
ON THE PARTITION DIMENSION OF INFINITE GRAPHS

MUHAMMAD IMRAN and TOMÁŠ VETRÍK
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Little is known about the partition dimension of infinite graphs. Tomescu studied
graphs where the set of vertices is the set of points of the integer lattice. We
generalize these graphs and present several exact values, lower bounds and upper
bounds on the partition dimension of infinite graphs.
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1. INTRODUCTION

The metric dimension is an invariant with extensive applications in robot
navigation [8], pharmaceutical chemistry [4], pattern recognition and image
processing [9]. The concept of metric dimension was introduced by Slater [10]
and independently by Harary and Melter [6]. Slater referred to a metric dimen-
sion of a graph as its location number and motivated the study of this invariant
by its application to the placement of minimum number of loran/sonar detect-
ing devices in a network so that the position of every vertex in the network
can be uniquely represented in terms of its distances to the devices in the set.

We investigate the partition dimension of graphs, which is an invariant
defined more generally than the metric dimension. The partition dimension was
introduced by Chartrand, Salehi and Zhang [5], who gave some basic results
on the partition dimension of graphs. We consider connected infinite graphs G
with the vertex set V (G) and the edge set E(G). The distance d(u, v) between
two vertices u, v ∈ G is the number of edges in a shortest path connecting
them. For a vertex v and a set S ⊆ V (G) the distance between v and S is
defined as

d(v, S) = min{d(v, u) | u ∈ S}.

For two sets S′, S ⊆ V (G), the distance between S′ and S is defined as
d(S′, S) = min{d(v, u) | v ∈ S′, u ∈ S}. Let Π = {S1, S2, . . . , Sk} be an ordered
partition of V (G). The partition representation of a vertex v with respect to
Π is the k-tuple

r(v|Π) = (d(v, S1), d(v, S2), . . . , d(v, Sk)).
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If for every pair of distinct vertices u, v ∈ V (G), we have r(u|Π) ̸= r(v|Π),
then Π is a resolving partition and the minimum cardinality of a resolving
partition of V (G) is called the partition dimension of G and it is denoted
by pd(G). It follows that if for every pair of distinct vertices u, v ∈ V (G),
we have d(u, Sj) ̸= d(v, Sj) for some set Sj , where j ∈ {1, 2, . . . , k}, then
Π = {S1, S2, . . . , Sk} is a resolving partition of V (G).

We define the ray, P∞, as the graph with the vertex set V (P∞) =
{vi | i ∈ N} and the edge set E(P∞) = {vivi+1 | i ∈ N}. The double ray
P2∞, is the graph with the vertex set V (P2∞) = {vi | i ∈ Z} and the edge set
E(P2∞) = {vivi+1 | i ∈ Z}. Let P z

2∞ be the graph with the vertex set V (P z
2∞) =

{vi | i ∈ Z} and the edge set E(P z
2∞) = {vivi+1, vivi+2, . . . , vivi+z | i ∈ Z}. The

Cartesian product G□H of graphs G and H is a graph having the vertex set
V (G□H) = V (G)× V (H) and any two vertices (u, u′) and (v, v′) are adjacent
in G□H if and only if either u = v and u′ is adjacent to v′ in H, or u′ = v′

and u is adjacent to v in G.

The partition dimension of infinite graphs was investigated in [11] and
[12]. Tomescu and Imran [12] studied infinite regular graphs including pla-
nar triangular and hexagonal networks. Tomescu [11] studied graphs where
the set of vertices is the set of points of the integer lattice. He showed that
pd(P2∞□P2∞) = 3. We generalize graphs studied in [11] by considering the
graphs P z

2∞□P2∞ for any z ≥ 2 and P z
2∞□P z

2∞ for z = 2.

Note that the partition dimension of graph products was considered also
in [1, 2, 13, 14], the partition dimension of disconnected graphs was investigated
in [7] and the metric dimension of infinite graphs was studied in [3].

