ON THE PARTITION DIMENSION OF INFINITE GRAPHS

MUHAMMAD IMRAN and TOMÁŠ VETRÍK

Communicated by Ioan Tomescu

Abstract

Little is known about the partition dimension of infinite graphs. Tomescu studied graphs where the set of vertices is the set of points of the integer lattice. We generalize these graphs and present several exact values, lower bounds and upper bounds on the partition dimension of infinite graphs.

AMS 2020 Subject Classification: 05C63, 05C35.
Key words: partition dimension, infinite graph, distance.

1. INTRODUCTION

The metric dimension is an invariant with extensive applications in robot navigation [8], pharmaceutical chemistry [4], pattern recognition and image processing [9]. The concept of metric dimension was introduced by Slater [10] and independently by Harary and Melter [6]. Slater referred to a metric dimension of a graph as its location number and motivated the study of this invariant by its application to the placement of minimum number of loran/sonar detecting devices in a network so that the position of every vertex in the network can be uniquely represented in terms of its distances to the devices in the set.

We investigate the partition dimension of graphs, which is an invariant defined more generally than the metric dimension. The partition dimension was introduced by Chartrand, Salehi and Zhang [5], who gave some basic results on the partition dimension of graphs. We consider connected infinite graphs G with the vertex set $V(G)$ and the edge set $E(G)$. The distance $d(u, v)$ between two vertices $u, v \in G$ is the number of edges in a shortest path connecting them. For a vertex v and a set $S \subseteq V(G)$ the distance between v and S is defined as

$$
d(v, S)=\min \{d(v, u) \mid u \in S\}
$$

For two sets $S^{\prime}, S \subseteq V(G)$, the distance between S^{\prime} and S is defined as $d\left(S^{\prime}, S\right)=\min \left\{d(v, u) \mid v \in S^{\prime}, u \in S\right\}$. Let $\Pi=\left\{S_{1}, S_{2}, \ldots, S_{k}\right\}$ be an ordered partition of $V(G)$. The partition representation of a vertex v with respect to Π is the k-tuple

$$
r(v \mid \Pi)=\left(d\left(v, S_{1}\right), d\left(v, S_{2}\right), \ldots, d\left(v, S_{k}\right)\right) .
$$

If for every pair of distinct vertices $u, v \in V(G)$, we have $r(u \mid \Pi) \neq r(v \mid \Pi)$, then Π is a resolving partition and the minimum cardinality of a resolving partition of $V(G)$ is called the partition dimension of G and it is denoted by $\operatorname{pd}(G)$. It follows that if for every pair of distinct vertices $u, v \in V(G)$, we have $d\left(u, S_{j}\right) \neq d\left(v, S_{j}\right)$ for some set S_{j}, where $j \in\{1,2, \ldots, k\}$, then $\Pi=\left\{S_{1}, S_{2}, \ldots, S_{k}\right\}$ is a resolving partition of $V(G)$.

We define the ray, P_{∞}, as the graph with the vertex set $V\left(P_{\infty}\right)=$ $\left\{v_{i} \mid i \in \mathbb{N}\right\}$ and the edge set $E\left(P_{\infty}\right)=\left\{v_{i} v_{i+1} \mid i \in \mathbb{N}\right\}$. The double ray $P_{2 \infty}$, is the graph with the vertex set $V\left(P_{2 \infty}\right)=\left\{v_{i} \mid i \in \mathbb{Z}\right\}$ and the edge set $E\left(P_{2 \infty}\right)=\left\{v_{i} v_{i+1} \mid i \in \mathbb{Z}\right\}$. Let $P_{2 \infty}^{z}$ be the graph with the vertex set $V\left(P_{2 \infty}^{z}\right)=$ $\left\{v_{i} \mid i \in \mathbb{Z}\right\}$ and the edge set $E\left(P_{2 \infty}^{z}\right)=\left\{v_{i} v_{i+1}, v_{i} v_{i+2}, \ldots, v_{i} v_{i+z} \mid i \in \mathbb{Z}\right\}$. The Cartesian product $G \square H$ of graphs G and H is a graph having the vertex set $V(G \square H)=V(G) \times V(H)$ and any two vertices $\left(u, u^{\prime}\right)$ and $\left(v, v^{\prime}\right)$ are adjacent in $G \square H$ if and only if either $u=v$ and u^{\prime} is adjacent to v^{\prime} in H, or $u^{\prime}=v^{\prime}$ and u is adjacent to v in G.

The partition dimension of infinite graphs was investigated in [11] and [12]. Tomescu and Imran [12] studied infinite regular graphs including planar triangular and hexagonal networks. Tomescu [11] studied graphs where the set of vertices is the set of points of the integer lattice. He showed that $p d\left(P_{2 \infty} \square P_{2 \infty}\right)=3$. We generalize graphs studied in [11] by considering the graphs $P_{2 \infty}^{z} \square P_{2 \infty}$ for any $z \geq 2$ and $P_{2 \infty}^{z} \square P_{2 \infty}^{z}$ for $z=2$.

Note that the partition dimension of graph products was considered also in $[1,2,13,14]$, the partition dimension of disconnected graphs was investigated in [7] and the metric dimension of infinite graphs was studied in [3].

