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When regression function belongs to Besov space, wavelet estimations are inves-
tigated by Chesneau and Shirazi (2014), Kou and Liu (2016, 2017). However, in
many practical applications, one does not know whether the regression function
is smooth or not. It makes sense to discuss consistency of wavelet estimator.
This paper considers the mean Lp(1 ≤ p ≤ ∞) consistency of wavelet estimator
for multivariate regression functions based on biased data.
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1. INTRODUCTION

Let (X1, Y1), (X2, Y2), · · · , (Xn, Yn) be independent and identically dis-
tributed (i.i.d.) random variables defined on a probability space (Ω,F ,P) with
common density function

(1) f(x, y) =
ω(x, y)g(x, y)

µ
, (x, y) ∈ Rd × R,

where ω stands for a known positive function, g denotes the density function
of the unobserved random variable (U, V ) and

µ = E[ω(U, V )] =

∫
R

∫
Rd

ω(x, y)g(x, y)dxdy < ∞.

In this setup g and f mean the target density and weighted density,
respectively, and the resulting data are biased data. Then the problem is to
estimate the unknown regression function

(2) r(x) = E (ρ(V )|U = x) , x ∈ Rd

from the given biased data (Xi, Yi)(i = 1, 2, . . . , n) in some sense.
The above model arises in many applications ([10]). An example is the

estimation of the correlation r(x) of agricultural output V and input U of a
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country. We can obtain (Xi, Yi) data from different agricultural regions of a
country with Xi the input and Yi the output. Since it is more likely to sample
data from special regions, it means that the data we obtain is biased. Therefore
the model we propose for the estimation of the true regression function of the
output versus the input is important and valuable.

The aim of this paper is to develop wavelet estimations for the regression
model with weaker conditions. Wavelet methods are of interest in nonpara-
metric statistics thanks to their ability to estimate efficiently a wide variety
of unknown functions, especially for those with discontinuties or sharp spikes.
For this regression model, when the observed data (Xi, Yi) (i = 1, 2, . . . , n)
are independent, Chesneau and Shirazi [3] construct wavelet estimators of the
regression function and discuss its mean integrated squared error (L2-risk)
over Besov space. An upper bound over Lp (1 ≤ p < ∞) risk of wavelet
estimators are established by Kou and Liu [6]. Moreover, a lower bound esti-
mations over Lp (1 ≤ p < ∞) risk are proved by Kou and Liu [7]. When the
(Xi, Yi) (i = 1, 2, . . . , n) is extended to strong mixing case, Chaubey, Chesneau
and Shirazi [1, 2] study the L2-risk of linear and nonlinear wavelet estimator
respectively. It should be pointed out that those above results all require that
the regression function belongs to Besov space, which means the regression
function is smooth. However, in many practical cases we do not have smooth-
ness of the regression function. As in the Example 2.3 and 2.4 of [6], the
regression functions r(x) have sharp spikes. Therefore, it is natural to consider
the mean consistency of wavelet estimator r̂n, which means that E∥r̂n − r∥pp
converges to zero as the sample size n tends to infinity.

In this article, we consider the mean Lp (1 ≤ p ≤ ∞) consistency of
linear wavelet estimator for the regression model. This work is an important
supplement to the regression problems.

2. WAVELETS AND THREE LEMMAS

This section provides some concepts and important lemmas, which are
needed for proving our main results in the next section. A multiresolution
analysis (MRA) ([9]) is a sequence of closed subspaces {Vj}j∈Z of the square
integrable function space L2(Rd) satisfying:

(i) Vj ⊆ Vj+1, j ∈ Z.

(ii)
⋃
j∈Z

Vj = L2(Rd) (the space
⋃
j∈Z

Vj is dense in L2(Rd));

(iii) f(2·) ∈ Vj+1 if and only if f(·) ∈ Vj for each j ∈ Z;
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(iv) There exists φ(x) ∈ L2(Rd) (scaling function) such that

{φ(· − k), k ∈ Zd}

forms an orthonormal basis of V0 = span{φ(· − k)}.