2. RESULTS

First we prove that the ray and the double ray are the only infinite graphs
having the partition dimension 2. Chartrand, Salehi and Zhang [5] proved a
similar result for finite graphs. Their method can be used to obtain Theorem
2.1. We present an alternative proof.

Theorem 2.1. Let G be an infinite graph. We have pd(G) = 2 if and
only if G is P∞ or P2∞.

Proof. Note that the vertex sets and edge sets of P∞ and P2∞ are defined
in the previous section.

Let S1 = {v1} for P∞ and S1 = {vi | i ≤ 1} for P2∞. Let S2 = {vi | i ≥
2}. Clearly, Π = {S1, S2} is a resolving partition, thus pd(P∞) = 2 and
pd(P2∞) = 2.
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It remains to show that if G is not P∞ or P2∞, then pd(G) > 2. Assume
to the contrary that pd(G) = 2 and let Π′ = {S′

1, S
′
2} be a resolving partition

of G. G contains a vertex, say v, adjacent to at least 3 vertices, say v1, v2, v3
(since every infinite graph except for P∞ or P2∞ contains a vertex of degree
at least 3). We can assume that v ∈ S′

1. Then 2 vertices adjacent to v cannot
be in S′

2, otherwise their representation would be (0, 1). So, without loss of
generality we can assume that v1, v2 ∈ S′

1.

If v3 ∈ S′
2, then the representations of v, v1, v2 would be (0, 1) or (0, 2),

so we would have two vertices having the same representations. Thus v3 ∈ S′
1.

Let V ′ = {v, v1, v2, v3} and let d(V ′, S2) = x. Since the distance between
any two vertices in V ′ is at most 2, the representation of any vertex in V ′ is
(x, 0), (x + 1, 0) or (x + 2, 0). Hence G contains at least 2 vertices with the
same representations. A contradiction.

We use the notation vi,j instead of (vi, vj) for the vertices of the Cartesian
products of graphs investigated in this paper.

The distance between two vertices vi,j and vk,l in P z
2∞□P2∞, where i ≤ k

is

(1) d(vi,j , vk,l) =

⌈
k − i

z

⌉
+ |l − j|.

We present an upper bound on the partition dimension of the graphs
P z
2∞□P2∞.

Theorem 2.2. pd(P z
2∞□P2∞) ≤ z + 2 for every z ≥ 2.

Proof. Let G be the graph P z
2∞□P2∞, where z ≥ 2. Let S+

0 = {vi,j′ | i ≤
0, j′ > 0} and S−

0 = {vi,j | i ≤ 0, j ≤ 0}. For p = 1, 2, . . . , z − 1 let
Sp = {vp,j | j ∈ Z} and Sz = {vk,l | k ≥ z, l ∈ Z}, We show that Π =
{S+

0 , S
−
0 , S1, S2, . . . , Sz} is a resolving partition of V (G).

First we show that all vertices in Sp for p = 1, 2, . . . , z−1 are resolved by
S+
0 and S−

0 . Among the vertices in S+
0 , v0,1 is the closest vertex to vp,j ∈ Sp for

any j ≤ 0. From (1) we have d(v0,1, vp,j) = d(vp,j , S
+
0 ) = 2 − j. For vp,j ∈ Sp

and v0,j ∈ S−
0 , where j ≤ 0, we have d(v0,j , vp,j) = 1, thus d(vp,j , S

−
0 ) = 1.

For vp,j′ ∈ Sp and v0,j′ ∈ S+
0 , where j′ > 0, we have d(v0,j′ , vp,j′) = 1,

thus d(vp,j′ , S
+
0 ) = 1. Among the vertices in S−

0 , v0,0 is the closest vertex to
vp,j′ ∈ Sp for any j′ > 0. From (1) we have d(v0,0, vp,j′) = d(vp,j′ , S

−
0 ) = j′ +1.

So

r(vp,j , {S+
0 , S

−
0 }) = (2− j, 1) and r(vp,j′ , {S+

0 , S
−
0 }) = (1, j′ + 1).