2. RESULTS

First we prove that the ray and the double ray are the only infinite graphs having the partition dimension 2. Chartrand, Salehi and Zhang [5] proved a similar result for finite graphs. Their method can be used to obtain Theorem 2.1. We present an alternative proof.

Theorem 2.1. Let G be an infinite graph. We have $p d(G)=2$ if and only if G is P_{∞} or $P_{2 \infty}$.

Proof. Note that the vertex sets and edge sets of P_{∞} and $P_{2 \infty}$ are defined in the previous section.

Let $S_{1}=\left\{v_{1}\right\}$ for P_{∞} and $S_{1}=\left\{v_{i} \mid i \leq 1\right\}$ for $P_{2 \infty}$. Let $S_{2}=\left\{v_{i} \mid i \geq\right.$ 2\}. Clearly, $\Pi=\left\{S_{1}, S_{2}\right\}$ is a resolving partition, thus $p d\left(P_{\infty}\right)=2$ and $p d\left(P_{2 \infty}\right)=2$.

It remains to show that if G is not P_{∞} or $P_{2 \infty}$, then $p d(G)>2$. Assume to the contrary that $p d(G)=2$ and let $\Pi^{\prime}=\left\{S_{1}^{\prime}, S_{2}^{\prime}\right\}$ be a resolving partition of G. G contains a vertex, say v, adjacent to at least 3 vertices, say v_{1}, v_{2}, v_{3} (since every infinite graph except for P_{∞} or $P_{2 \infty}$ contains a vertex of degree at least 3). We can assume that $v \in S_{1}^{\prime}$. Then 2 vertices adjacent to v cannot be in S_{2}^{\prime}, otherwise their representation would be $(0,1)$. So, without loss of generality we can assume that $v_{1}, v_{2} \in S_{1}^{\prime}$.

If $v_{3} \in S_{2}^{\prime}$, then the representations of v, v_{1}, v_{2} would be $(0,1)$ or $(0,2)$, so we would have two vertices having the same representations. Thus $v_{3} \in S_{1}^{\prime}$. Let $V^{\prime}=\left\{v, v_{1}, v_{2}, v_{3}\right\}$ and let $d\left(V^{\prime}, S_{2}\right)=x$. Since the distance between any two vertices in V^{\prime} is at most 2, the representation of any vertex in V^{\prime} is $(x, 0),(x+1,0)$ or $(x+2,0)$. Hence G contains at least 2 vertices with the same representations. A contradiction.

We use the notation $v_{i, j}$ instead of $\left(v_{i}, v_{j}\right)$ for the vertices of the Cartesian products of graphs investigated in this paper.

The distance between two vertices $v_{i, j}$ and $v_{k, l}$ in $P_{2 \infty}^{z} \square P_{2 \infty}$, where $i \leq k$ is

$$
\begin{equation*}
d\left(v_{i, j}, v_{k, l}\right)=\left\lceil\frac{k-i}{z}\right\rceil+|l-j| . \tag{1}
\end{equation*}
$$

We present an upper bound on the partition dimension of the graphs $P_{2 \infty}^{z} \square P_{2 \infty}$.

Theorem 2.2. $p d\left(P_{2 \infty}^{z} \square P_{2 \infty}\right) \leq z+2$ for every $z \geq 2$.
Proof. Let G be the graph $P_{2 \infty}^{z} \square P_{2 \infty}$, where $z \geq 2$. Let $S_{0}^{+}=\left\{v_{i, j^{\prime}} \mid i \leq\right.$ $\left.0, j^{\prime}>0\right\}$ and $S_{0}^{-}=\left\{v_{i, j} \mid i \leq 0, j \leq 0\right\}$. For $p=1,2, \ldots, z-1$ let $S_{p}=\left\{v_{p, j} \mid j \in \mathbb{Z}\right\}$ and $S_{z}=\left\{v_{k, l} \mid k \geq z, l \in \mathbb{Z}\right\}$, We show that $\Pi=$ $\left\{S_{0}^{+}, S_{0}^{-}, S_{1}, S_{2}, \ldots, S_{z}\right\}$ is a resolving partition of $V(G)$.

First we show that all vertices in S_{p} for $p=1,2, \ldots, z-1$ are resolved by S_{0}^{+}and S_{0}^{-}. Among the vertices in $S_{0}^{+}, v_{0,1}$ is the closest vertex to $v_{p, j} \in S_{p}$ for any $j \leq 0$. From (1) we have $d\left(v_{0,1}, v_{p, j}\right)=d\left(v_{p, j}, S_{0}^{+}\right)=2-j$. For $v_{p, j} \in S_{p}$ and $v_{0, j} \in S_{0}^{-}$, where $j \leq 0$, we have $d\left(v_{0, j}, v_{p, j}\right)=1$, thus $d\left(v_{p, j}, S_{0}^{-}\right)=1$.