Let Pj be the orthogonal projection operator from L2(Rd) onto the space
Vj with the orthonormal basis {φj,k(·) = 2jd/2φ(2j · −k), k ∈ Zd}. Then for
f ∈ L2(Rd),

Pjf =
∑
k∈Zd

αj,kφj,k, αj,k =

∫
Rd

f(x)φj,k(x)dx.

If a scaling function φ satisfies Condition (θ), i.e.∑
k∈Zd

|φ(x− k)| ∈ L∞(Rd),

then the function φ ∈ L(Rd)
⋂
L∞(Rd) (so that φ ∈ Lp for 1 ≤ p ≤ ∞), and∑

k∈Zd

φ(x−k)φ(y − k) converges absolutely almost everywhere. It can be shown

that for f ∈ Lp(Rd) (1 ≤ p ≤ ∞),

(3) Pjf(x) =
∑
k∈Zd

αj,kφj,k(x) =

∫
Rd

Kj(x, y)f(y)dy,

where K(x, y) =
∑

k∈Zd

φ(x − k)φ(y − k) and Kj(x, y) = 2jdK(2jx, 2jy). Fur-

thermore, the following lemma is true.

Lemma 2.1. Suppose that a scaling function φ(x) satisfies Condition (θ)
and αk ∈ lp (1 ≤ p ≤ +∞). Then there exist 0 < c1 < c2 such that

c12
j( d

2
− d

p
)∥αk∥p ≤

∥∥∥∥∥∥
∑
k∈Zd

αk2
jd
2 φ(2jx− k)

∥∥∥∥∥∥
p

≤ c22
j( d

2
− d

p
)∥αk∥p.

When d = 1, the proof of this lemma can be found in Härdle, et al. [5].
Similar arguments work as well for d ≥ 2.

Now we introduce another concept, which is a little stronger than Con-
dition (θ).

Condition S. There exists a bounded nonincreasing function Φ(x) such
that |φ(x)| ≤ Φ(|x|) (a.e.) and

∫
Rd Φ(|x|)dx < ∞.

In this paper, we choose a compactly supported and bounded scaling func-
tion φ (supp φ ⊆ {x ∈ Rd, |x| ≤ T}), such as the tensor product of Daubechies
scaling function ([5,9]), so that φ satisfies Condition S. The following lemmas
are proved by Liu and Xu [8] and will be used later on.
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Lemma 2.2. If a scaling function φ(x) satisfies Condition S, then

(1)

∫
Rd

K(x, y)dy = 1 (a.e.);

(2) There exists F (x) ∈ L∞(Rd) ∩ L(Rd) such that

|K(x, y)| ≤ F (x− y) (a.e.).

Lemma 2.3. If a scaling function φ(x) satisfies Condition S, then for
f(x) ∈ Lp(Rd) (1 ≤ p < ∞),

lim
j→∞

∥Pjf(x)− f(x)∥p = 0.

When f(x) is uniformly continuous, this result is also true for p = ∞.

We also need the following inequality, which can be found in Härdle et
al. [5].

Rosenthal’s inequality. Let X1, . . . , Xn be independent random vari-
ables such that EXi = 0 and E|Xi|p < ∞. Then

E

∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣
p

≲


n∑

i=1
E|Xi|p +

(
n∑

i=1
EX2

i

) p
2

, p ≥ 2;(
n∑

i=1
EX2

i

) p
2

, 1 ≤ p < 2.

Here and after, we use A ≲ B to denote A ≤ cB for some constant c > 0;
A ≳ B means B ≲ A; A ∼ B stands for both A ≲ B and B ≲ A.

3. WAVELET ESTIMATOR AND THEOREMS

In this section, we will construct a wavelet estimator and discuss its mean
Lp (1 ≤ p ≤ ∞) consistency.