Hence the vertices in Sp for p = 1, 2, . . . , z − 1 are resolved.
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Let S+
z = {vk,l′ | k ≥ z, l′ > 0} and S−

z = {vk,l | k ≥ z, l ≤ 0}. Clearly
Sz = S+

z ∪ S−
z . We show that a vertex in S+

z and a vertex in S−
z cannot have

the same representations.
Among the vertices in S+

0 , v0,1 is the closest vertex to vk,l ∈ S−
z . From (1)

we have d(v0,1, vk,l) = d(vk,l, S
+
0 ) = ⌈kz ⌉+ 1− l ≥ ⌈kz ⌉+ 1 since l ≤ 0. Among

the vertices in S−
0 , v0,l is the closest vertex to vk,l ∈ S−

z , so d(v0,l, vk,l) =
d(vk,l, S

−
0 ) = ⌈kz ⌉.

Among the vertices in S+
0 , v0,l′ is the closest vertex to vk,l′ ∈ S+

z , so
d(v0,l′ , vk,l′) = d(vk,l′ , S

+
0 ) = ⌈kz ⌉. Among the vertices in S−

0 , v0,0 is the closest

vertex to vk,l′ ∈ S+
z . From (1) we have d(v0,0, vk,l′) = d(vk,l′ , S

−
0 ) = ⌈kz ⌉+ l′ ≥

⌈kz ⌉+ 1 since l′ > 0.
We have

r(vk,l, {S+
0 , S

−
0 }) =

(⌈
k

z

⌉
+ 1− l,

⌈
k

z

⌉)
and

r(vk,l′ , {S+
0 , S

−
0 }) =

(⌈
k

z

⌉
,

⌈
k

z

⌉
+ l′

)
.

The first coordinate of the representation r(vk,l, {S+
0 , S

−
0 }) is greater than the

second coordinate. On the other hand, the first coordinate of r(vk,l′ , {S+
0 , S

−
0 })

is smaller than the second coordinate, therefore a vertex in S+
z and a vertex in

S−
z cannot have the same representations.

It remains to show that no two vertices in S+
0 , no two vertices in S−

0 , no
two vertices in S+

z and no two vertices in S−
z have the same representations

with respect to Π. These four cases are very similar, thus we only show that
any two different vertices in S+

z have different representations.
For vtz+ϵ,l′ ∈ S+

z and v0,l′ ∈ S+
0 we have d(v0,l′ , vtz+ϵ,l′) = d(vtz+ϵ,l′ , S

+
0 ) =

t + 1, where 1 ≤ ϵ ≤ z and t ≥ 1, which means that vertices of S+
z with the

first coordinate z+1, z+2, . . . , 2z have the same representations with respect
to S+

0 , vertices of S
+
z with the first coordinate 2z + 1, 2z + 2, . . . , 3z have the

same representations with respect to S+
0 , and so on.

For vtz+p+ϵ,l′ ∈ S+
z and vp,l′ ∈ Sp where l

′ > 0 we have d(vp,l′ , vtz+p+ϵ,l′) =
d(vtz+p+ϵ,l′ , Sp) = t + 1, where 1 ≤ ϵ ≤ z and t ≥ 0. This means that for
p = 1, 2, . . . , z−1, vertices of S+

z with the first coordinates 1+p, 2+p, . . . , z+p
have the same representations with respect to Sp (note that the first coordinate
must be at least z for the vertex to be in S+

z ), vertices of S+
z with the first

coordinates z + 1+ p, z + 2+ p, . . . , 2z + p have the same representations with
respect to Sp, vertices with the first coordinates 2z+1+p, 2z+2+p, . . . , 3z+p
have the same representations, and so on.