For $v_{p, j^{\prime}} \in S_{p}$ and $v_{0, j^{\prime}} \in S_{0}^{+}$, where $j^{\prime}>0$, we have $d\left(v_{0, j^{\prime}}, v_{p, j^{\prime}}\right)=1$, thus $d\left(v_{p, j^{\prime}}, S_{0}^{+}\right)=1$. Among the vertices in $S_{0}^{-}, v_{0,0}$ is the closest vertex to $v_{p, j^{\prime}} \in S_{p}$ for any $j^{\prime}>0$. From (1) we have $d\left(v_{0,0}, v_{p, j^{\prime}}\right)=d\left(v_{p, j^{\prime}}, S_{0}^{-}\right)=j^{\prime}+1$. So

$$
r\left(v_{p, j},\left\{S_{0}^{+}, S_{0}^{-}\right\}\right)=(2-j, 1) \quad \text { and } \quad r\left(v_{p, j^{\prime}},\left\{S_{0}^{+}, S_{0}^{-}\right\}\right)=\left(1, j^{\prime}+1\right)
$$

Hence the vertices in S_{p} for $p=1,2, \ldots, z-1$ are resolved.

Let $S_{z}^{+}=\left\{v_{k, l^{\prime}} \mid k \geq z, l^{\prime}>0\right\}$ and $S_{z}^{-}=\left\{v_{k, l} \mid k \geq z, l \leq 0\right\}$. Clearly $S_{z}=S_{z}^{+} \cup S_{z}^{-}$. We show that a vertex in S_{z}^{+}and a vertex in S_{z}^{-}cannot have the same representations.

Among the vertices in $S_{0}^{+}, v_{0,1}$ is the closest vertex to $v_{k, l} \in S_{z}^{-}$. From (1) we have $d\left(v_{0,1}, v_{k, l}\right)=d\left(v_{k, l}, S_{0}^{+}\right)=\left\lceil\frac{k}{z}\right\rceil+1-l \geq\left\lceil\frac{k}{z}\right\rceil+1$ since $l \leq 0$. Among the vertices in $S_{0}^{-}, v_{0, l}$ is the closest vertex to $v_{k, l} \in S_{z}^{-}$, so $d\left(v_{0, l}, v_{k, l}\right)=$ $d\left(v_{k, l}, S_{0}^{-}\right)=\left\lceil\frac{k}{z}\right\rceil$.

Among the vertices in $S_{0}^{+}, v_{0, l^{\prime}}$ is the closest vertex to $v_{k, l^{\prime}} \in S_{z}^{+}$, so $d\left(v_{0, l^{\prime}}, v_{k, l^{\prime}}\right)=d\left(v_{k, l^{\prime}}, S_{0}^{+}\right)=\left\lceil\frac{k}{z}\right\rceil$. Among the vertices in $S_{0}^{-}, v_{0,0}$ is the closest vertex to $v_{k, l^{\prime}} \in S_{z}^{+}$. From (1) we have $d\left(v_{0,0}, v_{k, l^{\prime}}\right)=d\left(v_{k, l^{\prime}}, S_{0}^{-}\right)=\left\lceil\frac{k}{z}\right\rceil+l^{\prime} \geq$ $\left\lceil\frac{k}{z}\right\rceil+1$ since $l^{\prime}>0$.

We have

$$
r\left(v_{k, l},\left\{S_{0}^{+}, S_{0}^{-}\right\}\right)=\left(\left\lceil\frac{k}{z}\right\rceil+1-l,\left\lceil\frac{k}{z}\right\rceil\right)
$$

and

$$
r\left(v_{k, l^{\prime}},\left\{S_{0}^{+}, S_{0}^{-}\right\}\right)=\left(\left\lceil\frac{k}{z}\right\rceil,\left\lceil\frac{k}{z}\right\rceil+l^{\prime}\right)
$$

The first coordinate of the representation $r\left(v_{k, l},\left\{S_{0}^{+}, S_{0}^{-}\right\}\right)$is greater than the second coordinate. On the other hand, the first coordinate of $r\left(v_{k, l^{\prime}},\left\{S_{0}^{+}, S_{0}^{-}\right\}\right)$ is smaller than the second coordinate, therefore a vertex in S_{z}^{+}and a vertex in S_{z}^{-}cannot have the same representations.

It remains to show that no two vertices in S_{0}^{+}, no two vertices in S_{0}^{-}, no two vertices in S_{z}^{+}and no two vertices in S_{z}^{-}have the same representations with respect to Π. These four cases are very similar, thus we only show that any two different vertices in S_{z}^{+}have different representations.

For $v_{t z+\epsilon, l^{\prime}} \in S_{z}^{+}$and $v_{0, l^{\prime}} \in S_{0}^{+}$we have $d\left(v_{0, l^{\prime}}, v_{t z+\epsilon, l^{\prime}}\right)=d\left(v_{t z+\epsilon, l^{\prime}}, S_{0}^{+}\right)=$ $t+1$, where $1 \leq \epsilon \leq z$ and $t \geq 1$, which means that vertices of S_{z}^{+}with the first coordinate $z+1, z+2, \ldots, 2 z$ have the same representations with respect to S_{0}^{+}, vertices of S_{z}^{+}with the first coordinate $2 z+1,2 z+2, \ldots, 3 z$ have the same representations with respect to S_{0}^{+}, and so on.