For the regression model, a straightforward wavelet estimator of r can
be constructed by estimating the projection Pjr of r on Vj . Then a wavelet
estimator is defined by

(4) r̂n(t) :=
∑
k

α̂j,kφj,k(t),

where

(5) α̂j,k =
µ̂n

n

n∑
i=1

ρ(Yi)

ω(Xi, Yi)h(Xi)
φj,k(Xi), µ̂n =

[
1

n

n∑
i=1

1

ω(Xi, Yi)

]−1

and h(x) denotes the density function of the random variable U .
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It is easy to see from (1) and (2) that

E
(

1

µ̂n

)
= E

(
1

ω(Xi, Yi)

)
=

∫
Rd

∫
R

f(x, y)

ω(x, y)
dydx =

∫
Rd

∫
R

g(x, y)

µ
dydx =

1

µ

and

E

[
µ

n

n∑
i=1

ρ(Yi)

ω(Xi, Yi)h(Xi)
φj,k(Xi)

]
= E

[
µ ρ(Yi)

ω(Xi, Yi)h(Xi)
φj,k(Xi)

]
=

∫
Rd

∫
R

µ ρ(y)

ω(x, y)h(x)
f(x, y)φj,k(x)dydx

=

∫
Rd

∫
R

ρ(y)g(x, y)

h(x)
dyφj,k(x)dx

=

∫
Rd

r(x)φj,k(x)dx = αj,k.

On the other hand, by the definitions of α̂j,k and Kj(x, y), one gets

(6) r̂n(t) =
µ̂n

n

n∑
i=1

ρ(Yi)

ω(Xi, Yi)h(Xi)
Kj(t,Xi).

Theorem 1. Consider the regression model with ω(x, y) ∼ 1, h(x) ≳ 1
and ρ(y) ∈ L∞(R). Then for r ∈ Lp(Rd) (1 ≤ p < ∞) and the estimator r̂n
defined in (4) with 2jd ∼ n

1
3 ,

lim
n→∞

E∥r̂n − r∥pp = 0.

Remark 1. In this theorem, we assume 1 ≤ p < ∞. Similar result is
obtained in Theorem 2 for p = ∞. On the other hand, Chesneau and Shirazi
[3], Kou and Liu [6] all require that the regression function r has compact
support. However, we do not need this condition in Theorem 1 and Theorem 2.

Remark 2. The assumptions ω(x, y) ∼ 1 and h(x) ≳ 1 are standard for
the nonparametric regression model with biased data, see Chaubey, Chesneau
and Shirazi [1], Chesneau and Shirazi [3], Kou and Liu [6, 7].

Proof. It is easy to see that

(7) E∥r̂n − r∥pp = E∥r̂n − Pjr + Pjr − r∥pp ≲ E∥r̂n − Pjr∥pp + ∥Pjr − r∥pp.

Using Lemma 2.3, lim
j→∞

∥Pjr − r∥pp = 0. When n → ∞, j → ∞ because

of 2jd ∼ n
1
3 . Hence,

lim
n→∞

∥Pjr − r∥pp = 0.

The main work for the proof of Theorem 1 is to show

(8) lim
n→∞

E∥r̂n − Pjr∥pp = 0.
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Note that

|r̂n − Pjr| =

∣∣∣∣∣ µ̂n

n

n∑
i=1

ρ(Yi)

ω(Xi, Yi)h(Xi)
Kj(t,Xi)− Pjr

∣∣∣∣∣
≤

∣∣∣∣∣ µ̂n

µ

[
µ

n

n∑
i=1

ρ(Yi)

ω(Xi, Yi)h(Xi)
Kj(t,Xi)− Pjr

]∣∣∣∣∣
+

∣∣∣∣µ̂n · Pjr ·
(
1

µ
− 1

µ̂n

)∣∣∣∣ .
This, together with ω(x, y) ∼ 1 and the definition of µ̂n, shows

Q : = E∥r̂n − Pjr∥pp = E
∫
Rd

|r̂n − Pjr|pdt

≲ E
∫
Rd

∣∣∣∣∣
[
µ

n

n∑
i=1

ρ(Yi)