It follows that the vertices vz,1, vz,2, vz,3, . . . have the same representa-
tions with respect to S+

0 , S1, S2, . . . , Sz−1, the vertices vz+1,1, vz+1,2, vz+1,3, . . .
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have the same representations, and so on. So any two vertices of S+
z that

have the same first coordinate have the same representations with respect to
S+
0 , S1, S2, . . . , Sz−1. We show that these vertices are resolved by S−

0 . Among
the vertices in S−

0 , v0,0 is the closest vertex to vk,l′ ∈ S+
z . From (1) we have

d(v0,0, vk,l′) = d(vk,l′ , S
−
0 ) = ⌈kz ⌉ + l′. Hence the vertices vk,1, vk,2, vk,3, . . . are

resolved by S−
0 for any k ≥ z since d(vk,1, S

−
0 ) = ⌈kz ⌉+1, d(vk,2, S

−
0 ) = ⌈kz ⌉+2,

d(vk,3, S
−
0 ) = ⌈kz ⌉ + 3, . . . , which means that any two vertices in S+

z have dif-
ferent representations with respect to Π.

By Theorem 2.1 we have pd(P 2
2∞□P2∞) ≥ 3 and from Theorem 2.2 we

get pd(P 2
2∞□P2∞) ≤ 4, thus we obtain Corollary 2.1.

Corollary 2.1. 3 ≤ pd(P 2
2∞□P2∞) ≤ 4.

Let us present a lower bound on the partition dimension of P 3
2∞□P2∞.

Theorem 2.3. pd(P 3
2∞□P2∞) ≥ 4.

Proof. Let G be the graph P 3
2∞□P2∞. By Theorem 2.1 we have pd(G) ≥

3. We prove Theorem 2.3 by contradiction. Assume that pd(G) = 3. Let
Π = {S1, S2, S3} be a resolving partition of V (G). Let V ′ = {vp,r, vp+1,r,
vp+2,r, vp+3,r, vp,r+1, vp+1,r+1, vp+2,r+1, vp+3,r+1} be a set such that V ′ ̸⊆ Si for
some i = 1, 2, 3. Clearly, such a set exists, otherwise we would have V (G) = Si

and pd(G) = 1. Note that any two vertices in V ′ are of distance at most 2,
thus if d(v, V ′) = x for v ∈ V (G), then for any v′ ∈ V ′, we have

(2) x ≤ d(v, v′) ≤ x+ 2.

Case 1. |V ′ ∩ Si| = ∅ for some i = 1, 2, 3.
Say |V ′ ∩ S3| = ∅. So |V ′ ∩ S1|+ |V ′ ∩ S2| = 8. Without loss of generality we
can assume that |V ′ ∩ S1| ≥ 4. Then it is easy to check that there are at least
4 vertices in |V ′∩S1| having distance 1 from S2 and these 4 vertices cannot be
resolved by S3, since by (2), x ≤ d(v′, S3) ≤ x+ 2 for any v′ ∈ V ′.

Case 2. |V ′ ∩ Si| ≥ 1 for each i = 1, 2, 3.
The vertices vp,r′ , vp+1,r′ , vp+2,r′ , vp+3,r′ , where r′ = r or r + 1, do not belong
to 3 different sets S1, S2, S3, otherwise there is a set, say S1, containing 2 of
these vertices and their representations would be (0, 1, 1).

If {vp,r, vp+1,r, vp+2,r, vp+3,r} ⊆ Si for some i = 1, 2, 3, say {vp,r, vp+1,r,
vp+2,r, vp+3,r} ⊆ S1, then from the previous sentence {vp,r+1, vp+1,r+1, vp+2,r+1,
vp+3,r+1} ⊆ S2 ∪ S3. At least 2 of these vertices would belong to one of the
sets S2, S3, say S2, and these vertices would have the representations (1, 0, 1).