For $v_{t z+p+\epsilon, l^{\prime}} \in S_{z}^{+}$and $v_{p, l^{\prime}} \in S_{p}$ where $l^{\prime}>0$ we have $d\left(v_{p, l^{\prime}}, v_{t z+p+\epsilon, l^{\prime}}\right)=$ $d\left(v_{t z+p+\epsilon, l^{\prime}}, S_{p}\right)=t+1$, where $1 \leq \epsilon \leq z$ and $t \geq 0$. This means that for $p=1,2, \ldots, z-1$, vertices of S_{z}^{+}with the first coordinates $1+p, 2+p, \ldots, z+p$ have the same representations with respect to S_{p} (note that the first coordinate must be at least z for the vertex to be in S_{z}^{+}), vertices of S_{z}^{+}with the first coordinates $z+1+p, z+2+p, \ldots, 2 z+p$ have the same representations with respect to S_{p}, vertices with the first coordinates $2 z+1+p, 2 z+2+p, \ldots, 3 z+p$ have the same representations, and so on.

It follows that the vertices $v_{z, 1}, v_{z, 2}, v_{z, 3}, \ldots$ have the same representations with respect to $S_{0}^{+}, S_{1}, S_{2}, \ldots, S_{z-1}$, the vertices $v_{z+1,1}, v_{z+1,2}, v_{z+1,3}, \ldots$
have the same representations, and so on. So any two vertices of S_{z}^{+}that have the same first coordinate have the same representations with respect to $S_{0}^{+}, S_{1}, S_{2}, \ldots, S_{z-1}$. We show that these vertices are resolved by S_{0}^{-}. Among the vertices in $S_{0}^{-}, v_{0,0}$ is the closest vertex to $v_{k, l^{\prime}} \in S_{z}^{+}$. From (1) we have $d\left(v_{0,0}, v_{k, l^{\prime}}\right)=d\left(v_{k, l^{\prime}}, S_{0}^{-}\right)=\left\lceil\frac{k}{z}\right\rceil+l^{\prime}$. Hence the vertices $v_{k, 1}, v_{k, 2}, v_{k, 3}, \ldots$ are resolved by S_{0}^{-}for any $k \geq z$ since $d\left(v_{k, 1}, S_{0}^{-}\right)=\left\lceil\frac{k}{z}\right\rceil+1, d\left(v_{k, 2}, S_{0}^{-}\right)=\left\lceil\frac{k}{z}\right\rceil+2$, $d\left(v_{k, 3}, S_{0}^{-}\right)=\left\lceil\frac{k}{z}\right\rceil+3, \ldots$, which means that any two vertices in S_{z}^{+}have different representations with respect to Π.

By Theorem 2.1 we have $p d\left(P_{2 \infty}^{2} \square P_{2 \infty}\right) \geq 3$ and from Theorem 2.2 we get $p d\left(P_{2 \infty}^{2} \square P_{2 \infty}\right) \leq 4$, thus we obtain Corollary 2.1.

Corollary 2.1. $3 \leq p d\left(P_{2 \infty}^{2} \square P_{2 \infty}\right) \leq 4$.
Let us present a lower bound on the partition dimension of $P_{2 \infty}^{3} \square P_{2 \infty}$.
Theorem 2.3. $\operatorname{pd}\left(P_{2 \infty}^{3} \square P_{2 \infty}\right) \geq 4$.
Proof. Let G be the graph $P_{2 \infty}^{3} \square P_{2 \infty}$. By Theorem 2.1 we have $p d(G) \geq$ 3. We prove Theorem 2.3 by contradiction. Assume that $p d(G)=3$. Let $\Pi=\left\{S_{1}, S_{2}, S_{3}\right\}$ be a resolving partition of $V(G)$. Let $V^{\prime}=\left\{v_{p, r}, v_{p+1, r}\right.$, $\left.v_{p+2, r}, v_{p+3, r}, v_{p, r+1}, v_{p+1, r+1}, v_{p+2, r+1}, v_{p+3, r+1}\right\}$ be a set such that $V^{\prime} \nsubseteq S_{i}$ for some $i=1,2,3$. Clearly, such a set exists, otherwise we would have $V(G)=S_{i}$ and $p d(G)=1$. Note that any two vertices in V^{\prime} are of distance at most 2, thus if $d\left(v, V^{\prime}\right)=x$ for $v \in V(G)$, then for any $v^{\prime} \in V^{\prime}$, we have

$$
\begin{equation*}
x \leq d\left(v, v^{\prime}\right) \leq x+2 \tag{2}
\end{equation*}
$$

Case 1. $\left|V^{\prime} \cap S_{i}\right|=\emptyset$ for some $i=1,2,3$.
Say $\left|V^{\prime} \cap S_{3}\right|=\emptyset$. So $\left|V^{\prime} \cap S_{1}\right|+\left|V^{\prime} \cap S_{2}\right|=8$. Without loss of generality we can assume that $\left|V^{\prime} \cap S_{1}\right| \geq 4$. Then it is easy to check that there are at least 4 vertices in $\left|V^{\prime} \cap S_{1}\right|$ having distance 1 from S_{2} and these 4 vertices cannot be resolved by S_{3}, since by $(2), x \leq d\left(v^{\prime}, S_{3}\right) \leq x+2$ for any $v^{\prime} \in V^{\prime}$.