ω(Xi, Yi)h(Xi)
Kj(t,Xi)− Pjr

]∣∣∣∣∣
p

dt

+∥Pjr∥pp E
∣∣∣∣ 1µ − 1

µ̂n

∣∣∣∣p .
According to (3) and Lemma 2.2,

∥Pjr∥pp ≤
∫
Rd

[∫
Rd

|Kj(t, y)r(y)|dy
]p

dt

≲
∫
Rd

[∫
Rd

2jd
∣∣F (2j(t− y))r(y)

∣∣ dy]p dt
≲

∫
Rd

[∫
Rd

∣∣F (y)r(t− 2−jy)
∣∣dy]p dt.(9)

Take F̃ (y) := F (y)
∥F∥1 . Then F̃ (y) ∈ L(Rd) and

∫
Rd F̃ (y)dy = 1. By Jensen

inequality and Fubini theorem, (9) reduces to

∥Pjr∥pp ≲
∫
Rd

∫
Rd

F̃ (y)|r(t− 2−jy)|pdydt

≲
∫
Rd

F̃ (y)

∫
Rd

|r(t− 2−jy)|pdtdy ≲ 1.

Hence,

Q ≲ E
∫
Rd

∣∣∣∣∣
[
µ

n

n∑
i=1

ρ(Yi)

ω(Xi, Yi)h(Xi)
Kj(t,Xi)− Pjr

]∣∣∣∣∣
p

dt+ E
∣∣∣∣ 1µ − 1

µ̂n

∣∣∣∣p
:= Q1 +Q2.(10)

First, one estimates Q2. By the definition of µ̂n,

Q2 = E
∣∣∣∣ 1µ − 1

µ̂n

∣∣∣∣p = 1

np
E

∣∣∣∣∣
n∑

i=1

ηi

∣∣∣∣∣
p

(11)
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with ηi =
1

ω(Xi,Yi)
− 1

µ . Note that {ηi} are i.i.d and Eηi = 0. Since ω(x, y) ∼ 1,

E|ηi|p ≲ 1. By Rosenthal’s inequality,

Q2 =
1

np
E

∣∣∣∣∣
n∑

i=1

ηi

∣∣∣∣∣
p

≲

{
1
np [n+ n

p
2 ], p ≥ 2;

n− p
2 , 1 ≤ p < 2.

Hence, for 1 ≤ p < ∞,

lim
n→∞

Q2 = 0.(12)

To estimate Q1, one defines ξi = µρ(Yi)
ω(Xi,Yi)h(Xi)

Kj(t,Xi) − Pjr(t). Note
that

E
[

µρ(Yi)

ω(Xi, Yi)h(Xi)
Kj(t,Xi)

]
=

∫
Rd

∫
R

µρ(y)

ω(x, y)h(x)
Kj(t, x)f(x, y)dydx

=

∫
Rd

Kj(t, x)

∫
R

ρ(y)g(x, y)

h(x)
dydx

=

∫
Rd

Kj(t, x)r(x)dx = Pjr(t).

Then {ξi} are i.i.d. and Eξi = 0. It is easy to see that

Q1 = E
∫
Rd

∣∣∣∣∣
[
µ

n

n∑
i=1

ρ(Yi)

ω(Xi, Yi)h(Xi)
Kj(t,Xi)− Pjr

]∣∣∣∣∣
p

dt

=
1

np

∫
Rd

E

∣∣∣∣∣
n∑

i=1

ξi

∣∣∣∣∣
p

dt.(13)

Using Jensen inequality, |Pjr(t)|p ≤ E
∣∣∣ µρ(Yi)
ω(Xi,Yi)h(Xi)