So the vertices vp,r, vp+1,r, vp+2,r, vp+3,r belong to exactly two sets, say
S1, S2, and equivalently it can be shown that the vertices vp,r+1, vp+1,r+1,
vp+2,r+1, vp+3,r+1 belong to two sets, say S1, S3.
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Clearly, 3 of the vertices vp,r, vp+1,r, vp+2,r, vp+3,r cannot be in the same
set, say S1, because they would be of distance 1 from S2 and of distance 1
or 2 from S3 (so there would be 2 vertices having the same representations).
Therefore, exactly 2 of the vertices vp,r, vp+1,r, vp+2,r, vp+3,r are in S1 and
the other two vertices are in S2. Similarly, two of the vertices vp,r+1, vp+1,r+1,
vp+2,r+1, vp+3,r+1 are in S1 and the other two vertices are in S3.

But then we have 4 vertices of S1 in V ′ and they have representations
(0, 1, 1), (0, 1, 2) or (0, 2, 1), since each vertex in S1 has distance 1 from S2 or
S3. This implies that two vertices of S1 have the same representations. A
contradiction.

From Theorems 2.2 and 2.3 we obtain the following corollary.

Corollary 2.2. 4 ≤ pd(P 3
2∞□P2∞) ≤ 5.

Tomescu [11] proved that pd(P2∞□P2∞) = 3. We show that we can
obtain the same result for the graphs Pm□P2∞ and P∞□P2∞.

Let G be the graph Pm□P2∞ or P∞□P2∞. Let 0 ≤ i ≤ k and let
j, l be any integers. The distance between the vertices vi,j and vk,l in G is
d(vi,j , vk,l) = k − i+ |l − j|. If i = 0, we obtain

(3) d(v0,j , vk,j+t) = k + |t|.

Theorem 2.4. pd(Pm□P2∞) ≤ 3 and pd(P∞□P2∞) ≤ 3.

Proof. Let G be the graph Pm□P2∞. Let S1 = {v0,t | t ≥ 1, t ∈ Z},
S2 = {v0,j | j ≤ 0, j ∈ Z} and S3 = {vk,l | 1 ≤ k ≤ m − 1, l ∈ Z}. We show
that Π = {S1, S2, S3} is a resolving partition of V (G).

First we show that all vertices in S1 are resolved by S2. Since among
the vertices in S2, v0,0 is the closest vertex to v0,t ∈ S1 for any t ≥ 1, from
(3) we have d(v0,t, S2) = t. Thus all vertices in S1 have unique partition
representations with respect to Π.

Similarly, among the vertices in S1, v0,1 is the closest vertex to v0,j ∈ S2

for any j ≤ 0, therefore by (3), d(v0,j , S1) = 1 − j, so no two vertices in S2

have the same partition representations.

It remains to prove that all vertices of S3 are resolved by S1 and S2. It
suffices to show that the vertices in S3 of distance p from S2 (where p ≥ 1) are
resolved by S1. Let S3 = V ′ ∪ V ′′ where V ′ = {vk,l′ | 1 ≤ k ≤ m − 1, l′ ≥ 1}
and V ′′ = {vk,l | 1 ≤ k ≤ m − 1, l ≤ 0}. For any vp,l ∈ V ′′ and v0,l ∈ S2

(1 ≤ p ≤ m− 1, l ≤ 0), by (3) we have d(v0,l, vp,l) = p, thus d(vp,l, S2) = p.

We find all vertices in V ′ of distance p from S2. Note that among the
vertices in S2, v0,0 is the closest vertex to any vk,l′ ∈ V ′ (1 ≤ k ≤ m−1, l′ ≥ 1),
therefore d(vk,l′ , S2) = d(vk,l′ , v0,0) = k + l′. It follows that the vertices vk,l′ of
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distance p from S2 satisfy k + l′ = p, which implies that vk,p−k for 1 ≤ k < p
are the vertices of V ′ at distance p from S2.