Case 2. $\left|V^{\prime} \cap S_{i}\right| \geq 1$ for each $i=1,2,3$.
The vertices $v_{p, r^{\prime}}, v_{p+1, r^{\prime}}, v_{p+2, r^{\prime}}, v_{p+3, r^{\prime}}$, where $r^{\prime}=r$ or $r+1$, do not belong to 3 different sets S_{1}, S_{2}, S_{3}, otherwise there is a set, say S_{1}, containing 2 of these vertices and their representations would be $(0,1,1)$.

If $\left\{v_{p, r}, v_{p+1, r}, v_{p+2, r}, v_{p+3, r}\right\} \subseteq S_{i}$ for some $i=1,2,3$, say $\left\{v_{p, r}, v_{p+1, r}\right.$, $\left.v_{p+2, r}, v_{p+3, r}\right\} \subseteq S_{1}$, then from the previous sentence $\left\{v_{p, r+1}, v_{p+1, r+1}, v_{p+2, r+1}\right.$, $\left.v_{p+3, r+1}\right\} \subseteq S_{2} \cup S_{3}$. At least 2 of these vertices would belong to one of the sets S_{2}, S_{3}, say S_{2}, and these vertices would have the representations $(1,0,1)$.

So the vertices $v_{p, r}, v_{p+1, r}, v_{p+2, r}, v_{p+3, r}$ belong to exactly two sets, say S_{1}, S_{2}, and equivalently it can be shown that the vertices $v_{p, r+1}, v_{p+1, r+1}$, $v_{p+2, r+1}, v_{p+3, r+1}$ belong to two sets, say S_{1}, S_{3}.

Clearly, 3 of the vertices $v_{p, r}, v_{p+1, r}, v_{p+2, r}, v_{p+3, r}$ cannot be in the same set, say S_{1}, because they would be of distance 1 from S_{2} and of distance 1 or 2 from S_{3} (so there would be 2 vertices having the same representations). Therefore, exactly 2 of the vertices $v_{p, r}, v_{p+1, r}, v_{p+2, r}, v_{p+3, r}$ are in S_{1} and the other two vertices are in S_{2}. Similarly, two of the vertices $v_{p, r+1}, v_{p+1, r+1}$, $v_{p+2, r+1}, v_{p+3, r+1}$ are in S_{1} and the other two vertices are in S_{3}.

But then we have 4 vertices of S_{1} in V^{\prime} and they have representations $(0,1,1),(0,1,2)$ or $(0,2,1)$, since each vertex in S_{1} has distance 1 from S_{2} or S_{3}. This implies that two vertices of S_{1} have the same representations. A contradiction.

From Theorems 2.2 and 2.3 we obtain the following corollary.
Corollary 2.2. $4 \leq p d\left(P_{2 \infty}^{3} \square P_{2 \infty}\right) \leq 5$.
Tomescu [11] proved that $p d\left(P_{2 \infty} \square P_{2 \infty}\right)=3$. We show that we can obtain the same result for the graphs $P_{m} \square P_{2 \infty}$ and $P_{\infty} \square P_{2 \infty}$.

Let G be the graph $P_{m} \square P_{2 \infty}$ or $P_{\infty} \square P_{2 \infty}$. Let $0 \leq i \leq k$ and let j, l be any integers. The distance between the vertices $v_{i, j}$ and $v_{k, l}$ in G is $d\left(v_{i, j}, v_{k, l}\right)=k-i+|l-j|$. If $i=0$, we obtain

$$
\begin{equation*}
d\left(v_{0, j}, v_{k, j+t}\right)=k+|t| . \tag{3}
\end{equation*}
$$

THEOREM 2.4. $p d\left(P_{m} \square P_{2 \infty}\right) \leq 3$ and $p d\left(P_{\infty} \square P_{2 \infty}\right) \leq 3$.
Proof. Let G be the graph $P_{m} \square P_{2 \infty}$. Let $S_{1}=\left\{v_{0, t} \mid t \geq 1, t \in \mathbb{Z}\right\}$, $S_{2}=\left\{v_{0, j} \mid j \leq 0, j \in \mathbb{Z}\right\}$ and $S_{3}=\left\{v_{k, l} \mid 1 \leq k \leq m-1, l \in \mathbb{Z}\right\}$. We show that $\Pi=\left\{S_{1}, S_{2}, S_{3}\right\}$ is a resolving partition of $V(G)$.

First we show that all vertices in S_{1} are resolved by S_{2}. Since among the vertices in $S_{2}, v_{0,0}$ is the closest vertex to $v_{0, t} \in S_{1}$ for any $t \geq 1$, from (3) we have $d\left(v_{0, t}, S_{2}\right)=t$. Thus all vertices in S_{1} have unique partition representations with respect to Π.

Similarly, among the vertices in $S_{1}, v_{0,1}$ is the closest vertex to $v_{0, j} \in S_{2}$ for any $j \leq 0$, therefore by (3), $d\left(v_{0, j}, S_{1}\right)=1-j$, so no two vertices in S_{2} have the same partition representations.