Kj(t,Xi)
∣∣∣p. Hence,

E|ξi|p ≲ E
∣∣∣∣ µρ(Yi)

ω(Xi, Yi)h(Xi)
Kj(t,Xi)

∣∣∣∣p .
It follows from ω(x, y) ∼ 1, h(x) ≳ 1, ρ(y) ∈ L∞(R) and Lemma 2.2 that

E|ξi|p ≲
∫
R

∫
Rd

∣∣∣∣ µρ(y)

ω(x, y)h(x)
Kj(t, x)

∣∣∣∣p f(x, y)dxdy
≲

∫
R

∫
Rd

2jdpF p(2jt− 2jx)f(x, y)dxdy ≲ 2jdp.(14)

When p ≥ 2, the Rosenthal’s inequality and Jensen inequality shows that

E

∣∣∣∣∣
n∑

i=1

ξi

∣∣∣∣∣
p

≲
n∑

i=1

E|ξi|p +

(
n∑

i=1

Eξ2i

) p
2

≲ n
p
2E|ξi|p.(15)
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Combining this with (13), one obtains

Q1 ≲
1

n
p
2

∫
Rd

E|ξi|pdt.(16)

By (14), Lemma 2.2 and Fubini theorem,∫
Rd

E|ξi|pdt ≲
∫
R

∫
Rd

f(x, y)

∫
Rd

2jdpF p(2jt− 2jx)dtdxdy ≲ 2jd(p−1).(17)

This with (16) shows Q1 ≲ 2jd(p−1)

n
p
2

. Hence,

lim
n→∞

Q1 = lim
n→∞

1

np

∫
Rd

E

∣∣∣∣∣
n∑

i=1

ξi

∣∣∣∣∣
p

dt = 0(18)

with 2jd ∼ n
1
3 and 2 ≤ p < ∞.

For 1 ≤ p < 2, by (13),

Q1 ≤
1

n

∫
Rd

E

∣∣∣∣∣
n∑

i=1

ξi

∣∣∣∣∣ dt+ 1

n2

∫
Rd

E

∣∣∣∣∣
n∑

i=1

ξi

∣∣∣∣∣
2

dt.(19)

Note that lim
n→∞

1
n2

∫
Rd E|

n∑
i=1

ξi|2dt = 0 thanks to (18). It remains to prove

lim
n→∞

1

n

∫
Rd

E

∣∣∣∣∣
n∑

i=1

ξi

∣∣∣∣∣ dt = 0.(20)

According to Rosenthal’s inequality and (14),

1

n
E

∣∣∣∣∣
n∑

i=1

ξi

∣∣∣∣∣ ≲
1

n

[
n∑

i=1

Eξ2i

] 1
2

≲ n− 1
2
(
Eξ2i

) 1
2

≲ n− 1
2

[∫
R

∫
Rd

22jdF 2(2jt− 2jx)f(x, y)dxdy

] 1
2

:= A(t).(21)

On the other hand,

1

n
E

∣∣∣∣∣
n∑

i=1

ξi

∣∣∣∣∣ ≤ E|ξi| ≲
∫
R

∫
Rd

2jdF (2jt− 2jx)f(x, y)dxdy

≲
∫
R

∫
Rd

F (x)f(t− x

2j
, y)dxdy

≲
∫
R

∫
Rd

F (x)f(t, y)dxdy

+

∫
R

∫
Rd

F (x)
∣∣∣f(t− x

2j
, y)− f(t, y)

∣∣∣dxdy.
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:= B(t) + C(t).(22)

Then we get that

1

n

∫
Rd

E

∣∣∣∣∣
n∑

i=1

ξi

∣∣∣∣∣ dt ≲
∫
Rd

min{A(t), B(t) + C(t)}dt

≲
∫
Rd

min{A(t), B(t)}dt+
∫
Rd

C(t)dt.(23)

One knows that∫
Rd

C(t)dt =

∫
Rd

∫
R

∫
Rd

F (x)
∣∣∣f(t− x

2j
, y)− f(t, y)