We show that S1 resolves the set Vp = {vp,l | l ≤ 0, p ≤ m − 1} ∪
{vk,p−k | 1 ≤ k < p}, where p is any positive integer. Among the vertices in
S1, v0,1 is the closest vertex to vp,l, therefore

d(vp,l, v0,1) = d(vp,l, S1) = p+ |l − 1| = p+ 1− l

where l ≤ 0, and v0,p−k ∈ S1 is the closest vertex to vk,p−k, thus

d(vk,p−k, v0,p−k) = d(vk,p−k, S1) = k = p− l′

where l′ ≥ 1. It is easy to see that no two vertices in Vp are of the same distance
from S1, hence Π is a resolving partition of V (G).

If G is the graph P∞□P2∞, the only modification of the proof is to remove
the upper bound m−1 which is included in several sets considered in the proof
of pd(Pm□P2∞) ≤ 3.

Theorems 2.1 and 2.4 yield Corollary 2.3.

Corollary 2.3. pd(Pm□P2∞) = 3 and pd(P∞□P2∞) = 3.

Finally, we consider the graphs P z
2∞□P z

2∞ for z = 2. We present a lower
bound on the partition dimension of the graph P 2

2∞□P 2
2∞. The distance be-

tween two vertices vi,j and vk,l in P 2
2∞□P 2

2∞ is

d(vi,j , vk,l) =

⌈
|k − i|

2

⌉
+

⌈
|l − j|

2

⌉
.

Theorem 2.5. pd(P 2
2∞□P 2

2∞) ≥ 4.

Proof. Let G = P 2
2∞□P 2

2∞. By Theorem 2.1 we have pd(G) ≥ 3. We
prove Theorem 2.5 by contradiction. Assume that pd(G) = 3. Let Π =
{S1, S2, S3} be a resolving partition of V (G). Let V ′ = {vp,r, vp,r+1, vp,r+2,
vp+1,r, vp+1,r+1, vp+1,r+2, vp+2,r, vp+2,r+1, vp+2,r+2} where p, r ∈ Z. Note
that any two vertices in V ′ are of distance at most 2, thus if d(v, V ′) = x for
v ∈ V (G), then for any v′ ∈ V ′, we have x ≤ d(v, v′) ≤ x+ 2.

Without loss of generality we can assume that |V ′ ∩ S1| ≥ |V ′ ∩ S2| ≥
|V ′ ∩ S3|. We distinguish a few cases.

Case 1. V ′ ⊆ S1.

Let d(V ′, S2) = x. Then x ≤ d(v′, S2) = x + 2 for any v′ ∈ V ′ and y ≤
d(v′, S3) = y + 2 for some positive integer y and any v′ ∈ V ′.

If there are at most 2 vertices of V ′ at distance x from S2, then we have
4 vertices of V ′ at distance x+1 from S2 or 4 vertices of V ′ are distance x+2
from S2. These 4 vertices cannot be resolved by S3 since for any v′ ∈ V ′,
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y ≤ d(v′, S3) = y + 2 (2 vertices in V ′ have the same representations with
respect to S2 and S3).

If there are at least 3 vertices of V ′ at distance x from S2, it is easy to
check that there is at most one vertex of V ′ at distance x+2 from S2. Thus we
have 4 vertices of V ′ at distance x from S2 or 4 vertices of V ′ are of distance
x+ 1 from S2, which again cannot be resolved by S3.

Case 2. 7 ≤ |V ′ ∩ S1| ≤ 8.

Then |V ′ ∩ S2| ≥ 1. Since |V ′ ∩ S1| ≥ 7, there are 4 vertices in V ′ ∩ S1 at
distance 1 from S2 or 4 vertices in V ′ ∩ S1 at distance 2 from S2. These 4
vertices cannot be resolved by S3, since for any v′ ∈ V ′, y ≤ d(v′, S3) = y + 2
for some positive integer y.

Case 3. |V ′ ∩ S1| = 6.

We can assume that 2 ≤ |V ′ ∩ S2| ≤ 3. Let u, u′ ∈ V ′ ∩ S2. Then there are at
least 4 vertices in V ′ ∩ S1 at distance 1 from S2 (the vertices of S1 that have
the first or second coordinate same as u or u′). These 4 vertices cannot be
resolved by S3.