It remains to prove that all vertices of S_{3} are resolved by S_{1} and S_{2}. It suffices to show that the vertices in S_{3} of distance p from S_{2} (where $p \geq 1$) are resolved by S_{1}. Let $S_{3}=V^{\prime} \cup V^{\prime \prime}$ where $V^{\prime}=\left\{v_{k, l^{\prime}} \mid 1 \leq k \leq m-1, l^{\prime} \geq 1\right\}$ and $V^{\prime \prime}=\left\{v_{k, l} \mid 1 \leq k \leq m-1, l \leq 0\right\}$. For any $v_{p, l} \in V^{\prime \prime}$ and $v_{0, l} \in S_{2}$ $(1 \leq p \leq m-1, l \leq 0)$, by (3) we have $d\left(v_{0, l}, v_{p, l}\right)=p$, thus $d\left(v_{p, l}, S_{2}\right)=p$.

We find all vertices in V^{\prime} of distance p from S_{2}. Note that among the vertices in $S_{2}, v_{0,0}$ is the closest vertex to any $v_{k, l^{\prime}} \in V^{\prime}\left(1 \leq k \leq m-1, l^{\prime} \geq 1\right)$, therefore $d\left(v_{k, l^{\prime}}, S_{2}\right)=d\left(v_{k, l^{\prime}}, v_{0,0}\right)=k+l^{\prime}$. It follows that the vertices $v_{k, l^{\prime}}$ of
distance p from S_{2} satisfy $k+l^{\prime}=p$, which implies that $v_{k, p-k}$ for $1 \leq k<p$ are the vertices of V^{\prime} at distance p from S_{2}.

We show that S_{1} resolves the set $V_{p}=\left\{v_{p, l} \mid l \leq 0, p \leq m-1\right\} \cup$ $\left\{v_{k, p-k} \mid 1 \leq k<p\right\}$, where p is any positive integer. Among the vertices in $S_{1}, v_{0,1}$ is the closest vertex to $v_{p, l}$, therefore

$$
d\left(v_{p, l}, v_{0,1}\right)=d\left(v_{p, l}, S_{1}\right)=p+|l-1|=p+1-l
$$

where $l \leq 0$, and $v_{0, p-k} \in S_{1}$ is the closest vertex to $v_{k, p-k}$, thus

$$
d\left(v_{k, p-k}, v_{0, p-k}\right)=d\left(v_{k, p-k}, S_{1}\right)=k=p-l^{\prime}
$$

where $l^{\prime} \geq 1$. It is easy to see that no two vertices in V_{p} are of the same distance from S_{1}, hence Π is a resolving partition of $V(G)$.

If G is the graph $P_{\infty} \square P_{2 \infty}$, the only modification of the proof is to remove the upper bound $m-1$ which is included in several sets considered in the proof of $p d\left(P_{m} \square P_{2 \infty}\right) \leq 3$.

Theorems 2.1 and 2.4 yield Corollary 2.3.
Corollary 2.3. $p d\left(P_{m} \square P_{2 \infty}\right)=3$ and $p d\left(P_{\infty} \square P_{2 \infty}\right)=3$.
Finally, we consider the graphs $P_{2 \infty}^{z} \square P_{2 \infty}^{z}$ for $z=2$. We present a lower bound on the partition dimension of the graph $P_{2 \infty}^{2} \square P_{2 \infty}^{2}$. The distance between two vertices $v_{i, j}$ and $v_{k, l}$ in $P_{2 \infty}^{2} \square P_{2 \infty}^{2}$ is

$$
d\left(v_{i, j}, v_{k, l}\right)=\left\lceil\frac{|k-i|}{2}\right\rceil+\left\lceil\frac{|l-j|}{2}\right\rceil .
$$

THEOREM 2.5. $p d\left(P_{2 \infty}^{2} \square P_{2 \infty}^{2}\right) \geq 4$.
Proof. Let $G=P_{2 \infty}^{2} \square P_{2 \infty}^{2}$. By Theorem 2.1 we have $p d(G) \geq 3$. We prove Theorem 2.5 by contradiction. Assume that $p d(G)=3$. Let $\Pi=$ $\left\{S_{1}, S_{2}, S_{3}\right\}$ be a resolving partition of $V(G)$. Let $V^{\prime}=\left\{v_{p, r}, v_{p, r+1}, v_{p, r+2}\right.$, $\left.v_{p+1, r}, v_{p+1, r+1}, v_{p+1, r+2}, v_{p+2, r}, v_{p+2, r+1}, v_{p+2, r+2}\right\}$ where $p, r \in \mathbb{Z}$. Note that any two vertices in V^{\prime} are of distance at most 2, thus if $d\left(v, V^{\prime}\right)=x$ for $v \in V(G)$, then for any $v^{\prime} \in V^{\prime}$, we have $x \leq d\left(v, v^{\prime}\right) \leq x+2$.

Without loss of generality we can assume that $\left|V^{\prime} \cap S_{1}\right| \geq\left|V^{\prime} \cap S_{2}\right| \geq$ $\left|V^{\prime} \cap S_{3}\right|$. We distinguish a few cases.