∣∣∣dxdydt
=

∫
Rd

∫
R

∫
Rd

F (x)
∣∣∣f(t− x

2j
, y)− f(t, y)

∣∣∣ dtdydx.
Since

∫
R

∫
Rd

F (x)|f(t− x

2j
, y)− f(t, y)|dtdy ≤ 2F (x) ∈ L(Rd) and

lim
j→∞

∫
R

∫
Rd

|f(t− x

2j
, y)− f(t, y)|dtdy = 0,

then by the Lebesgue dominated convergence theorem,

lim
n→∞

∫
Rd

C(t)dt = 0.(24)

It is easy to see that
∫
Rd B(t)dt =

∫
Rd

∫
R
∫
Rd F (x)f(t, y)dxdydt = ∥F∥1.

So, B(t) ∈ L(Rd). Moreover, lim
n→∞

A(t) = 0 thanks to Lemma 2.2 and 2jd ∼ n
1
3 .

Hence,

lim
n→∞

∫
Rd

min{A(t), B(t)}dt =
∫
Rd

lim
n→∞

min{A(t), B(t)}dt = 0(25)

with the Lebesgue dominated convergence theorem. Combining this with (23)
and (24),

lim
n→∞

1

n

∫
Rd

E|
n∑

i=1

ξi|dt = 0.

Next we give the mean L∞ consistency.

Theorem 2. Consider the regression model with ω(x, y) ∼ 1, h(x) ≳

1 and ρ(y) ∈ L∞(R). Let r(x) is uniformly continuous and 2jd ∼ n
1
6 . If

there exists a bounded non-increasing function γ such that |r(x)| ≤ γ(|x|) and∫
Rd [γ(|x|)]

1
2dx < +∞, then

lim
n→∞

E∥r̂n − r∥∞ = 0.



612 H. Guo and J. Kou 10

Remark 3. In Theorem 2, condition ρ ∈ L∞(R) implies the boundedness
of regression function r, this means r ∈ L∞(Rd). On the other hand, to
estimate E∥r̂n − r∥∞, the continuity of r is essential, which can be found in
Geng and Wang [4], Zeng and Wang [11].

Remark 4. The function ρ is assumed to be an identity function (ρ(y) =
y) and y ∈ [a, b] in Chaubey, et al. [1]. However, we only require ρ(y) ∈
L∞(R). In addition, the estimation model is considered in a compact support
((x, y) ∈ [0, 1]d × [a, b]) by Chaubey, et al. [1]. But in this paper, we do not
have this restrictive condition.

Proof. Similar to the arguments of Theorem 1,

E∥r̂n − r∥∞ ≲ E∥r̂n − Pjr∥∞ + ∥Pjr − r∥∞.

Then lim
n→∞

∥Pjr − r∥∞ = 0 by Lemma 2.3. We only need to prove

(26) lim
n→∞

E∥r̂n − Pjr∥∞ = 0.

To estimate E∥r̂n − Pjr∥∞, one defines

α̃j,k :=
µ

n

n∑
i=1

ρ(Yi)

ω(Xi, Yi)h(Xi)
φj,k(Xi), r̃n(x) :=

∑
k

α̃j,kφj,k(x).

Then α̂j,k = µ̂n

µ α̃j,k and r̂n = µ̂n

µ r̃n thanks to (4) and (5). Furthermore, one
knows that

E∥r̂n − Pjr∥∞ = E
∥∥∥∥ µ̂n

µ
(r̃n − Pjr) + µ̂n Pjr

(
1

µ
− 1

µ̂n

)∥∥∥∥
∞
.

