category of divisible abelian groups is a definable subcategory of the category
of abelian groups, but it is not finitely accessible [12, Example 10.3]. Since
purity and pure-injectivity in a definable subcategory are just the restriction
of purity and pure-injectivity in the larger finitely accessible additive category
(e.g., see [12, Section 5]), we immediately deduce the following corollary.

COROLLARY 3.9. Let D be a definable subcategory of a finitely accessi-
ble additive category with products. Then pure-injective pure-mono-equivalent
objects of D are isomorphic.

REFERENCES

[1] L. Bican, R. El Bashir, and E. Enochs, All modules have flat covers. Bull. London Math.
Soc. 33 (2001), 385-390.

[2] R. T. Bumby, Modules which are isomorphic to submodules of each other. Arch. Math.
16 (1965), 184-185.

[3] A. Facchini, Krull-Schmidt fails for serial modules. Trans. Amer. Math. Soc. 348 (1996),
4561-4575.

[4] K. R. Fuller, On rings whose left modules are direct sums of finitely generated modules.
Proc. Amer. Math. Soc. 54 (1976), 39-44.

[6] P. Gabriel and N. Popescu, Caractérisation des catégories abéliennes avec générateurs
et limites inductives exactes. C. R. Acad. Sci. Paris 258 (1964), 4188-4190.

[6] J. L. Garcia and J. Martinez Herndndez, When is the category of flat modules abelian?.
Fund. Math. 147 (1995), 83-91.



432

S. Crivei 8

[7]

[11]

[12]
[13]

[14]
[15]

P. A. Guil Asensio, B. Kalebogaz, and A. Srivastava, The Schrider-Bernstein problem
for modules. J. Algebra 498 (2018), 153-164.

L. M. Gurrola-Ramos, S. Macias, and J. E. Macias-Diaz, On the isomorphism of injective
objects in Grothendieck categories. Quaest. Math. 40 (2017), 617-626.

I. Herzog, Pure-injective envelopes. J. Algebra Appl. 4 (2003), 397-402.

J. E. Macias-Diaz, On modules which are isomorphic to relatively divisible or pure sub-
modules of each other. Quaest. Math. 38 (2015), 789-792.

J. E. Macias-Diaz and S. Macias, An equivalence criterion for the generalized injectivity
of modules with respect to algebraic classes of homomorphisms. J. Algebra Appl. 15
(2016), 1650166 (13 pages).

M. Prest, Definable additive categories: purity and model theory. Mem. Amer. Math.
Soc. 210 (2011), No. 987.

M. Prest and R. Wisbauer, Finite presentation and purity in categories o[M]. Colloq.
Math. 99 (2004), 189-202.

J. Xu, Flat covers of modules. Lecture Notes Math. 1634, Springer, Berlin, 1996.
R. Wisbauer, Correct classes of modules. Algebra Discrete Math. 3 (2004), 4, 106—118.

Received May 9, 2018 Babes-Bolyai University
Faculty of Mathematics and Computer Science
Str. M. Kogdlniceanu 1
400084 Cluj-Napoca, Romania
crivei@math.ubbcluj.ro