Case 1. $V^{\prime} \subseteq S_{1}$.
Let $d\left(V^{\prime}, S_{2}\right)=x$. Then $x \leq d\left(v^{\prime}, S_{2}\right)=x+2$ for any $v^{\prime} \in V^{\prime}$ and $y \leq$ $d\left(v^{\prime}, S_{3}\right)=y+2$ for some positive integer y and any $v^{\prime} \in V^{\prime}$.

If there are at most 2 vertices of V^{\prime} at distance x from S_{2}, then we have 4 vertices of V^{\prime} at distance $x+1$ from S_{2} or 4 vertices of V^{\prime} are distance $x+2$ from S_{2}. These 4 vertices cannot be resolved by S_{3} since for any $v^{\prime} \in V^{\prime}$,
$y \leq d\left(v^{\prime}, S_{3}\right)=y+2$ (2 vertices in V^{\prime} have the same representations with respect to S_{2} and S_{3}).

If there are at least 3 vertices of V^{\prime} at distance x from S_{2}, it is easy to check that there is at most one vertex of V^{\prime} at distance $x+2$ from S_{2}. Thus we have 4 vertices of V^{\prime} at distance x from S_{2} or 4 vertices of V^{\prime} are of distance $x+1$ from S_{2}, which again cannot be resolved by S_{3}.

Case 2. $7 \leq\left|V^{\prime} \cap S_{1}\right| \leq 8$.
Then $\left|V^{\prime} \cap S_{2}\right| \geq 1$. Since $\left|V^{\prime} \cap S_{1}\right| \geq 7$, there are 4 vertices in $V^{\prime} \cap S_{1}$ at distance 1 from S_{2} or 4 vertices in $V^{\prime} \cap S_{1}$ at distance 2 from S_{2}. These 4 vertices cannot be resolved by S_{3}, since for any $v^{\prime} \in V^{\prime}, y \leq d\left(v^{\prime}, S_{3}\right)=y+2$ for some positive integer y.

Case 3. $\left|V^{\prime} \cap S_{1}\right|=6$.
We can assume that $2 \leq\left|V^{\prime} \cap S_{2}\right| \leq 3$. Let $u, u^{\prime} \in V^{\prime} \cap S_{2}$. Then there are at least 4 vertices in $V^{\prime} \cap S_{1}$ at distance 1 from S_{2} (the vertices of S_{1} that have the first or second coordinate same as u or u^{\prime}). These 4 vertices cannot be resolved by S_{3}.

Case 4. $\left|V^{\prime} \cap S_{1}\right|=5$ and $\left|V^{\prime} \cap S_{2}\right|=4$.
Every vertex u in $V^{\prime} \cap S_{2}$ is at distance 2 from exactly 4 vertices in V^{\prime}. Since $\left|V^{\prime} \cap S_{1}\right|>4$, there exists a vertex in $V^{\prime} \cap S_{1}$ at distance 1 from u. Thus $d\left(u, S_{1}\right)=1$ for every u in $V^{\prime} \cap S_{2}$, and 4 vertices of $V^{\prime} \cap S_{2}$ cannot be resolved by S_{3}.

Case 5. $\left|V^{\prime} \cap S_{1}\right|=5, V^{\prime} \cap S_{2} \neq \emptyset$ and $V^{\prime} \cap S_{3} \neq \emptyset$.
Since every vertex in $V^{\prime} \cap S_{1}$ is at distance 1 or 2 from S_{2}, we either have (at least) 3 vertices in $V^{\prime} \cap S_{1}$ at distance 1 from S_{2} or 3 vertices in $V^{\prime} \cap S_{1}$ at distance 2 from S_{2}. Those 3 vertices cannot be resolved by S_{3} (since every vertex in $V^{\prime} \cap S_{1}$ is at distance 1 or 2 from S_{3}).

Case 6. $\left|V^{\prime} \cap S_{1}\right|=4, V^{\prime} \cap S_{2} \neq \emptyset$ and $V^{\prime} \cap S_{3} \neq \emptyset$.
The partition representation of any vertex in $V^{\prime} \cap S_{1}$ is $(0, x, y)$ where $x, y \leq 2$, which implies that 4 vertices in $V^{\prime} \cap S_{1}$ have representations $(0,1,1),(0,1,2)$, $(0,2,1),(0,2,2)$. The vertex, say u, with the representation $(0,2,2)$ must be at distance 2 from all 5 vertices in $\left(V^{\prime} \cap S_{2}\right) \cup\left(V^{\prime} \cap S_{3}\right)$, which is impossible, since there at exactly 4 vertices in V^{\prime} at distance 2 from u.

Case 7. $\left|V^{\prime} \cap S_{1}\right|=\left|V^{\prime} \cap S_{2}\right|=\left|V^{\prime} \cap S_{3}\right|=3$.
A vertex $u \in V^{\prime}$ cannot have the representation $(0,2,2)$, because V^{\prime} contains only 4 vertices at distance 2 from u (and $\left|V^{\prime} \cap S_{2}\right|+\left|V^{\prime} \cap S_{3}\right|=6$). Similarly, no vertex of V^{\prime} has the representation $(2,0,2)$ or $(2,2,0)$. So the vertices in V^{\prime} have the representations $(0,1,1),(0,1,2),(0,2,1),(1,0,1),(1,0,2),(2,0,1)$, $(1,1,0),(1,2,0)$ and $(2,1,0)$.