Obviously,

∥Pjr∥∞ ≤
∫
Rd

|Kj(x, y)r(y)|dy ≤
∫
Rd

F (y)|r(x− 2jy)|dy ≲ 1

thanks to r ∈ L∞(Rd) and F ∈ L(Rd). On the other hand, ω(x, y) ∼ 1 implies
|µ̂n| ≲ 1. Hence

E∥r̂n − Pjr∥∞ ≲ E∥r̃n − Pjr∥∞ + E
∣∣∣∣ 1µ − 1

µ̂n

∣∣∣∣ .
This with the definition of r̃n and Lemma 2.1 (p = ∞) shows

(27) E∥r̂n − Pjr∥∞ ≲ 2
jd
2

∑
k

E|α̃j,k − αj,k|+ E
∣∣∣∣ 1µ − 1

µ̂n

∣∣∣∣ .
It is known that lim

n→∞
E| 1µ − 1

µ̂n
| = 0 by the proof of (12).
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Finally, one estimates 2
jd
2
∑
k

E|α̃j,k − αj,k|. According to Rosenthal’s in-

equality and Eα̃j,k = αj,k,

E|α̃j,k − αj,k| =
1

n
E

∣∣∣∣∣
n∑

i=1

(
µρ(Yi)

ω(Xi, Yi)h(Xi)
φj,k(Xi)− αj,k

)∣∣∣∣∣
≲

1

n

[
n∑

i=1

E
(

µρ(Yi)

ω(Xi, Yi)h(Xi)
φj,k(Xi)− αj,k

)2
] 1

2

≲ n− 1
2

[
E
(

µρ(Yi)

ω(Xi, Yi)h(Xi)
φj,k(Xi)

)2
] 1

2

.(28)

It follows from (1), (2), ω(x, y) ∼ 1 and h(x) ≳ 1 that

E
(

µρ(Yi)

ω(Xi, Yi)h(Xi)
φj,k(Xi)

)2

≲
∫
Rd

|r(x)||φj,k(x)|2dx.

Moreover, ∫
Rd

|r(x)||φj,k(x)|2dx ≲
∫
|x−k|≤T

|r( x
2j

)|dx

because φ is compactly supported and bounded. Furthermore, one has

2
jd
2

∑
k

E|α̃j,k − αj,k| ≲
(
2jd

n

) 1
2 ∑

k

[∫
|x−k|≤T

∣∣∣r ( x

2j

)∣∣∣dx] 1
2

.(29)

Note that∑
k

[∫
|x−k|≤T

∣∣∣r ( x

2j

)∣∣∣ dx] 1
2

=

 ∑
|k|≤T+1

+
∑

|k|≥T+1

[∫
|x−k|≤T

∣∣∣r ( x

2j

)∣∣∣ dx] 1
2

.

Since ρ(y) ∈ L∞(R) implies the boundedness of r,

∑
|k|≤T+1

[∫
|x−k|≤T

|r( x
2j

)|dx

] 1
2

≲ 1.

On the other hand,
∑

|k|≥1

γ
1
2 ( |k|

2j
) ≲ 2jd by the property of γ. This with |r(x)| ≤

γ(|x|) leads to

∑
k

[∫
|x−k|≤T

∣∣∣r ( x

2j

)∣∣∣ dx] 1
2

≲ 1 +
∑

|k|≥T+1

[∫
|x−k|≤T

∣∣∣r ( x

2j

)∣∣∣ dx] 1
2
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≲ 1 +
∑

|k|≥T+1

[∫
|x−k|≤T

γ

(
|x|
2j

)
dx

] 1
2

≲ 1 +
∑

|k|≥T+1

[∫
|x−k|≤T

γ

(
|k| − T

2j

)
dx

] 1
2

≲ 1 +
∑
|k|≥1

[
γ

(
|k|
2j

)] 1
2

≲ 2jd.

This with (29) and 2jd ∼ n
1
6 shows that

2
jd
2

∑
k

E|α̃j,k − αj,k| ≲ n− 1
4(30)

and
lim
n→∞

2
jd
2

∑
k

E|α̃j,k − αj,k| = 0.

The desired conclusion (26) is proved.
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