Case 4. |V ′ ∩ S1| = 5 and |V ′ ∩ S2| = 4.

Every vertex u in V ′ ∩ S2 is at distance 2 from exactly 4 vertices in V ′. Since
|V ′ ∩ S1| > 4, there exists a vertex in V ′ ∩ S1 at distance 1 from u. Thus
d(u, S1) = 1 for every u in V ′∩S2, and 4 vertices of V ′∩S2 cannot be resolved
by S3.

Case 5. |V ′ ∩ S1| = 5, V ′ ∩ S2 ̸= ∅ and V ′ ∩ S3 ̸= ∅.
Since every vertex in V ′ ∩ S1 is at distance 1 or 2 from S2, we either have (at
least) 3 vertices in V ′ ∩ S1 at distance 1 from S2 or 3 vertices in V ′ ∩ S1 at
distance 2 from S2. Those 3 vertices cannot be resolved by S3 (since every
vertex in V ′ ∩ S1 is at distance 1 or 2 from S3).

Case 6. |V ′ ∩ S1| = 4, V ′ ∩ S2 ̸= ∅ and V ′ ∩ S3 ̸= ∅.
The partition representation of any vertex in V ′∩S1 is (0, x, y) where x, y ≤ 2,
which implies that 4 vertices in V ′ ∩ S1 have representations (0, 1, 1), (0, 1, 2),
(0, 2, 1), (0, 2, 2). The vertex, say u, with the representation (0, 2, 2) must be
at distance 2 from all 5 vertices in (V ′ ∩ S2) ∪ (V ′ ∩ S3), which is impossible,
since there at exactly 4 vertices in V ′ at distance 2 from u.

Case 7. |V ′ ∩ S1| = |V ′ ∩ S2| = |V ′ ∩ S3| = 3.

A vertex u ∈ V ′ cannot have the representation (0, 2, 2), because V ′ contains
only 4 vertices at distance 2 from u (and |V ′ ∩ S2|+ |V ′ ∩ S3| = 6). Similarly,
no vertex of V ′ has the representation (2, 0, 2) or (2, 2, 0). So the vertices in V ′

have the representations (0, 1, 1), (0, 1, 2), (0, 2, 1), (1, 0, 1), (1, 0, 2), (2, 0, 1),
(1, 1, 0), (1, 2, 0) and (2, 1, 0).

Without loss of generality we can assume that vp,r has the representation
(0, 1, 2). Since, d(vp,r, S3) = 2, no vertex of V ′ which is in S3 has the first
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coordinate p or the second coordinate r. So V ′ ∩ S3 ⊆ {vp+1,r+1, vp+1,r+2,
vp+2,r+1, vp+2,r+2}. Then vp,r is the only vertex in V ′ having distance 2 from
S3 and no vertex can have the representation (1, 0, 2). A contradiction.

3. CONCLUSION

We proved that

3 ≤ pd(P 2
2∞□P2∞) ≤ 4 ≤ pd(P 3

2∞□P2∞) ≤ 5 and pd(P 2
3∞□P2∞) ≤ z + 2

for any z ≥ 4. To find exact values of the partition dimension for the graphs
P z
2∞□P2∞ is an open problem.

Problem 3.1. Find exact values of pd(P z
2∞□P2∞) for z ≥ 2.

We showed that pd(P 2
2∞□P 2

2∞) ≥ 4. We believe that the partition di-
mension of P 2

2∞□P 2
2∞ is 4, therefore we state the following conjecture.

Conjecture 3.1. pd(P 2
2∞□P 2

2∞) = 4.

It would be interesting to study the partition dimension also for the
graphs P z

2∞□P z
2∞ where z ≥ 3. Thus we introduce Problem 3.2.

Problem 3.2. Give lower and upper bounds on pd(P z
2∞□P z

2∞) for z ≥ 3.

These problems remain open for future research.
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