Without loss of generality we can assume that $v_{p, r}$ has the representation $(0,1,2)$. Since, $d\left(v_{p, r}, S_{3}\right)=2$, no vertex of V^{\prime} which is in S_{3} has the first
coordinate p or the second coordinate r. So $V^{\prime} \cap S_{3} \subseteq\left\{v_{p+1, r+1}, v_{p+1, r+2}\right.$, $\left.v_{p+2, r+1}, v_{p+2, r+2}\right\}$. Then $v_{p, r}$ is the only vertex in V^{\prime} having distance 2 from S_{3} and no vertex can have the representation $(1,0,2)$. A contradiction.

3. CONCLUSION

We proved that
$3 \leq p d\left(P_{2 \infty}^{2} \square P_{2 \infty}\right) \leq 4 \leq p d\left(P_{2 \infty}^{3} \square P_{2 \infty}\right) \leq 5$ and $p d\left(P_{3 \infty}^{2} \square P_{2 \infty}\right) \leq z+2$
for any $z \geq 4$. To find exact values of the partition dimension for the graphs $P_{2 \infty}^{z} \square P_{2 \infty}$ is an open problem.

Problem 3.1. Find exact values of $p d\left(P_{2 \infty}^{z} \square P_{2 \infty}\right)$ for $z \geq 2$.
We showed that $p d\left(P_{2 \infty}^{2} \square P_{2 \infty}^{2}\right) \geq 4$. We believe that the partition dimension of $P_{2 \infty}^{2} \square P_{2 \infty}^{2}$ is 4 , therefore we state the following conjecture.

Conjecture 3.1. $p d\left(P_{2 \infty}^{2} \square P_{2 \infty}^{2}\right)=4$.
It would be interesting to study the partition dimension also for the graphs $P_{2 \infty}^{z} \square P_{2 \infty}^{z}$ where $z \geq 3$. Thus we introduce Problem 3.2.

Problem 3.2. Give lower and upper bounds on $p d\left(P_{2 \infty}^{z} \square P_{2 \infty}^{z}\right)$ for $z \geq 3$.
These problems remain open for future research.

Acknowledgments. The work of M. Imran is supported by Asian Universities Alliance (AUA) grant of United Arab Emirates University (Grant Number G00003461). The work of T. Vetrík is based on the research supported by the National Research Foundation of South Africa (Grant Number 129252).

REFERENCES

[1] R. Alfarisi, Darmaji, and Dafik, On the star partition dimension of comb product of cycle and complete graph. J Physics: Conference Series 855 (2017), 012005.
[2] E. T. Baskoro and Darmaji, The partition dimension of the corona product of two graphs. Far East J. Math. Sci. (FJMS) 66 (2012). 181-196.
[3] J. Cáceres, C. Hernando, M. Mora, I. M. Pelayo, and M. L. Puertas, On the metric dimension of infinite graphs. Discrete Appl. Math. 160 (2012), 2618-2626.
[4] G. Chartrand, L. Eroh, M. A. Johnson, and O. R. Oellermann, Resolvability in graphs and the metric dimension of a graph. Discrete Appl. Math. 105 (2000), 99-113.
[5] G. Chartrand, E. Salehi, and P. Zhang, The partition dimension of a graph. Aequationes Math. 59 (2000), 45-54.
[6] F. Harary and R. A. Melter, On the metric dimension of a graph. Ars Comb. 2 (1976), 191-195.
[7] D. O. Haryeni, E. T. Baskoro, S. W. Saputro, M. Bača, and A. Semaničová-Feňovčíková, On the partition dimension of two-component graphs. Proc. Indian Acad. Sci. (Math. Sci.) 127 (2017), 755-767.
[8] S. Khuller, B. Raghavachari, and A. Rosenfeld, Landmarks in graphs. Discrete Appl. Math. 70 (1996), 217-229.
[9] R. A. Melter and I. Tomescu, Metric bases in digital geometry. Comput. Vision Graphics Image Process. 25 (1984), 113-121.
[10] P. J. Slater, Leaves of trees. Congress. Numer. 14 (1975), 549-559.
[11] I. Tomescu, Discrepancies between metric dimension and partition dimension of a connected graph. Discrete Math. 308 (2008), 5026-5031.
[12] I. Tomescu and M. Imran, On metric and partition dimensions of some infinite regular graphs. Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 52 (2009), 461-472.
[13] I. G. Yero, M. Jakovac, D. Kuziak, and A. Taranenko, The partition dimension of strong product graphs and Cartesian product graphs. Discrete Math. 331 (2014), 43-52.
[14] G. I. Yero and J. A. Rodríguez-Velázquez, A note on the partition dimension of Cartesian product graphs. Appl. Math. Comput. 217 (2010), 3571-3574.

Received May 13, 2018

Muhammad Imran
United Arab Emirates University
Department of Mathematical Sciences
Colleges of Science
Al Ain, United Arab Emirates m. imran658@uaeu.ac.ae
Tomáš Vetrik
University of the Free State
Department of Mathematics and Applied Mathematics, Bloemfontein, South Africa
vetrikt@ufs.ac.za

